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Running is a popular form of physical activity. Personal, social, and environmental

determinants influence the engagement of the individual. To get insight in the relation

between running behavior and external situations for different types of users, we carried

out an extensive data mining study on large-scale datasets. We combined 4 years

of historical running data (collected by a mobile exercise application from over 10K

participants) with weather, topographical and demographical datasets. We introduce

weighted frequent item mining for the analysis of the data. In this way, we capture

temporal and environmental situations that frequently associate with different running

performances. The results show that specific temporal and environmental situations

(hour in a day, day in a week, temperature, distance to residential areas, and population

density) influence the running performance of users more than other situational features.

Hierarchical agglomerative clustering on the running data is used to split runners in

two clusters (with sustained and less sustained running behavior). We compared the

two groups of runners and found that runners with less sustained behavior are more

sensitive to the environmental situations (especially several weather and location related

features, such as temperature, weather type, distance to the nearest park) than regular

runners. Further analysis focused on the situational features for the less sustained

runners. Results show that specific feature values correspond to a better or worse

running distance. Not only the influence of individual features was examined but also

the interplay between features. Our findings provide important empirical evidence that

the role of external situations in the running behavior of individuals can be derived from

analysis of the combined historical datasets. This opens up a large potential to take

those situations specifically into consideration when supporting individuals which show

less sustained behavior.
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1. INTRODUCTION

Physical inactivity has been identified as a leading risk factor for
poor health in modern society, as it can lead to serious physical
and mental health problems (1, 2). In order to maintain a healthy
lifestyle, people are advised to engage in a sufficient amount of
physical activity on a regular basis [i.e., at least 150minmoderate-
intensity activity every week for adults (3)]. However, a large
group of individuals struggle with sustaining this healthy activity
level. To illustrate, more than half of all Dutch residents in the
Netherlands did not meet these guidelines in 2017 (4). Thus,
searching for ways to promote sustained physical activity for
less active individuals is a challenge (5, 6). Intelligent mobile
systems can automatically and accurately track people’s behavior
and, based on this tracking, continuously intervene with a user to
promote physical activity (7–10).

For this purpose, it is crucial to have insight in the context
or situation of the user (11, 12). A situation can be defined as a
snapshot of internal (e.g., fitness level, mood, etc.) and external
variables (e.g., time, location, weather, etc.) of a person in a
physical or conceptual environment (13). In daily life, situations
can play an important role in determining the effectiveness
of an intervention (14, 15). For instance, a reminder about
physical activity sent during ameeting will likely be ineffective, no
matter how persuasive its content might be. Also, environmental
characteristics (situations) can play a role in influencing physical
activity behavior (16). Both socioecological models (17) and
cognitive models (18) explain how the physical environment
can facilitate or discourage certain behaviors. Sufficient sport
facilities, such as urban parks, might facilitate exercise whereas
lack of facilities likely discourage physical activity (19).

Remarkable is that these situational barriers seem to have
less impact on the individual when the activity habit is more
established (20, 21). Hence, it is likely that the role of the
physical environment on running behaviors differs between
individuals in different stages of behavior change. Several studies
demonstrated that the situational barriers of physical activity
changes during the process of behavior change (20, 22, 23).
Notably, all these studies used questionnaires to determine the
relationship between situational barriers and human behavior.
To examine whether this pattern also applies to not self-
reported empirical data, we conduct a data-driven study with
a combination of different datasets. We first set out to cluster
individuals based on their activity levels. Then, the characteristics
of situations suitable for running are examined for each cluster in
more detail. Based on the findings of this study, tailored advise
for running can be provided to mobile fitness application users
to increase the persuasiveness of the application.

1.1. Previous Data Studies
A substantial body of literature addresses the situation of various
physical activities bymeasuring the relationship between physical
activity and contextual features (24), mainly including temporal,
weather-based, topographical ones (25) and sometimes also
including demographic ones (26). For instance, access to natural
facilities and good road networks likely support physical activities
(27, 28). Also, several studies found seasonal effects on the

amount of physical activity, such as the association between
colder and wetter seasons in Scotland with lower levels of leisure
time physical activity (29).

However, most of those findings are based on research
methods, such as interviews, questionnaires, and in-situ
observations (30). As a consequence, studies have limited
sample sizes, take into account only a limited amount of
contextual variables, and often depend on the recall abilities
of participants (31). Contrary, we now have the opportunity
to collect large amounts of data about running behavior that
was directly measured, due to the technological advances
and the ubiquitous spreading of wearable devices and mobile
phones (32, 33). This data was successfully used to examine
the associations between physical activity behaviors in previous
research. For instance, Jansen et al. (34) used a combination of
a GPS sensor and accelerometer to determine the influence of
the geographical environment on physical activity for different
intensity levels, and Kim et al. (35) applied wearable devices to
collect crowdsourced physiological data from pedestrians and
analyze the features of walkable environment.

