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Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and
comprise three different isoforms, PPAR-𝛼, PPAR-𝛽/𝛿, and PPAR-𝛾. The main role of PPARs is to regulate the expression of
genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia
and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia.
However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have
yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular
function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the
results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class
of drugs.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) belong
to the nuclear receptor superfamily of ligand-activated tran-
scription factors and include three member isoforms—𝛼,
𝛽/𝛿, and 𝛾—encoded by distinct genes located on different
chromosomes with a high degree of interspecies sequence
conservation [1–5]. Interestingly, while significant homology
exists between PPAR proteins, they play distinct, functional
roles in energy metabolism [5].

PPARs are subjected to transactivation or transrepression
through distinct mechanisms, which lead to the induction
or repression of target gene expression [1]. For this, PPARs
dimerize with the retinoid receptor and subsequently bind
sequence-specific promoter elements in their target genes
to control several facets of normal cellular physiology as
well as pathology. Disruption of this pathway contributes
to disease progression in obesity, diabetes, and cancers.
This occurs through regulation of growth and migration,

apoptosis, fatty acid (FA) metabolism pathways, and oxida-
tive stress responses. Moreover, PPARs are also known to
regulate inflammatory processes that are linked to metabolic
homeostasis in tissues, such as liver, adipose tissue, intestine,
skeletal muscle, and cardiovascular system [1–9]. Impor-
tantly, each PPAR family member has distinct metabolic
functions determined by their ligand affinity, expression, and
activity, which are both tissue- and pathway-dependent [6].

All three PPAR isoforms are expressed in the heart;
however, their roles in cardiac function and the outcomes of
respective agonists in preclinical animal models and clinical
trials vary immensely. Furthermore, studies of PPARs on
myocardial fatty acid metabolism and cardiac function are
currently being conducted. Thus, it is necessary to under-
stand current PPAR research, as well as PPAR biology in the
heart. In this review, we focus on the functions of PPARs in
myocardial biology in addition to their regulatory effects on
glucose and lipidmetabolism, and we describe their potential
clinical implications and future directions.
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Figure 1: Structure of PPAR and its transactivation or transrepression process. In the absence of ligand, the PPAR-RXR heterodimer recruits
corepressors (left process). When ligand binds, conformational changes in PPAR-RXR induce dissociation of corepressor complex. Active
transcriptional complex assembles with coactivator proteins. PPAR binds to PPRE and assembles coactivator complexes (right process).
PGC-1𝛼: PPAR-𝛾 coactivator 1𝛼, NCoR: nuclear receptor corepressor, SMART: silencing mediator of retinoid and thyroid hormone receptor,
AF: activation function, DBD: DNA-binding domain, HD: hinge domain, LBD: ligand-binding domain, RXR: retinoid X receptor, and PPRE:
peroxisome proliferator response element.

2. Molecular Structure of PPARs

PPARs are orphan nuclear receptors that belong to the
thyroid, steroid, and retinoid hormone receptor superfamilies
of ligand-activated nuclear hormone receptors [4, 5, 10–12].
After bindingwith their respective ligands, PPARs translocate
to the nucleus, where they undergo a conformational change,
interact with transcriptional cofactors, and regulate gene
transcription [13–15]. PPAR isoforms possess five or six
structural regions within four functional domains, termed
A/B, C, D, and E/F (Figure 1) [6, 12].The variable N-terminal,
ligand-independent transactivation domain (A/B domain)
contains an activation function- (AF-) 1 motif, which is a
target of kinase phosphorylation [6, 12]. The 70-amino-acid
PPARDNA-binding domain (C domain) contains two highly
conserved zinc finger motifs that facilitate binding to the
peroxisome proliferator response element (PPRE) [6, 12].The
hinge region (D domain) acts as a docking site for cofactors.
The C-terminal or ligand-binding domain (the E/F domain)
is responsible for ligand specificity and the activation of PPAR
binding to the PPRE, which increases target gene expression.
The E/F domain uses cofactors for the transactivation via
the ligand-dependent trans-AF-2 [6, 12]. When activated
by endogenous or synthetic ligands, PPARs heterodimerize
with the 9-cis-retinoic acid receptor (retinoid X receptor;
RXR), triggering a conformational change and their nuclear
translocation [6, 12].The PPAR-RXR heterodimer then binds
the PPRE in the target gene promoter region, subsequently
altering coactivator/corepressor dynamics to modulate the
transcription machinery controlling gene expression [6, 16–
20]. In the past 20 years, many PPAR cofactors have been
identified; however, the complete physiological functions

of these molecules in receptor-, gene-, and/or cell-specific
transcription remain to be elucidated [21].

3. Extracardiac Function of PPARs and
Their Ligands

The first PPAR isoform to be cloned, PPAR-𝛼, was identified
in 1990 and its name of PPAR originated from its activation
by peroxisome proliferator chemicals [22, 23]. The PPAR-
𝛼 gene is located on human chromosome 22q12.2-13.1 [24],
and its expression is highest in tissues with elevated FA
oxidation rates—such as liver, heart, and skeletal muscle—
where it functions as a major regulator of FA homeostasis
[23–27]. PPAR-𝛼 is also highly expressed in brown adipose
tissue, kidney, adrenal gland, and the majority of cell types,
includingmacrophages, smoothmuscle cells, and endothelial
cells [6, 26–28]. Unsaturated/saturated FAs, leukotriene (LT)
derivatives, and very low-density lipoprotein (VLDL) hydrol-
ysis products are endogenous ligands that bind PPAR-𝛼 with
the greatest affinity. Moreover, PPAR-𝛼 is a major regulator
of the mitochondrial and peroxisomal 𝛽-oxidation pathways,
which are reported to be involved in the pathogenesis of
various liver complications—such as hepatocarcinogenesis
in rodent model and drug-induced liver injury [29]. PPAR-
𝛼 activation inhibits proinflammatory gene expression in
vascular smooth muscle cells (VSMCs) and attenuates devel-
opment of atherosclerosis [30, 31].

The PPAR-𝛽/𝛿 gene is located on human chromosome
6p21.1-21.2 [24] and is expressed at relatively high levels in adi-
pose tissue, liver, cardiac and skeletal muscle, brain, kidney,
colon, and vasculature [28, 32, 33]. Unlike PPAR-𝛾 and PPAR-
𝛼, PPAR-𝛽/𝛿 is not easily targeted by currently available drugs
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Table 1: The expression of the PPARs and their gene targets. Modified from [49, 51].