Furthermore, while smartphones deliver new opportunities to
collect physical activity related data (36), several studies worked
with mobile fitness application data to address the popularity
of a physical activity in spatial and temporal contexts. Hirsch
et al. (37) used data tracked by MapMyFitness to examine the
patterns of different activities across geographic and temporal
scales. In another study, Oksanen et al. (38) concentrated on
geography-based heatmaps to understand popularity of locations
for cycling, taking the diversity of cyclists into consideration.
Focused on running activity, He et al. (39) used the Twitter
data to understand preferred running times of Nike+ users, and
clustered the users based on their different preferences. However,
this study concentrated on temporal situations only. Later,
Balaban and Tunçer (40) combined mobile application data from
several resources to identify temporal and geographical situations
for running and walking in Singapore, without taking the diverse
preferences of individuals into consideration. In contrast to
previous data studies in running activity, we considered a variety
of features (covering weather-based, temporal, topographical and
demographic situations) and investigated their association with
running performance with respect to different types of users.
As far as we can see, this is the first study done based on such
substantially large datasets.

1.2. Our Research Objectives
In this article, we concentrate on modeling and investigating
the relation between contextual situations and running behavior
for different types of users. More precisely, we analyzed the
correlation between situations when people start a run (X) and
their performance in that run (Y), with respect to target users
having different running behavior (Z). Details of X, Y, Z are
indicated as follows:

• X: Situations: temporal, weather-related, topographical
and demographical situations at the start point of a
running activity;

Frontiers in Public Health | www.frontiersin.org 2 January 2021 | Volume 8 | Article 536370

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Good Situations for Running

• Y: Performance in one running activity: defined as
the normalized distance of a run, with respect to an
individual’s ability;

• Z: Target users: individuals with different annual running
patterns, including ones with less sustained behavior and ones
with a sustained and regular behavior (denoted by less active
and active runners).

In order to assess the three aspects in an integrated manner,
we propose to use machine learning approaches. We first used
a hierarchical agglomerative clustering algorithm to distinguish
individuals with different annual running patterns. Then, we
introduced weighted frequent item mining to extract the
situations that are frequently associated with exceptional running
distances (longer or shorter than an individual’s average running
distance). A mobile running dataset and two geographical
datasets were used in this study, which contain 4 years of running
history of over 10K users in the Netherlands. By combining
and analyzing those datasets, we addressed and examined the
following three research questions:

1. Which situational features are correlated with the
running distance?

2. Do these features differ for people with different annual
running patterns?

3. Under which situations do less active runners run longer or
shorter than their average?

2. METHODS

2.1. Data
In order to assess behavior of different types of runners in
different situations, we need to categorize runners and measure
the spatio-temporal context of a run. For this purpose, we
introduce three datasets in this section. One large-scale dataset
includes information of all participants’ runs and was collected
by a mobile exercise app. The two others datasets contain
geographical data for enriching tracks with the spatial context of
a situation. We present how these datasets were combined and
processed to derive variables which describe the situation as well
as the individual running behavior.

2.1.1. Data Acquisition and Description
Mobile fitness application data.

This dataset was collected and provided by our cooperator
MYLAPS1 using a mobile fitness application. This fitness app is
launched in smart phones with either Android or IOS systems.
All users agreed that their data could be used for scientific
purposes. The data collection starts when the user clicks the
“start exercise” button of the app and then continuously tracks
all the data involved in a run in the background, until it gets
terminated by the user in a comparable manner. In this way,
we tracked historical running data of Dutch participants, mainly
aged between 18 and 65, while using the app for physical exercises
in their leisure time from 2013-03-23 to 2017-03-15.

1https://www.mylaps.com/

TABLE 1 | An example of a data record in the mobile application dataset (due to

data privacy guidelines, feature variables were randomly selected from different

data records).

Activity ID 234014

User ID 11256

Total distance 9,870 m

Timestamp at start-point 2016-05-05 10:31:18.0000000

GPS at start-point (53.20317, 5.82213)

Weather type at start-point cloudy

Temperature at start-point 11◦C

Wind type at start-point light wind

Humidity type at start-point middle humidity

In total, our dataset contains around 440K runs performed
by over 10K users. Each run is identified by a unique running
ID and grouped by a unique user ID (i.e., an anonymous code).
For each run, a set of data records is collected summarizing total
distance and runtime, as well as marking the time-stamp and
weather information at the start point for the run. Moreover,
a GPS tracker embedded in the mobile device provides GPS
locations, which can be used to extract various geographical
context features that might influence the activity. An example
of the running data record used in this paper is given in
Table 1. To protect the privacy of our participants, a data usage
agreement was signed between researchers and the data provider.
According to the agreement, no personal identification data was
ever presented in our study, and all data processing and analysis
were conducted following data privacy guidelines.

Geographical data.
In order to model the environmental context of a runner’s

start location, we made use of two geographical datasets covering
the topography and the demographics of the neighborhood.
We chose this because prior studies used topographical
properties (27) (such as the surrounding landuse mix) as well
as socio-demographics (26) (such as population density) as
descriptors of context.

For topographic information we used landuse data from the
Dutch Centraal Bureau voor de Statistiek (CBS), namely Bestand
Bodemgebruik (BBG 2012)2. The data contains a collection
of spatial regions labeled with various landuse classes which
are assumed to apply homogeneously across these regions (an
example of this map for Utrecht is shown in Figure 1). We
reclassified the given CBS classes, then identified nine categories
that are deemed relevant for the landscape context of physical
activity (27, 28, 41), including parks, sports areas, recreations
areas (like camping, animal/theme park, and playground),
forests, water areas, agriculture areas, traffic areas, residential
areas, and central business district. For instance, in Figure 1,
locations in blue correspond to water, while red ones are traffic
related areas.

For the demographical data we used the CBS statistics
(Kerncijfers) data source for statistical neighborhoods (Wijk-

2https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/
natuur-en-milieu/bestand-bodemgebruik
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FIGURE 1 | The landuse data is used for assessing the spatial running context. Here a map for the city of Utrecht is shown as an example (Source: CBS 2012), where

areas in different colors represent different kinds of landuse classes.

en Buurtkaart 2015)3 to capture the demographic environment
of a neighborhood for running. Neighborhoods are statistical
areas of highest resolution in the Netherlands, and Kerncijfers
include statistics about their inhabitants and households. Thus,
the demographic features include variables that describe why
a neighborhood might be perceived as an attractive base for
a certain activity (like running). In summary, we used the
following 4 attributes: density of people (per km2), percentage
of one person households (per km2), percentage of households
without children (per km2) and percentage of inhabitants
over 65 years (per km2).

2.1.2. Data Cleaning and Processing
We firstly filtered out raw running samples with missing or
erroneous values (for instance, runs with a total distance <100
m were removed), which accounts for <5% of total runs. Then,
following the workflow in Figure 2, we transformed the raw
running data into three elements involved in the data analyses
(X, Y, Z defined in section 1).

Feature extraction and binning.
In this study, 29 features that may correlate with the

running activity (30) were extracted from the combined data.
A list of extracted features and their corresponding type is
presented in Table 2. In summary, four categories of features are
considered: temporal ones that define the calendar time, weather-
related ones that define weather conditions, topographical
ones that define the physical properties of a location, and
demographical ones that describe the inhabitants surrounding
a location.

For our temporal features, calendar time was derived from
the “timestamp at start-point,” while weather-based features were
given directly in the collected mobile application data. With

3https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/wijk-en-buurtstatistieken

the GPS point of the start location of the running activity, we
could infer its topographical and demographical properties by
incorporating the data resources described in section 2.1.1. First
of all, the topographical context of a start location was captured
based on two different spatial properties:

1. Euclidean distances from the start location to the nearest region
of a given landuse class, for each of the 9 classes. This captures
the probability of a runner to interact with or access this
landscape type, either in terms of visibility or in terms of
using it as a support surface for running (distance = 0). This
influences whether a certain landuse type is accessible or not.

2. Percentage of spatial coverage of a given landuse class within a 1
km2 rectangle around each start location, for each of the nine
classes. This captures the spatial density and dominance of a
landuse class in the running environment, which influences
the perceived layout of the location.

For both properties, we first generated a regular grid of 100*100
m cells over the entire Netherlands that was used to enrich
a given location in the runner data4. To capture the distance
context we computed the linear spatial distance (in meter) from
each grid cell to the nearest region for each of the selected
landuse categories (see the example for “parks” in Figure 3). To
determine the coverage context, we computed the number of
grid cells that are covered by a landuse area of the respective
type in a 10*10 cell rectangle window around each location.
Since the number of cells in this rectangle is 100, this value
corresponds to the percentage of coverage. Similarly, for the
demographic context, we spatially queried the demographics
dataset about the statistics of the neighborhood in which the start

4In Geodesy (Amersfoort/RD New projection): http://spatialreference.org/ref/
epsg/amersfoort-rd-new/.
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FIGURE 2 | The workflow of data processing. The raw datasets are transformed into three elements X, Y, Z for data mining.

of running is located (using a point-in-polygon query) and added
the corresponding attributes to the runner data.

Lastly, in order to apply weighted frequent item mining
(presented in section 2.2.2) to the features denoting continuous
variables, we grouped their values into a series of intervals by data
binning. In this study, the topographical and demographical bins
were determined based on the prior distribution of the geography
over the entire Netherlands. More precisely, we computed
distances, coverages and demographic values for each raster cell
in the Netherlands and then generated 10 quantiles [0%], [0,
10%], [10, 20%], ... over the cell distribution to determine bin
boundaries for the corresponding features. This helped us better
interpret the values, telling us whether they occur seldomly or
not. The value categories of all features used in our data analysis
are listed as follows:

• time in a day: eight equal bins from hour 0:00 to hour 24:00.
• weekday in a week: seven categories from Monday to Sunday.
• month in a year: 12 categories from January to December.
• temperature (Celsius): five equal bins in [−10, 30] degree.
• weather type: nine categories, being sunny, half cloudy, cloudy,

rainy, windy, thunderstorm, snow, hail, and mist.
• wind type: five categories, being windless, light wind, moderate

wind, hard wind, and storm.
• humidity type: three categories, being low humidity, moderate

humidity and high humidity.
• distance to the nearest nine categories of landuse: 0 m, (0–10%

quantile] m, (10–20% quantile] m, ..., (90–100% quantile] m.
• population density per km2: 0, [1, 13], [14, 25], [26, 55],

[56, 152], [153, 2,132], [2,133, 7,623], [7,624, 13,114], [13,115,
18,605], [18,606, 28,370].