Properties PPAR-𝛼 PPAR-𝛽/𝛿 PPAR-𝛾

Tissue
expression

Main tissues: tissues exhibiting high
catabolic rates of FA (liver, skeletal
muscle)
Other tissues: heart, intestine,
kidney, and brown adipose tissue

Ubiquitous: however, the biggest
expression is in liver, esophagus,
intestine, kidney, and skeletal
muscle

Main tissue: adipose tissue (white
and brown)
Other tissues: liver, intestine, kidney,
retina, immunologic system (bone
marrow, lymphocytes, monocytes,
and macrophages), and trace
amounts in muscles

Gene targets

𝛽-oxidation pathway (acyl-CoA
oxidation, bifunctional enzyme, and
thiolase)
Sterol 12-hydroxylase (CYP8B1)
FATP
FAT/CD36
L-FABP
Lipoprotein lipase
apo A-I and A-II

Genes involved in lipid uptake; it
represses genes implicated in lipid
metabolism and efflux

FA-binding protein (aP2)
Phosphoenolpyruvate
carboxykinase (enzyme of the
glyceroneogenesis pathway)
FATP
FAT/CD36

FA: fatty acid, FATP: fatty acid transport protein, L-FABP: liver cytosolic fatty acid-binding protein, and apo: apolipoprotein.

because of its ubiquitous expression. Thus, the physiological
function of PPAR-𝛽/𝛿 is far less studied and understood
[34]. Nevertheless, PPAR-𝛽/𝛿 activation is known to increase
lipid catabolism in adipose tissue, skeletal muscle, and the
heart and has been shown to improve the plasma high-
density lipoprotein- (HDL-) cholesterol levels and insulin
resistance. Additionally, activation has been shown to induce
cell proliferation and differentiation [35] and to limit weight-
gain with anti-inflammatory effects in the vessel wall through
the inhibition of vascular cell adhesionmolecule- (VCAM-) 1
andmonocyte chemoattractant protein- (MCP-) 1 expression
[36–38].

The PPAR-𝛾 gene is located on human chromosome
3p25 [24] and is highly expressed in adipose tissue. PPAR-
𝛾 plays an essential regulatory role in glucose metabolism,
adipocyte differentiation, and lipid storage by controlling
the transcription of a number of genes involved in these
metabolic processes [6, 15, 39–41]. Some key target genes
of PPAR-𝛾 include the fat-specific adipocyte protein 2 (aP2;
FABP), lipoprotein lipase (LPL), FA translocase (FAT/CD36),
FA transport, FA-binding protein, acyl-CoA synthase, glu-
cokinase, glucose transporter type 4 (GLUT4), phospho-
enolpyruvate carboxykinase, uncoupling proteins (UCP) 1, 2,
and 3, and liver X receptor-𝛼 (LXR-𝛼) [6, 39, 40]. Moreover,
PPAR-𝛾 also regulates genes involved in insulin signaling and
the expression of proinflammatory cytokines, such as tumor
necrosis factor- (TNF-) 𝛼 [6, 41]. Most importantly, PPAR-
𝛾 is a well-recognized cellular target for the antidiabetic thi-
azolidinediones (TZDs), which sensitize cells to insulin and
improve insulin sensitivity and activity [42–44].However, the
associated cardiac hypertrophy in response to PPAR-𝛾 may
be independent to changes in myocardial insulin signaling
[45]. PPAR-𝛾 protein stability and transcriptional activity are
regulated by covalent modifications, including phosphory-
lation, ubiquitylation, O-GlcNAcylation, and SUMOylation
[37, 46]. Importantly, PPAR-𝛾 functions as a master switch in
controlling adipocyte differentiation and development, and

its activation plays an important role in glucose metabolism
by enhancing insulin sensitivity [37, 47].

To date, many ligands have been identified that activate
andmodulate PPARactivity [48]. PPAR ligand-binding activ-
ities are 3-4 times greater than that of the other nuclear recep-
tors and thus have the ability to bind a diverse set of synthetic
and natural lipophilic acids, such as essential FAs (EFA) [49].
For example, endogenous lipid metabolites from saturated
or unsaturated FAs bind nuclear receptors and activate or
repress gene expression [48]. Another group of PPAR lig-
ands consists of EFA lipid metabolites—such as arachidonic
acid derived from lipoxygenase or cyclooxygenase activity
[48]. However, both eicosanoids and EFA are required in
relatively high concentrations (∼100 𝜇M) for PPAR activa-
tion [50]. In particular, the best-characterized endogenous
ligands known to stimulate PPAR-𝛼 are the eicosanoids LT
B4 and 8-hydroxyeicosatetraenoic acid (HETE), while 15d-
prostaglandin (PG) J2 and 13-hydroxyoctadecadienoic acid
(HODE) activate PPAR-𝛾 [48]. Other essential FA metabo-
lites, such as 15-HETE, have been suggested to activate PPAR-
𝛽/𝛿 [48]. The physiological roles, expression, gene targets,
and ligands of the various PPAR isoforms are summarized in
Tables 1 and 2 and the following references [49, 51].

4. PPAR Functions in
the Cardiovascular System

Many studies have reported on the complex metabolic and
biological roles of PPARs in several cardiovascular diseases,
including cardiac hypertrophy and heart failure [52–56]. In
the cardiovascular system, PPARs have various functions
outside of their characteristic roles in metabolism, including
extracellular matrix remodeling, oxidative stress, inflamma-
tion, and circadian rhythm regulation [57].

Abnormalities in PPAR function have been reported in
arrhythmogenic right ventricular dysplasia (ARVD), a rare
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Table 2: The natural and synthetic ligands of the PPARs and their physiological roles. Modified from [49, 51].

Properties PPAR-𝛼 PPAR-𝛽/𝛿 PPAR-𝛾

Natural ligands Unsaturated FA, PG, and LT B4
8-Hydroxyeicosatetraenoic acid

Unsaturated FA
Carbaprostacyclin
Components of VLDL

Unsaturated FA
15-Hydroxyeicosatetraenoic acid
9- and
13-hydroxyoctadecadienoic acid
15-Hydroxy delta 12,14-PG J2
PG J2

Synthetic
ligands

Clofibrate and fenofibrate
Gemfibrozil GW501516

Rosiglitazone and pioglitazone
Troglitazone and ciglitazone
Farglitazar, S26948, and INT131

Physiological
roles

Lipid catabolism and homeostasis
(stimulating 𝛽-oxidation of fatty acids),
increased breakdown of TG and FA,
increased cellular FA uptake, reduced TG
and FA synyheis, control of inflammatory
processes, and vascular integrity mediate the
hypolipidemic function of fibrates
Liver: increasing FA oxidation and uptake
and increasing apoA-I, apoA-II, and HDL
Vessel: increasing TG, HDL, ABCA1, and
apoE and decreasing FFA, VLDL, cytokines,
and NF-𝜅B

Dyslipidemia?
Wound healing?
Increasing fat oxidation in
skeletal and cardiac muscle
responsible for insulin sensitivity
and glucose
homeostasis and vascular
integrity
Adipocentric action: decreasing
cytokines, resistin, fFFA, and
NF-𝜅B and increasing ABCA1
and GLUT4
Skeletal muscle: increasing
glucose uptake and glycogen
synthesis