TABLE 2 | A list of extracted features with their situation type.

Category and description of feature Category and description of

feature

Temporal 8. Distance to nearest residential

(rsda)

1. Time in a day (hour) 9. Distance to nearest business

area (cbd)

2. Weekday in a week (weekday) 10. Percentage (%) of traffic in

1km2 (trfc-cov)

3. Month in a year (month) 11. % of water in 1km2 (wtr-cov)

Weather 12. % of recreation in 1km2

(recr-cov)

1. Temperature 13. % of forest in 1km2 (frst-cov)

2. Weather type (weather) 14. % of sports in 1km2

(sports-cov)

3. Wind type (wind) 15. % of parks in 1km2 (park-cov)

4. Humidity type (humidity) 16. % of agriculture in 1km2

(agri-cov)

Topographical 17. % of residential in 1km2

(rsda-cov)

1. Distance to nearest traffic (trfc) 18. % of business areas in 1km2

(cbd-cov)

2. Distance to nearest water (wtr) Demographical

3. Distance to nearest recreation (recr) 1. Population density in km2

(population density)

4. Distance to nearest forest (frst) 2. % of inhabitants over 65 in km2

(over 65)

5. Distance to nearest sports (sports) 3. % of one-person households in

km2 (one person)

6. Distance to nearest park (parks) 4. % of households without

children in km2 (no child)

7. Distance to nearest agriculture (agric)
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FIGURE 3 | An example of some park areas in Utrecht with computed distance rasters.

• percentage of nine categories of landuse coverage and
4 demographic densities: 0 percentage, (0–10% quantile]
percentage, (10–20% quantile] percentage, ..., (90–100%
quantile] percentage.

So every run has a feature vector consisting of 29 categorical
feature values. We call any combination of these feature values
a situation (X) of the run.

Running distance normalization. In addition, we measured
running performance (Y) based on the “total distance”5 in
Table 1. To account for the differences in running capabilities
between different users, the running distance was normalized
with each user’s personal statistics. To illustrate, imagine the
following situation. Some user might run 5 km on average,
whereas another runs on average 15 km. When both of these
users run 10 km in one record, this performance is relatively good
for the first user, but worse than average for the second one. The
normalization of distance is given in Equation (1), resulting in
a scale ranging [−1, 1]. By doing so, a distinction can be made
between users’ different behavior in each running activity.

y
j′

i =
y
j
i − average(ȳj)

max(ȳj)−min(ȳj)
(1)

where y
j
i is an original value of distance in one run i of user j

and y
j′

i is its normalized value, given min(ȳj), average(ȳj), and
max(ȳj) are the minimal, mean and maximal value of distances
in all runs performed by user j. The normalized value now
tells us whether a runner performed above or below his or her
average running distance, as well as how close to his/her best
and worst performances.

Annual running pattern extraction. In our study, runners
(Z) were characterized based on the temporal running pattern
to distinguish their sustainability in running activity. This
was defined based on both short-term running adherence

5Note that measuring performance in terms of relative running distance captures
only one aspect of running performance, though. Other performance measures
(such as speed and running intensity) could also be taken into account.

(running frequency in a week) and long-term running adherence
(sequence of running weeks during a year). We extracted the
temporal running pattern of all users into a matrix of running
frequency in the following manner. We started by filtering users
with <10 runs in 4 years, since they contributed limited runs in
our dataset and might bring potential data bias into our analysis
(for instance these people might give up using the app after few
runs, as most of them only have records within the first 2 weeks).
We then processed the running frequency per week for each
runner, followed by analyzing his/her long term adherence over
52 weeks (one year interval). For each runner, a sliding window
mechanism was applied to extract consecutive sequences of 52
weeks and to select the most active one (i.e., the window with the
most runs). To this end, we formatted the historical running data
of each user as a sequence of weekly-based running frequency. In
this way, we built a data matrix with 5,346 distinct users and their
running activities in 52 weeks (i.e., D ∈ R

5,346×52), where users
and weeks are represented in rows and columns, respectively.
This matrix covers around 270K running activities. We plotted
a matrix with random 25 users in Figure 4.

2.2. Data Analysis
In this section, we present how we applied machine learning
to explore the proposed research questions. The workflow of
our empirical data analysis is presented in Figure 5. We first
clustered runners based on their annual activity patterns to
distinguish between regularly active and less active runners
(referring step 1 in Figure 5). Next, we investigated the
correlation between situations and the normalized distance of
runs using weighted frequent item mining (referring to step 2 in
Figure 5). The methodology of clustering and weighted frequent
item mining are described with more details in sections 2.2.1
and 2.2.2, respectively.

2.2.1. User Clustering
In step 1 of Figure 5, we employed hierarchical agglomerative
clustering to group users based on their annual running patterns
extracted in section 2.1.2. This is a standard “bottom-up” method
without prior setup for the number of clusters. The clustering
algorithm starts with pairing users with similar annual running
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FIGURE 4 | A visualization of the annual running pattern of 25 random users, where the y-axis represents the user and the x-axis represents 52 consecutive weeks of

a year. The blue scale shows the running frequency of a user in a week.

FIGURE 5 | The workflow of our empirical data analysis.

pattern, then gradually grouping them into bigger clusters. In this
procedure, it reveals the overview of hierarchical structure for
all users, which provides insight on the obtained clusters. Thus,
our approach allows the adaptation of clustering threshold based
on the domain knowledge. This is important in our case since
a variety of similar annual running patterns could be captured
in each user cluster. We developed our hierarchical clustering
method as follows.

First of all, the similarity between each pair of data entities (i.e.,
the sequence of running frequency for each user) was measured
using dynamic time warping (abbreviated as DTW). It identifies
the “optimal warping path” between paired data. Instead of only
comparing an individual value at a certain time index, DTW

compares two paired data series by transforming their indices
over the entire time period (42). This overcomes differences in
timing. In our analysis, a python library6 was used to calculate
the dynamic time warping distance.

Furthermore, we applied the Ward variance minimization
algorithm to estimate the similarity of paired clusters andmerged
ones that are close by minimizing the variance within the newly
formed cluster. More precisely, given two clustersCx andCy to be
merged (where Cx is a new joint cluster with two sub-cluster Ci

and Cj, and Cy is an unused cluster), theWard’s distance between
Cx and Cy is presented by the following recursive equation:

6https://github.com/wannesm/dtaidistance
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d
(

Cx,Cy

)

=

√

n(Ci)+ n(Cy)

n(Cx)+ n(Cy)
d

(

Ci,Cy

)2
+

n(Cj)+ n(Cy)

n(Cx)+ n(Cy)
d

(

Cj,Cy

)2
+

n(Cy)

n(Cx)+ n(Cy)
d

(

Ci,Cj

)2
(2)

where n(C) is the number of elements in a cluster and d
(

Ci,Cj

)

is the Ward’s distance of cluster Ci and Cj. In this way, small
clusters are growing into bigger ones and eventually form
a dendrogram. This dendrogram indicates the hierarchical
structure of all users, while user clusters can be obtained using
an adjustable threshold measuring their diversity.

2.2.2. Weighted Frequent Item Mining
Next, we introduce the weighted frequent item mining approach
(step 2 of Figure 5). Using this approach, we aim not only
to study the relation between extracted features and running
distance, but also to explore the complex interplay of various
features (by capturing the combinations of various feature values
that frequently associated with either longer or shorter running
distance). Frequent item mining (abbreviated as FIM) is an
important subfield in data mining, which is commonly used to
discover interesting patterns from data based on their frequency.
Weighted frequent item mining extends the traditional FIM
problem by considering a weight-based constraint. By giving each
data entity a weight, weighted FIM captures the importance,
interest or profit of an individual data sample toward some
goal (43). In our case, this common goal is the normalized
running distance.

Let I = {i1, i2..., in} be a set of distinct items in a transaction
dataset TD = {T1,T2, ...,Tm}, where the transaction Tm is a
subset of items in I. Tm has a unique identifier called TIDm

and a weight wm showing its importance in TD. In this analysis,
while a transaction Tm is the feature vector of a running activity
(including 29 feature values extracted in section 2.1.2), an item in
represents a specific value (for instance Sunday) of an feature (for
instance “weekday”). Moreover, the normalized distance variable
of this run is used as weight wm, ranging over the set of real
numbers from−1 to 1 (i.e., R ∈ [−1, 1]). Thus, given a weighted
transaction dataset (i.e., running data of users) and a minimum
support threshold (notated as σ ), we aim to find the complete
set of frequent combinations of items (i.e., situations), which is
defined as our weighted frequent item mining problem.

In our study, we solve this problem by extending a classical
FIM algorithm, namely frequent pattern growth algorithm (44)
(known as FP-Growth). The algorithm particularly performs
efficiently on large-scale datasets like ours. Using our running
activity data as an example, we illustrate the process of weighted
FP-Growth algorithm in Figure 6. In such pipelines, we adjusted
both the item head table and FP-tree by our defined weighted
supports. The weighted support of an item in in TD equals the
summarized weight of all transactions in TD containing this item,
defined as w(in) =

∑

wi, for ∀Ti ∈TD, where in ∈ Ti. Similarly,
the weighted support of itemset X equals the summarized weight
of all transactions in TD containing itemset X, defined as w(X) =
∑

wi, for ∀Ti ∈ TD, where X ⊆ Ti. For either item in or itemset
X, if the absolute value of its weighted support is lower than the
threshold, it is pruned from the frequent itemsets (like red node
D,F in the FP-tree of Figure 6).