Glucose homeostasis and lipid
storage:
differentiation and maturation of
adipocytes
Increasing IS and glucose
homeostasis
(it prevents hyperglycemia) and
vascular integrity
Skeletal muscle/liver/adipocyte:
increasing FA oxidation, UCP,
and HDL and decreasing TG

FA: fatty acid; apo: apolipoprotein, PG: prostaglandin, LT: leukotriene, TG: triglyceride,HDL: high-density lipoprotein,ABCA1:ATP-binding cassette subfamily
A member 1, FFA: free fatty acid, VLDL: very low-density lipoprotein, NF-𝜅B: nuclear factor kappa-light-chain-enhancer of activated B cells, GLUT4: glucose
transporter type 4, and UCP: uncoupling protein.

genetic disease characterized by a progressive fibrofatty infil-
tration, decreased PPAR-𝛼, and increased PPAR-𝛾 expression
in the right ventricle.The link betweenPPARdysfunction and
desmosomal geneticmutations is beginning to be understood
via Wnt/𝛽-catenin pathway analyses [58–61]. PPAR-𝛾 is a
prime inducer of adipogenesis in ARVD, and the Wnt-𝛽-
catenin pathway appears to act though a similar mechanism
for desmosomal abnormalities [58].

The biological functions of PPAR-𝛼 in the myocardium
have been extensively investigated using PPAR-𝛼 knockout
(KO) mice [62–64]. Despite a normal life span, PPAR-𝛼
KO mice exhibit progressive cardiac fibrosis with abnormal
mitochondria and myofibrils [63]. Histological studies also
revealed significant cardiomyocyte hypertrophy [65]. In addi-
tion, ex vivo left ventricular papillarymuscle exhibits reduced
shortening velocity and isometric tension, suggesting that the
loss of PPAR-𝛼 is closely involved in the cardiac dysfunction
induced by affecting the impairment of myosin molecule
itself, targeting for oxidative stress [65–68]. This is also
apparent in echocardiography studies [65]. Interestingly, the
development of physiological cardiac hypertrophy, such as
is seen after birth and in response to exercise, showed the
increased PPAR-𝛼 expression that parallels an induction of
FA utilization [69, 70]. In contrast, PPAR-𝛼 gene expression is
downregulated in the heart of some pathological conditions,
especially pressure overload-induced cardiac hypertrophy,
that lead to the cardiac lipotoxicity as an accumulation of
triglyceride and diacylglycerol [70–73].

The redox system in PPAR-𝛼 KO mice is subjected to
dramatic and/or long-lasting perturbations as well as cardiac
dysfunction that appear to result from the direct impairment
of myosin II [65]. There is strong evidence that PPAR-𝛼 acti-
vation is necessary to prevent cellular oxidative damage that
may occur during physiological cellular metabolism or under
conditions of inflammation and oxidative stress, likely caused
by repressing NF-𝜅B signaling and limiting inflammatory
cytokine production [74, 75].Therefore, chronic deactivation
of the PPAR-𝛼 signaling pathway may upset the normal
equilibrium between oxidant production and antioxidant
defenses, which can contribute to cardiac damage [58]. A
recent study in PPAR-𝛾 KO mice revealed that PPAR-𝛾 plays
a crucial protective role in cardiomyocytes and may prevent
myocardial ischemia-reperfusion injury by modulating NF-
𝜅B-associated inflammatory mechanisms in the infarcted
myocardium [76].

The heart responds to FA variations by activating PPARs
[77]. PPAR-𝛼 can mediate diurnal variations in the respon-
siveness of the heart to both FAs and specific PPAR-𝛼
agonism (WY-14 643) [78]. In the normal heart, however,
PPAR-𝛼 mRNA exhibits only weak circadian oscillations,
although the circadian clock within the cardiomyocyte medi-
ates diurnal variations in the responsiveness of the heart to
increased workload, according to contractile function and
metabolic flux levels [79, 80].

PPAR-𝛼 overexpression in the mouse myocardium atten-
uates glucose transporter gene expression and glucose uptake
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[81]. Inmyocardium perfused with FA and ketone bodies, the
glycolytic rate is decreased and additionally cardiomyocyte-
specific PPAR-𝛼 overexpression leads to an augmentation of
triglyceride-derived FAs [82]. PPAR-𝛼 interferes in pyruvate
dehydrogenase kinase (PDK), phosphofructokinase, pyru-
vate dehydrogenase complex (PDC), and phosphofructok-
inase (PFK) activities, and the cellular regulation of these
proteins is influenced by circadian rhythms [83, 84]. Recently
it has been demonstrated that vascular PPAR-𝛾 is a peripheral
regulator of cardiovascular rhythms that controls circadian
variations in blood pressure and heart rate through brain and
muscle Arnt-like protein- (BMAL-) 1 [85]. PPAR-𝛾 appears
to be a main component of the vascular clock. Pioglita-
zone, a PPAR-𝛾 activator, readjusts the circadian rhythm
of blood pressure from nondipper to dipper in patients
with type 2 diabetes [86]. Accordingly, the impairment of
cardiovascular rhythmicity parallels the diurnal variations in
urinary excretion of epinephrine and norepinephrine, which
are suppressed in PPAR-𝛾 mutant mice [85], similar to that
observed in BMAL1 KO mice [87].

5. PPAR Regulation by Posttranslational
Modification in the Myocardium

Energy utilization in heart is transcriptionally controlled in
part by the PPAR family and their coreceptors/coactivators,
including PPAR-𝛼, PPAR-𝛽/𝛿, PPAR-𝛾, RXR-𝛼, and PPAR-
𝛾 coactivator- (PGC-) 1𝛼. Mechanistically, PPAR-𝛼, PPAR-
𝛽/𝛿, and PPAR-𝛾 heterodimerize with the RXR-𝛼 and coac-
tivators (e.g., PGC-1𝛼) and repressors (e.g., nuclear receptor
corepressor (NCoR)) to regulate the transcription of genes
involved in energy regulation and lipid metabolism [4, 88–
90]. Both PPAR and RXR-𝛼 interact with their respective
ligands to enhance PPAR-DNA binding [88, 91]. In the
absence of ligand binding, the unbound PPAR-RXR het-
erodimer remains bound to NCoR and silencing mediator of
retinoid and thyroid hormone receptor (SMRT), two main
corepressors within the corepressor complex [92, 93]. Both
NCoR and SMRT directly interact with the Sin3 complex
to form a multisubunit repressor complex [92, 94]. SMRT
functions as a protein platform to promote the mobilization
of histone deacetylases (HDACs) to the DNA promoters
bound by specific interacting transcription factors [92, 94].
Receptor interacting protein- (RIP-) 140, also known as
nuclear receptor interacting protein- (NRIP-) 1, is another
corepressor that directly recruits HDAC and represses the
activity of numerous nuclear receptors including PPARs by
competing with their coactivators [95–97]. In the absence of
ligand activation of nuclear receptor, the corepressor protein
complex is known to suppress target gene transcription by
causing the deacetylation of histones [92, 93].