In this manner, we addressed the relations between situations
and running performance using the weighted support of frequent
itemsets (i.e., situations). Thus, theweighted support of a situation
is a summary of the running distance of all runs performed
under this situation. Moreover, while only itemsets whose
absolute value of weighted support is above the given threshold
are selected, it helps us to capture the most frequent and
interesting situations. For instance, in the example of Figure 6,
the frequent itemset (Morning, March, Sunday) has a relatively
high weighted support, indicating this situation often happened
at the start-point of better performed runs. On the opposite,
(Night, Sunday) is more frequently associated with relatively
shorter running distance.

3. RESULTS

In this section, the results of data analysis are presented following
the workflow shown in Figure 5. We start with the clusters of
runners based on their different annual activity patterns. Then
we discuss the relationship between different features and the
running distance for less active runners and active runners.
Finally we concentrate on the less active runners and present their
different behaviors under various situations.

3.1. Clustering Runners by Annual Running
Pattern
Firstly, groups of runners were captured by the hierarchical
clustering algorithm in step 1 of Figure 5. The overall structure
of 5,346 users was derived as the dendrogram in Figure 7.
According to the figure, two runner clusters C1 and C2 can
be determined based on the diversity of users’ annual running
patterns (using a threshold at 250).

To evaluate our findings, we visualized the characteristics of
the clusters by randomly selecting 25 users from each cluster
in Figure 8. According to the visual analysis, we can clearly
discriminate between runners based on their running adherence
in both short-term (weekly) and long-term (yearly). These
patterns can be summarized as follows:

• C1: 4,257 users on average perform about 34 runs annually,
either loosely throughout a year or spreading in a partial
period of the year.

• C2: 1,087 users on average performing about 94 runs
consistently over a year.

In the following sections we make use of these two clusters to
answer our three research questions.

3.2. Relating Features to Running Distance
Applying the weighted frequent item mining in the running
data of C1 and C2 user group, respectively, we investigated
the contribution of the various features to the running distance
(referring to the results acquired by step 2 in Figure 5). We
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FIGURE 6 | An illustration of the weighted FP-Growth algorithm pipelines, based on an example of our running activity data. Given weighted data TD and threshold σ ,

the weighted support of all items is firstly calculated and listed in a table. A prefix tree is then generated for efficiently acquiring frequent itemsets whose absolute value

of support is above the threshold. More details about how to generate, prune and traverse the prefix tree can be found in Han et al. (44).

FIGURE 7 | The dendrogram of hierarchical clustering of runners, where each unit on the x-axis represents one user and their diversity in activity is measured by the

y-axis.

considered all 29 features presented in Table 2 and examined
their individual associations with the normalized running
distance. The strength of such relation is measured by the

variability of weighted support over all possible values that occur
in a feature. For instance, while Sunday is a specific value of the
feature “weekday,” the weighted support of Sunday is a sum of
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FIGURE 8 | Temporal patterns of 25 random users in each cluster, where the y-axis represents the user and the x-axis represents the week of a year. The blue scale

implies the running frequency of a user in a week.

FIGURE 9 | The comparison between C1 and C2 user group for all 29 features. The abbreviated names of features at x-axis are explained in Table 3, where y-axis

represents the standard deviation computed from a list of weighted supports corresponding to all values of each feature.

normalized distances from all runs performed on Sundays. Thus,
the relation between feature “weekday” and running performance
is captured by the variance of weighted support over different
weekdays. A larger variance indicates that the different values of
this feature (in this case weekdays) tend to cause more differences
in terms of running distance.

In Figure 9, we present the standard deviation computed from
the list of weighted support over all values for each feature.
Considering both groups of runners, some features have a larger
standard deviation than the others, such as “hour in a day,” “day
in a week,” “temperature,” “distance to residential areas,” and

“population density.” Hence, it suggests that these temporal and
environmental variables influence the running distance of people
to a larger extent.

3.3. Differences Between the Two Clusters
of Runners
In Figure 9, we also show how the relation between chosen
features and defined running distance differs for different
runners. We noticed the standard deviations of almost all
features in C1 are larger than those in C2 (except for “wind
type”). This observation indicates that our chosen features
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generally have a greater influence on runners in C1 than the
ones in C2. In other words, whereas the performance of less
active runners appears to be more sensitive to these features,
regularly active runners seem to ignore many of them. This
is especially true for certain features related to weather and
location, including “temperature,” “weather,” “distance to the
nearest park,” “coverage of recreation/water,” and “percentage of
residents living alone.”

3.4. Relating Situations to Less Active
Runners’ Running Distance
To get more insight into the variances of different features,
we analyzed the distribution of relative running distance over
different feature values (i.e., situations). In this section, we focus
on the less active runners because their variance is larger and
analysis results can potentially be used to obtain a more active
running behavior for such runners. Using the results from the
weighted frequent item mining approach, we first present the
distributions for single features, then illustrate combinations of
values from multiple features. In this way, we answered the
research question: under which situations do less active runners
run longer or shorter than their average.