Alterations in the cardiac expression of all three PPARs
cause disturbances in glucose and FA metabolism that result
in an increased susceptibility to insults or significant dys-
function [91]. While PPAR regulation is known to play a
role in cardiovascular disease pathogenesis, the mechanisms
regulating their expression and function at the cardiomy-
ocyte level have not been clearly depicted. However, some

progress has been made. For example, PPARs may be con-
trolled through posttranslational modifications (PTM), such
as SUMOylation and ubiquitination [88]. The conjugation
of small ubiquitin-like modifier (SUMO) or ubiquitin is
distinctive among PTMs in that it induces the attachment of
another polypeptide, rather than the addition of a functional
group [88, 98–101]. To date, SUMOylation- or ubiquitination-
mediated PPAR regulation in the heart has not been reported;
however, PPARs are controlled by these PTMs in other closely
related muscle cell types. Other studies have established
that SUMOylation of PPAR-𝛾1 promotes VMSC migration
and proliferation. This has been demonstrated by using
VSMCs transfected with a SUMOylation-defective lysine
(K107R) PPAR-𝛾1 mutant, which results in a more potent
transcriptional inhibition of inducible nitric oxide synthase
when compared to cells transfected with a wild-type con-
struct [88, 102]. These findings regarding the role of PPAR-
𝛾 SUMOylation in regulating the FA oxidation response and
apoptosis in striated muscle and vascular smooth muscle,
respectively, provide support for the concept that PPARs
could be subjected to posttranslational regulation in the
heart. Moreover, PPAR-𝛼 phosphorylation by theMAPK p38
decreases PPAR-𝛼 transcriptional activity [88, 103]. Since the
p38 pathway is activated in response to cardiac stress—as
found in diabetes, heart failure, and cardiac hypertrophy—
this study implicates PPAR-𝛼 activationmechanism bywhich
the heart responds to unfavorable stimuli. The broader
implications of these studies indicate that the FA and glucose
shifts seen in these diseases may be due to these regulatory
mechanisms [88, 104].

6. Cardiac Pathophysiology in Genetic Animal
Models of PPARs and Their Regulators

6.1. PPAR-𝛼. The functions of cardiac PPAR-𝛼 have been
evaluated in PPAR-𝛼 KO mice. While viable and outwardly
normal, these mice exhibit mild aging-associated cardiac
fibrosis [63]. The basal expression of several PPAR-𝛼 target
genes and rates of FA oxidation are also diminished in hearts
of PPAR-𝛼 KO mice [63, 105, 106] and fail to be induced in
response to fasting or diabetes [105]. Moreover, PPAR-𝛼 KO
mice exhibit increased glucose uptake, GLUT4 expression,
and reliance on glucose for cardiac ATP production [64, 107].
Notwithstanding the age-associated fibrosis, cardiac function
is relatively normal in young PPAR-𝛼 KOmice; however, the
response to several physiological stressors is perturbed. For
example, hearts isolated from PPAR-𝛼 KO mice are unable
to compensate when challenged with an increased workload
[64, 108]. Furthermore, transgenic animal models overex-
pression of PPAR-𝛼 results in a cardiomyopathy that mimics
that seen in diabetes mellitus (DM) [109] that is dependent
on dietary fat. This implies that serum-free FA is an essential
mediator during cardiac maladaptation [110]. Paradoxically,
although chronic exposure to excess FA represses PPAR-𝛼
expression in cardiomyocytes, this downregulation of PPAR-
𝛼 may result in further myocardial damage by suppressing
cellular free FA oxidation on a background of excess free FAs
within cells and in the circulation [111]. The PPAR-𝛼 agonist
BM 17.0744 (Roche Pharmaceuticals) normalized cardiac
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metabolismbutwas unable to improve cardiac functionwhen
given orally to type 2 DM db/db mice for 8 weeks [112].
Apoptosis plays a role in the pathophysiology of diabetic
cardiomyopathy and the PPAR-𝛼 ligand, fenofibrate, was
shown to suppress apoptosis. These findings support the
potential role of PPAR-𝛼 ligands in diabetic cardiomyopathy
[109, 113].

Cardiovascular PPAR-𝛼 expressionhas anti-inflammatory
and antioxidative effects, and activation of inflammatory
signaling pathways is important in cardiomyocyte hyper-
trophy [65, 114]. Accordingly, PPAR-𝛼 agonists have been
useful in repressing the inflammation caused by cardiovas-
cular disease. Pretreatment of neonatal cardiomyocytes with
PPAR-𝛼 agonist significantly decreases lipopolysaccharide-
(LPS-) stimulated TNF-𝛼 release, interleukin- (IL-) 1-induced
IL-6 secretion, and PG and cyclooxygenase-2 expression
[115, 116]. The nuclear translocation of NF-𝜅B and apoptosis
were also demonstrated to be reduced after treatment with
the PPAR-𝛼 agonists in the reperfused myocardium. These
findings suggest an important role of PPAR-𝛼 agonists in
inhibiting inflammation in many cell types in cardiovascular
disease [117, 118].Moreover, potent PPAR-𝛼 agonistWY14643
has cardioprotective and cardiodepressive effects when used
to treat encephalomyocarditis virus-induced myocarditis in
diabetic mice, which may be due to its anti-inflammatory
properties and its ability to increase cardiac adiponectin
expression, whereas the reduced cardiac efficiency may be
due to its enhancement of cardiac UCP3 mRNA expression
[6, 119].

6.2. PPAR-𝛽/𝛿. A decrease in cardiac expression of PPAR-
𝛽/𝛿 was found in rats with diabetic cardiomyopathy [120,
121], and reduction in PPAR-𝛽/𝛿 expression during hyper-
glycemia is associated with increased reactive oxygen species
production [121], TNF-𝛼, IL-6, and nicotinamide-adenine
dinucleotide phosphate (NADPH) activity. Further studies
are needed to evaluate the precise role of PPAR-𝛽/𝛿 lig-
ands in regulating diabetic cardiomyocytes [109, 120]. The
selective PPAR-𝛽/𝛿 ligand GW501516 was evaluated for its
effect on FA-induced inflammation in cardiomyocytes [122].
GW501516 was also found to reduce expression of the NF-𝜅B
target genes, MCP-1 and TNF-𝛼 in both human cardiac AC16
cells stimulated by palmitate, as well as in the hearts of mice
fed with a high-fat diet. This data implies that PPAR-𝛽/𝛿may
counteract NF-𝜅B activity; thus, PPAR-𝛽/𝛿 activation might
be therapeutically useful as an anti-inflammatory agent in
diabetic cardiomyopathies [122].