3.4.1. Situations From Single Features
We first studied the distribution of normalized running
distance over all possible values of the features in Figure 9.
The distributions of six representative features are plotted
in Figure 10, including “hour in a day,” “day in a week,”
“temperature,” “distance to nearest residential landuse,” “distance
to nearest park,” and “population density.” These features were
selected because they have the highest variances in each feature
category (referring to Figure 9). To get more insights of the
feature values, we also computed how many runs are performed
under each feature value in the analysis (known as running
frequency and shown in color blue in Figure 10).

In Figure 10, we can see that certain situations show
significant associations with running frequency and running
distance of less active runners. For instance, mornings (9:00–
12:00), Sundays and moderate temperatures (between 6 and
14◦C) attract less active people to run often and far. Considering
the physical environment, less active runners often start nearby
parks (about 350 m), and they tend to perform above average
when they do so. Another very obvious pattern is that those
people most frequently start their run and perform above average
within or next to residential areas (see Figure 10). The population
density plays an important role in demographical features.
People generally perform best in neighborhoods with moderate
population density (around 150 people per km2), and tend to run
less far if the neighborhood gets less or more densely populated.

Furthermore, we observed an inconsistency between
frequency and performance of less active runners. The popular
situations with a high frequency of running are not always
associated with better performance (a longer running distance
than individual’s average). For instance, for the feature “hour in
a day,” runners show the best performance around 9:00–12:00,
and the worst one around 18:00–21:00, although people do run
frequently in both time periods. We also found that runners

appear to run frequently and rather far on the weekend days, in
particular Sundays. In contrast, people tend to under-perform on
weekdays, even on Wednesdays, which is the second frequently
chosen weekday.

3.4.2. Situations From Multiple Features
Next, we analyzed the distribution of normalized running
distance for situations with a combination of values from
multiple features. To avoid the large amount of possible
combinations among feature values, we separately looked at
situations in four categories (i.e., combining values of features
in each kind of category only). We then picked and presented
several situations in each category in Table 3, which have the
highest or lowest weighted support and cover a large number
of features. In a nutshell, under situations on the left column
of Table 3 (e.g., 9:00–12:00 on Sunday of February), less active
runners tend to run a longer distance than their average. On the
contrary, situations on the right column are often associated with
running distance below the average.

Furthermore, to better interpret the extracted topographical
and demographical situations, we visualized their corresponding
areas on the maps and illustrated three of them in Figure 11.
We realized that the locations found within topographical and
demographical situations are largely corresponding to each other
(purple and orange areas in Figure 11B show overlaps).

From topographical situations, we discovered that they are
largely dominated by the distance to or coverage of residential
and business areas (which might be related to their homes
and offices), especially when such places are located close to
parks. For instance, less active runners often perform above
average, when they start in or nearby residential areas that are
close to parks (e.g., purple areas in Figure 11A). These findings
are consistent with the important role of parks in forming
an attractive environment for runners (45). On the contrary,
when less active people start running where certain types of
green spaces (like forest, recreation, agriculture) are sparse, they
tend to under-perform (e.g., purple areas in Figure 11B). From
demographical situations, we observed that the combinations of
demographic features are less clearly associated with a running
behavior pattern. We therefore think that the demographic
results should be interpreted with care andmight not tell us more
than what is already captured by topography.

4. CONCLUSION, DISCUSSION, AND
FUTURE WORK

In this article, we presented an integrated data-driven
methodology to understand the complex relationship between
situations (X), running performance (Y), and individual
characteristics of runners (Z). We examined this triadic
relation by combining large-scale mobile application data and
geographical data. This study demonstrates that the cross-linking
of various data streams can deliver new insights about human
behaviors in public health.

First, to answer research question 1, we found that several
temporal and environmental features (i.e., “hour in a day,”
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FIGURE 10 | The histogram of weighted support (in red) and frequency (in blue) of all values for six features. Here, the frequency value indicates how often runs are

performed under a certain situation (i.e., a feature value), while the weighted support value implies how often the situation can be associated with either a longer or

shorter running distance than average (correspond to a positive and negative value, respectively).

TABLE 3 | Situations in four categories with a large absolute value of the weighted support.

Category Often with distance above average Often with distance below average

Temporal (Hour 9–12:00, Sunday, Feb./Sep./Nov.) (hour 18–21:00, Tuesday/Wednesday)

(Hour 12–15:00, Sunday, Sep./Nov.)

Weather-related ([6,14] degree, half cloudy, light wind, middle humidity) (Rainy, middle wind, high humidity)

Topographical [0 m from residential area, 0–361 m (0–10% Q) from parks] (0 m from agriculture, 0% coverage of recreation, 0% cov. of residential)

[0% cov. of forest, 510–728 m (20–30% Q) from offices,

0–361 m (0–10% Q) from parks]

(0 m from agriculture, 0% cov. of office, 0% cov. of water)

Demographical (Population density in [2,133–7,623] (60–70% Q)) (Population density in [26–55] (30–40% Q))

“day in a week,” “temperature,” “distance to residential areas,”
and “population density”) influence the running distance of
people to a larger extent. Moreover, following the results in
section 3.4, we answered the research question 3 by discovering
certain situations that show significant associations with running
frequency and distance of less active runners. For instance, a
Sunday morning with moderate temperature attracts less active
people to run often and far. Our findings show that the presented
method is able to discover specific situations in which particular
kinds of runners frequently run above or below their average
distance. In contrast to previous work, we assessed a large
variety of contextual situations (covering temporal, weather-
related, topographical and demographical categories). Moreover,
we did not only explore the influence of individual features (e.g.,
parks), but also took the interplay between features into account.
For instance, previous studies demonstrated the importance of
parks for forming an attractive running environment (37, 45).

We observed that it is the combination between parks and
certain locations (e.g., the parks located close to residential areas
in Figure 11A) that plays a positive role on running distance.
In contrast, the residential areas far away from the parks and
parks far away from residential areas do not show this effect.
A previous qualitative study has indicated that the nuanced
interplay among contextual factors can play an important role for
planning physical activities (25). Our empirical findings can help
shed light on such complex effects.

Furthermore, to answer the research question 2, our results
in section 3.3 indicate that the running distance of less active
runners is more sensitive to selected situations (including
weather, time, topographical, and demographical variables)
compared to active runners. To illustrate, poor weather likely
results in shorter runs for less active runners, while the running
distance of active runners is less likely to be affected. This
finding from the not self-reported data provided a significant
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FIGURE 11 | Maps for the city of Utrecht illustrating frequent topographical and demographical situations in Table 3. In (A), the areas of purple correspond to a

topographical situation (0 m from residential area, 0–361 m from parks), which is often associated with a longer running distance. In (B), the areas in purple and

orange correspond to a topographical situation (0 m from agriculture, 0% cov. of recreation, 0% cov. of residential) and a demographical situation (population density

in [26–55]) with a shorter running distance.

empirical evidence for the complex relation between situational
barriers and different human behaviors (20). Our findings are
also in line with earlier research that demonstrated (perceived)
situational barriers have more impact on the physical activity
behavior of the individual when a habit is not established
(22, 46, 47). Hence, it is important to consider situations of
the individual carefully when developing future interventions
to support less active runners. For instance, our results
provide concrete measures of both running sustainability and
environmental situations for developing an intelligent mobile
system to promote physical activity. Until now, few developed
mobile systems have acknowledged the importance of situations
and assessed “opportunistic” situations to potentially support a
certain physical activity behavior (48). Those researches defined
the opportunity of situations from a theoretical perspective,
without incorporating any empirical evidence. We therefore
believe that the knowledge we gained in this paper adds
important value to such mobile intervention systems.

Meanwhile, there are still several limitations to our analysis.
First of all, a general methodological challenge concerns the fact
that in this paper we extracted situations based on measured
performances. Hence, we only took situations into account that
were in the dataset, i.e., chosen by individuals in our sample. This
means, on the one hand, that we could not make use of empirical
data about situations in which people do not run (negative
data). Hence, our current dataset does not allow predicting
whether people start a run. This is why we concentrate in this
paper on the individual’s running performance. On the other
hand, there might be infrequent or absent situations that are
fit for running but were not chosen by the individual. Every
empirical dataset that is based on behavior has to deal with this
selection bias. For this reason, it may be the case that our method
overlooks important running opportunities just because most

people choose not to run in such situations, even though this
would be beneficial. For example, the fact that not many people
run within sport areas does not yet mean that such facilities
do not provide excellent opportunities for running. One way
to overcome this problem is to assess running opportunities
based on simulations (49). For example, agent-based models
(50) or optimization based simulations of runs could consider
detailed geographic and temporal information without choice
bias to assess the feasibility of running. Also, more detailed
track information and corresponding contextual features rather
than only the starting points used here could be taken into
account. For example, intermediate tracking points and different
aggregated running phases. In addition, although our objective
was to study participants from the Netherlands, we are aware
that the running behavior may vary according to cultural factors.
Thus, a comparison study across different countries would be
interesting in future work for verifying the findings.

Moreover, although we interpreted our findings using
background knowledge and geographic maps, we are aware
that indirect effects and self-selection make the interpretation
challenging. The actual causal relationship between situations
and user behaviors should be further examined. For example,
qualitative research (such as interviews) is a promising way to
complement our current method to further understand a user’s
choices interactively. Such studies can not only contextualize
our results, but also help distinguishing causal and non-causal
relations. While we only studied correlation in this work, another
option is studying causal relations using other techniques, like
machine learning [e.g., using causal mining to model human
behaviors (51)] and statistical [e.g., structural equation modeling
to handle indirect effects (52)] methods. In future work, we aim
to identify situation-based rules that could be used in mobile
intervention systems from our findings.
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