6.3. PPAR-𝛾. In contrast to the induction of the other PPAR
family members, there are several studies that revealed
that PPAR-𝛾 expression is elevated in diabetic rat models
[109, 120, 123, 124]. PPAR-𝛾 leads to elevations in lipogenic
enzymes, which subsequently increase triglyceride produc-
tion [123]. In addition, recent evidence from animal models
showed that cardiomyocyte PPAR-𝛾 activation is associated
with compromised cardiac function through its lipogenic
effects, which may contribute to intracellular triglyceride
accumulation and cardiac lipotoxicity [125]. The PPAR-𝛾
ligand rosiglitazone may also have a protective role against

apoptosis in diabetic cardiomyopathy, similar to the PPAR-
𝛼 ligand [113]. Rosiglitazone has also been demonstrated
to decrease cardiac fibrosis and improve left ventricular
diastolic dysfunction through the inhibition of receptors for
advanced glycated endproducts and connective tissue growth
factor in diabetic myocardium [126]. Moreover, pioglitazone
attenuated the deterioration of ischemic preconditioning
against reperfusion arrhythmias in type 2 DM rats [127].
Although PPAR-𝛾 levels are relatively low inmyocardial cells,
activation during inflammation might have important effects
on cardiomyocytes.

The therapeutic effects of PPAR-𝛾 ligands have been
attributed primarily to their anti-inflammatory properties.
Previous studies showed that both natural and synthetic
PPAR-𝛾 ligands have anti-inflammatory potentials [128].
The pretreatment of neonatal cardiomyocytes with PPAR-𝛾
agonists significantly decreased the LPS-stimulated TNF-𝛼
release by cardiac myocytes [115]. Moreover, PPAR-𝛾 ligands
suppressed myocardial mRNA expressions of inflammatory
cytokines and IL-1𝛽 in an autoimmune myocarditis model
[129]. Interestingly, treatment with rosiglitazone or pioglita-
zone decreased the expression of proinflammatory markers
and reduced accumulation of neutrophils and macrophages
in reperfused myocardium [130, 131]. Nevertheless, high
doses of PPAR-𝛾 agonists were shown to induce cardiac
dysfunction with marked changes in the utilization of free
FA and glucose.Thus, the pathophysiological mechanisms on
the cardiac effects of PPAR-𝛾 agonists causing an increased
incidence of myocardial dysfunction are yet to be elucidated
[109, 132]. The model of constitutive, whole-body disruption
of PPAR-𝛾 results in embryonic lethality due to cardiac
and placental defects [133], preventing the evaluation of the
cardiac phenotype of these mice. However, cardiac-specific
PPAR-𝛾 (csPPAR-𝛾) KO mice revealed that csPPAR-𝛾 defi-
ciency only caused modest ventricular hypertrophy and did
not impair systolic function in the unstressed condition [134].
Increased PPAR-𝛾 expressionwas found in the spontaneously
hypertensive rat that may have resulted from increased lipid
uptake or as a compensatory response to cardiac hypertrophy
and failure, thereby compromising cardiac function [124,
125].

7. Therapeutic Outcomes of PPAR Ligands in
Heart Disease

7.1. PPAR-𝛼 Agonists. Synthetic PPAR-𝛼 ligands—such as
clofibrate, fenofibrate, and bezafibrate—decrease triglycer-
ide-rich lipoproteins through an increase in the gene expres-
sion of FA-𝛽-oxidation and decrease in the expression of
apolipoprotein (Apo) C-III [135, 136].The above-noted drugs
are extensively used in the treatment of hypertriglyceridemia.
Such fibrates not only have a triglyceride-lowering effect,
but also increase HDL-cholesterol levels resulting from the
increase in the expressions of ApoA-I and ApoA-II [135–137].

Human trials with PPAR-𝛼 agonists have largely, but
not uniformly, supported possible atherosclerotic benefits. In
the Bezafibrate Coronary Atherosclerosis Intervention Trial
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(BECAIT), bezafibrate treatment decreased angiographic evi-
dence of coronary atherosclerosis [138, 139]. In the Helsinki
Heart Study (HHT), gemfibrozil decreased cardiovascular
events, especially among patients with diabetes, but an
increased rate of noncoronary death was also noted [140].
In the Bezafibrate Infarction Prevention (BIP) trial, only
the subgroup with the highest triglyceride levels showed a
decrease in adverse cardiovascular events with fibrate therapy
[141]. In the Veteran’s Administration-HDL Intervention
Trial (VA-HIT), gemfibrozil treatment showed a statistically
significant decrease in cardiovascular events in the cohort
with average LDL-cholesterol levels, history of cardiovascular
disease, and modestly decreased HDL-cholesterol/elevated
triglycerides [142–144]. Of note, VA-HIT subjects were not
on any 3-hydroxy-3-methylglutaryl coenzyme A reductase
inhibitors (statins); therefore, the outcomes of this trial may
have been driven largely by the effect of gemfibrozil in
patients with insulin resistance and/or diabetes [143, 144].
The Fenofibrate Intervention and Event Lowering inDiabetes
(FIELD) study—a large, randomized, placebo controlled
trial—investigated the effects of fenofibrate on first or recur-
rent cardiovascular events in patients with type 2 diabetes
and found that the primary end point did not achieve a
statistically significant difference between treatment groups.
Several secondary end points were significantly reduced,
including total cardiovascular events and nonfatal myocar-
dial infarction. Somewhat surprising was the finding that
decreases in small-vessel diseases; namely, nephropathy and
retinopathy were also found. An increase in cardiovascu-
lar mortality also was noted with fenofibrate but did not
reach statistical significance [145]. Comparing the positive
outcomes of VA-HIT with gemfibrozil, a less potent PPAR-𝛼
agonist, to the negative results seen in FIELD achieved with
fenofibrate, a more potent PPAR-𝛼 agonist might support
PPAR modulation, as opposed to more powerful activation,
as being clinically effective. More potent PPAR binding
may not necessarily correlate with greater clinical advantage,
particularly because PPAR agonists have been definedmainly
in vitro [138, 146, 147].

Importantly, FIELDdoes not establish the impact of statin
plus fibrate combination therapy on cardiovascular disease.
Thus, the hypothesis that combination of a statin plus a
fibrate might offer greater cardiovascular risk reduction than
a statin alone implies the requirement of another clinical
study such as the Action to Control Cardiometabolic Risk in
Diabetes (ACCORD) trial. However, ACCORD-lipid arm in
patients with DM did not demonstrate any reduction in fatal
cardiovascular incidences or nonfatal myocardial infarction
and stroke compared with simvastatin alone [148]. From the
disappointing cardiovascular outcomes in these studies, we
might expect VA-HIT and FIELD to specify advantages of
fibrates in patients who are statin intolerant or for possible
fibrate benefits tomicrovessel disease, which is amajor source
of morbidity in diabetes [138]. Furthermore, prespecified
subgroup analysis of the ACCORD data suggested a possible
benefit of fenofibrate in patients with high triglyceride and
low HDL-cholesterol baseline levels. Therefore, fibrates may
prove to be beneficial in treating atherogenic dyslipidemia in
diabetes patients [51, 148].

7.2. PPAR-𝛾 Agonists. PPAR-𝛾 is a regulator of glucose and
lipid metabolism; therefore, its synthetic PPAR-𝛾 ligands—
such as glitazones and TZD derivatives (such as trogli-
tazone, rosiglitazone, and pioglitazone)—improve glucose
and insulin parameters and increase whole body insulin
sensitivity. Therefore, they are called insulin-sensitizers and
are used in the treatment of diabetes [149]. In early human
trials, PPAR-𝛾 agonists showed decreased in-stent restenosis
after coronary stent implantation [150, 151]. Furthermore,
in the Carotid Intima-Media Thickness in Atherosclerosis
Using Pioglitazone (CHICAGO) study, significant effects
of pioglitazone on the slow progression of carotid intima-
media thickness were reported in patients nearly matched for
glycemic control with glimepiride [152].

Rosiglitazone and pioglitazone are used in the treatment
of patients with type 2 diabetes; however, the effects of
these TZDs on cardiovascular outcomes in patients with
DM are different. The Prospective Pioglitazone Clinical Trial
in Macrovascular Events (PROactive) trial investigated the
effects of pioglitazone combined with standard contem-
porary antidiabetic treatment versus active, but non-TZD,
antidiabetic treatment on a combined vascular end point
in individuals with known macrovascular disease [153]. The
purpose of the PROactive study was to achieve similar,
matched hemoglobin A1c (HbA1c) levels in the TZD and
non-TZD groups in order to provide more definitive insights
into glucose-independent vascular effects of TZDs. In spite of
the extensive in vivo and in vitro data supporting TZD effects
on atherosclerosis, no statistically significant difference was
noted in the primary end point between study groups. In
contrast, the main secondary end point was revealed with a
statistically significant 16% decrease in clinical events [153,
154]. Contrary to pioglitazone, rosiglitazone was associated
with significant increases in death from cardiovascular causes
and myocardial infarction after a relatively short-term of
exposure [155]. Thus, the European Medicines Agency with-
drew approval of rosiglitazone in 2010 due to these cardio-
vascular safety concerns [156]. Importantly, these divergent
outcomes may result from their diverse effects on lipid sub-
fractions [157]. Pioglitazone increases HDL-cholesterol and
decreases fasting plasma free FAs and triglycerides without
any influence on total cholesterol and LDL-cholesterol; how-
ever, rosiglitazone significantly augments HDL-cholesterol
levels, as well as total cholesterol and the LDL-cholesterol
fraction levels [156, 158, 159].

In the Diabetes Reduction Approaches with Ramipril
and Rosiglitazone Medications (DREAM) study, the effects
of the angiotensin-converting enzyme inhibitor ramipril and
rosiglitazone on the prevention of diabetes were studied
using a two-by-two placebo-controlled design [160]. Inter-
estingly, rosiglitazone significantly reduced the progression
to diabetes in a cohort with impaired fasting glucose and/or
impaired glucose tolerance, whereas ramipril had no effect
on this measure [161]. The Actos Now for the Prevention of
Diabetes (ACT NOW) trial analyzed with a similar question
to DREAM in patients with impaired glucose tolerance
randomized to receive either pioglitazone (45mg) or placebo.
After a mean follow-up of 2.2 years, progression to diabetes
occurred in 5% of the pioglitazone group, compared with
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16.7% of the placebo group, but too few cardiovascular events
occurred (pioglitazone 26, placebo 23) to draw any inferences
regarding effect of treatment on cardiovascular outcomes
[162, 163]. This decrease in diabetes progression with piogli-
tazone was consistent with previous studies, including the
troglitazone arm of the Diabetes Prevention Program and
women with a history of gestational diabetes [164, 165].
Additionally, the pioglitazone arm of the Pioneer study
revealed significantly greater improvements in inflamma-
tory markers—including high-sensitivity CRP, MMP-9, and
MCP-1—than the glimepiride-treated group despite equiva-
lent reductions in fasting glucose and HbA1c levels. In an
additional subgroup analysis, patients with no significant
glucose responses to pioglitazone still had improved surro-
gate markers for atherosclerosis. Despite limitation by the
small numbers of patients in these subgroups, such findings
continue to raise possible disassociations between TZD-
mediated effects on the vasculature and inflammation versus
its glycemic advantages [138, 166].

In the Cardiovascular Outcomes in Oral Agent Combi-
nation Therapy for Type 2 Diabetes (RECORD) trial, 4,447
subjects with type 2 DM poorly controlled on monotherapy
with metformin or sulfonylurea, a noninferiority hypothesis
was explored for rosiglitazone as second-line therapy in type
2 diabetes [163, 167]. The primary end point of RECORD
was time to cardiovascular hospitalization or cardiovascular
death. After a mean follow-up of 5.5 years, primary endpoint
events occurred in 321 patients in the rosiglitazone group
and 323 patients in the metformin/sulfonylurea group, thus
meeting the requirement for noninferiority of rosiglitazone.
Fatal or nonfatal HF occurred more frequently in the rosigli-
tazone group than in the active control group (61 versus 29
patients). Limitations of RECORD include an event rate that
was substantially lower than that projected in trial design
with consequent reduction of statistical power, and potential
complications resulting from the differential use of statins
and diuretics, and an open-labeled study design [163, 167].

Despite many beneficial features of glitazones, they also
exhibit adverse effects, such as edema, heart failure, weight
gain, bone fractures, and increased risk of myocardial infarc-
tions, which have limited the use of TZDs in diabetic patients
with high lipid levels [168]. In the PROactive study, an
increased incidence of congestive HF was reported in the
pioglitazone group, although these events were not well
judged. Previous work has clearly demonstrated that TZDs
can cause fluid retention, as evident from themodest decrease
in hematocrit and volume expansion documented with TZD
exposure [169]. The incidence of pedal edema observed
with TZD monotherapy is about 3% to 5% compared with
1.2% in placebo arms [170]. The incidence of pedal edema
with TZDs approaches 7.5% when combined with either
metformin or sulfonylurea, compared with 2.5% and 2.1%
with sulfonylurea or metformin alone, respectively [171]. The
risk of pedal edema appears similar with both rosiglitazone
and pioglitazone in clinical use [172]. Concomitant insulin
and TZD use has been associated with a 2- to 3-fold higher
rate of edema compared to insulin alone, with rates increasing
from 5% to 7% with insulin alone to 13% to 15% with
TZD and insulin [171]. Recent data suggest that upregulation

of a specific sodium channel—sodium channel, nonvoltage
gated 1 gamma subunit (SCNN1G)—in the distal nephron
is a PPAR-𝛾-mediated mechanism for TZD-induced edema
[173, 174]. Other mechanisms involved for TZD-mediated
edema include altered interstitial ion transport, increased
sympathetic nervous system activity, and altered endothelial
permeability [175–177]. This edema is reversible and should
not necessarily be equated with myocardial toxicity although
some patients with DM, even absent class III or IV HF, may
not tolerate this volume expansion [138].

Another clinically significant side effect of TZDs is body
weight gain. This change, which likely involves both fluid
retention and increases in adiposity, is typically in the range
of 2 to 5 kg [178]. Some of theweight induced by TZDsmay be
advantageous, involving a shift from visceral to subcutaneous
areas, and also track the increase in adiponectin, anti-
inflammatory protein, induced by TZDs [179]. The change
in fat distribution with TZDs includes a change in energy
balance and possible effects on other factors and pathways
influencing body weight, because a simple rearrangement in
fat location would not explain an overall net increase in body
mass [138, 180]. Nevertheless, the weight increase seen with
PPAR-𝛾 activation has clearly contributed to the hesitation of
TZDs usage as antidiabetic drug, which may be more serious
when combined with insulin [181].

7.3. PPAR-𝛼/𝛾 Dual Agonists. A new class of dual PPAR-
𝛼/𝛾 agonists has been shown to have a positive influence on
both glucose and lipid metabolism and are currently under
development as a response to the treatment challenge of coex-
isting type 2 diabetes with dyslipidemia. These dual agonists
not only reduce arteriosclerosis development, but also have
an antidiabetic capacity. They also exhibit improvement of
endothelial function, anti-inflammatory, and anticoagulant
action, decrease plasma free FAs, and lower blood pressure,
indicative of advantageous effects on the vasculature [49].

Until now, several attempts to develop a dual agonist
for diabetes have failed due to various safety concerns:
ragaglitazar, MK-0767, and naveglitazar were all found to
be associated with an increased incidence of bladder cancer
and hyperplasia in rodent studies [51, 182], and tesaglitazar
development was discontinued due to indications that it may
cause renal dysfunction [183]. The most-studied dual agonist
muraglitazar was found to be effective in reducingHbA1c and
triglyceride levels while increasing HDL-cholesterol levels
[51, 184–188]. One randomized, double-blind trial of 1,477
drug-naive patients with type 2 diabetes found a −0.25% to
−1.76% (3–17mmol/mol) reduction in HbA1c from baseline
after 24 weeks of muraglitazar treatment, compared with
a reduction of −0.57% (5mmol/mol) with pioglitazone [51,
186]. At 12 weeks, triglycerides had decreased by −4 to
−41% with muraglitazar and 9% with pioglitazone and HDL-
cholesterol had increased by 6–23% with muraglitazar and
10% with pioglitazone. Nevertheless, Bristol-Myers Squibb
discontinued further development of this dual agonist in
2006 after Nissen and colleagues published an analysis of
the available material from the clinical trial program, which
revealed that muraglitazar was associated with an increased
incidence of the composite end point of death, major adverse
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cardiovascular events, congestive HF (relative risk: 2.62; 𝑃 =
0.04), and excessive morbidity for all individual components
of the composite endpoint when compared to placebo or
pioglitazone [51, 188].

Aleglitazar (Hoffmann-La Roche) is the most recent dual
PPAR-𝛼/𝛾 agonist that has completed in phase III trials
and has a balanced affinity for both PPAR-𝛼 and PPAR-𝛾
receptor subtypes. Preclinical and clinical trial results have
been promising [51, 189–192]. Phase II study SYNCHRONY
has shown a significant dose-dependent reduction in HbA1c
of −0.36% (4mmol/mol, 50 𝜇g; 𝑃 = 0.048) to −1.35%
(15mmol/mol, 600 𝜇g; 𝑃 < 0.0001) after 16 weeks of treat-
ment with aleglitazar once daily when compared with pla-
cebo. Importantly, statistically significant beneficial effects on
lipid subfractions were also found. Significant decreases in
triglyceride (𝑃 < 0.001 for percentage changes) and increases
in HDL-cholesterol (𝑃 < 0.05 for percentage changes) were
found with all doses of aleglitazar (−43 and +21%, resp.,
with the 150 𝜇g dose). In addition, significant reductions in
LDL-cholesterol were found at doses of 150 𝜇g or higher,
compared with placebo (𝑃 < 0.05 for percentage changes):
placebo-adjusted reduction in LDL-cholesterol with the 150-
𝜇g dose of aleglitazar was −15.5%. Indeed, aleglitazar, at the
150-𝜇g dose, was associated with a greater effect on triglyc-
erides, HDL-cholesterol, and LDL-cholesterol than pioglita-
zone 45mg. Further analysis of this study data suggests that
aleglitazar produces a shift from the atherogenic small dense
LDL particles associated with type 2 diabetes to larger LDL
particles [51, 193]. Phase III study ALECARDIO, randomized
double-blind placebo-controlled clinical trial, had evaluated
the hypothesis that aleglitazar (150 𝜇g daily dose) can reduce
cardiovascular mortality and morbidity in patients with type
2 DM who have suffered from a recent acute coronary
syndrome (ACS) event. However, use of aleglitazar in patients
with type 2 diabetes and recent ACS did not significantly
reduce the incidence of cardiovascular death, myocardial
infarction, or stroke. Unfortunately, aleglitazar increased the
risks ofHF, renal dysfunction, bone fractures, gastrointestinal
hemorrhage, and hypoglycemia [194].

There are several potential explanations for why alegli-
tazar did not reduce cardiovascular mortality and morbid-
ity in ALECARDIO trial. First, the magnitude of changes
in HDL-cholesterol and triglyceride levels achieved with
aleglitazar may not be sufficient to impart additional car-
diovascular benefits when administered concurrently with
statins. Second, some therapies may be unable to exert a
cardioprotective effect in patients with extensive atheroscle-
rosis and long-standing diabetes or may require a very long
duration of exposure to achieve such effects. Third, favorable
lipid and metabolic effects of aleglitazar may have been
negated by adverse effects of the drug, including heart failure,
reduced renal function, hypoglycemia, and increased LDL-
cholesterol, resulting in no net cardiovascular benefit. These
findings do not support the use of aleglitazar in this setting
with a goal of reducing cardiovascular risk [51, 194].

8. New Modalities and Future Directions of
PPAR-Directed Therapeutics

The impact of fibrates andTZDs ondyslipidemia anddiabetes
is linked primarily to PPAR-𝛼 and PPAR-𝛾 activation, respec-
tively [195, 196]. However, substantial clinical and preclinical
experience has shown that individual drugs differ from one
another in therapeutic and side effect properties [42, 197].
Furthermore, PPAR expression in multiple tissues raises the
possible value of targeting PPAR agents in therapeutic indi-
cations of a number of other diseases (e.g., cancer and colitis)
[122, 198–201]. Althoughmany clinical studies of PPARs have
demonstrated inconsistent results for cardioprotective effects
[139–141, 145, 153, 167, 193, 194], the evidence reviewed above
suggests that this is still a lucrative area of study. Therefore,
the needs of new PPAR-directed therapeutic modalities must
include pan-PPAR agonists, selective PPARmodulators, dual
PPAR agonists, PPAR-𝛾 antagonists, and nutraceuticals, all of
which are being considered as possible approaches to reduce
the adverse events seen with current TZDs [138, 181, 202].

8.1. Pan-PRAR Agonists. The significant structural similarity
of PPAR-𝛼, PPAR-𝛽/𝛿, and PPAR-𝛾—particularly within
their ligand-binding domains—has allowed the identification
of several synthetic dual- or pan-PPAR agonists [203]. Active
metabolites of fibrates, such as fenofibric acid and clofibric
acid, are dual activators of PPAR-𝛼 and PPAR-𝛾, with about a
10-fold selectivity for PPAR-𝛼. Another compound from this
group, bezafibrate, is a broader activator because it activates
all three PPAR subtypes at comparable doses to other fibrates.
Therefore, bezafibrate is regarded as a pan-agonist with the
potential to directly improve insulin sensitization via PPAR-
𝛾 activation [10, 15].

8.2. Selective Modulators and Partial Agonists. The intensive
search for safer PPAR agonists led to the development of
selective partial PPAR modulators. Currently, new selective
PPAR-𝛾 modulators are in development—including S26948
[204] and INT131 [205], which should stimulate glucose
metabolism and minimize the adverse effects of full PPAR-𝛾
agonists [49]. INT131 recruits vitaminD3 receptor interacting
protein- (DRIP-) 205 and promotes its binding to a level
of approximately 30% of that conferred by the full PPAR-
𝛾 agonist rosiglitazone [206]. In animal models of diabetes,
INT131 caused less weight gain compared to pioglitazone or
rosiglitazone while retaining efficacy to reduce plasma glu-
cose [206, 207]. Importantly, toxicity of INT131 in cynomol-
gus monkeys and rats was not associated with fluid retention,
changes in hematocrit, or weight gain over 6 months [207,
208]. In a phase II study, however, INT131 was associated
with an increase in the incidence of edema, weight gain,
and decreased hematocrit at the 10mg dose versus placebo,
highlighting the difficulty in translating promising preclinical
profiles into patients [209]. While the cardiac adverse effect
profile of rosiglitazone-like PPAR-𝛾 full agonists is unfor-
tunate, the therapeutic potential of novel pharmacological
agents targeting PPAR-𝛾 submaximal cannot be excluded.
Interestingly, newly synthesized partial PPAR-𝛾 agonists,
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such as balaglitazone, MBX-102, MK-0533, PAR-1622, PAM-
1616, KR-62776, and SPPAR-𝛾M5, have a reduced tendency to
cause the adverse effects associated with full PPAR-𝛾 agonists
or may be entirely devoid of such effects [6, 47].

8.3. Phosphorylation and Posttranslational Control. As noted
above several compelling new mechanisms of posttransla-
tional control of PPAR action have recently been described,
including phosphorylation, SUMOylation, ubiquitination,
and nitration [210]. In addition to enhancing the tran-
scriptional activity of PPAR-𝛾, rosiglitazone was found to
inhibit the PPAR-𝛾 phosphorylation at Ser273 by cyclin-
dependent kinase 5 (CDK5) in adipose tissue, preserving the
transcription of insulin-response genes and correlating with
antidiabetic activity. A second PPAR-𝛾 agent, MRL24, was
as effective as rosiglitazone at blocking phosphorylation and
improving diabetes in animal models, despite being only a
partial PPAR-𝛾 agonist. Taken together, these results suggest
that the insulin-sensitizing benefits of PPAR-𝛾 agonists are
due in part to their ability to block phosphorylation and not
solely to their agonist activity [211].

8.4. Nongenomic Regulation. Recent evidence also suggests
the potential role of nongenomic regulation of PPAR-𝛾
and PPAR-𝛼, mediated by interaction with cytosolic second
messengers, including kinases and phosphatases [210]. The
MAP/ERK kinase, MAPK kinase- (MEK-) 1, was reported
to bind directly to the AF-2 domain of PPAR-𝛾 in response
to mitogenic stimulation, leading to the sequestration of
PPAR-𝛾 in the cytoplasm [212]. Selective inhibition of MEK-
1/PPAR-𝛾 interactions has recently been proposed as a con-
cept for treatment of cancer, inflammation, and metabolic
disorders but has yet to gain significant acceptance [212].

8.5. New Dual PPAR-𝛼/𝛾 Agonists. Saroglitazar, a PPAR
agonist with predominant PPAR-𝛼 and moderate PPAR-𝛾
activity, was launched exclusively in India for the control of
dyslipidemia [213, 214]. However, limited data is available on
its molecular profile, and the treatment duration and low
patient number in its phase III programmake it impossible to
draw conclusions regarding its cardiovascular and long-term
safety profiles [203].

8.6. Nutraceuticals and Life-Style Modification. As endoge-
nous nuclear receptor ligands, dietary n-3 and n-6 polyun-
saturated FAs (PUFAs) and their derivatives can upregulate
PPAR-𝛾 expression in vitro and in vivo and reduce an
inflammatory response [215]. Furthermore, it has been shown
that any type of regular exercise and crataegus species would
improve cardiovascular function and minimizes several risk
factors via stimulating lipidmetabolismby acting on enzymes
and genes expression such as ATP-binding cassette trans-
porter A1 (ABCA1) and PPAR-𝛼 which are involved in this
process [216]. However, though dietary PUFAs similar to
synthetic ligands were able to bind to the ligand-binding
domain and cause conformational changes to activate the
receptor, they are considered as weak PPAR-𝛾 ligands because
of their low physiological concentrations. Another caution
of nutraceuticals is that some of the flavonoids have been

associated with tumor and altering pharmacodynamics and
pharmacokinetics of various drugs via interacting with
cytochrome P450 enzymes [202].

9. Conclusions

PPARs are critical gene regulators in cardiomyocytes, yet
their functions are not fully established. PPAR agonists con-
vey beneficial effects as therapeutic agents for diabetes and
atherosclerosis by lowering blood glucose, improving insulin
resistance, inflammation, and lipid metabolism; however,
adverse side effects limit their clinical use. As such, the
future of PPAR-directed agents in cardiometabolic therapy
remains uncertain, although several late-stagemoleculesmay
still hold promise [203]. Future directions in PPAR agonist
development are likely to focus on optimizing the PPAR
subtype interaction profile, maximizing the inhibition of
PPAR-𝛾 phosphorylation, and screening against off-target
activity. At the present time, clinicians should keep in mind
the risk/benefit ratio of PPAR activators. Intensive research
on this therapeutic target will likely lead to the development
of safer and more effective PPAR agonists in the near future.
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