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Introduction

A large proportion of patients with cancer receive 
radiotherapy as part of their treatment protocol, 
with dose of up to 70 Gy or more. Although most of 
the radiation energy is deposited within the inter-
section of beams’ paths and along the beam path, 

mainly in the target, body regions located outside 
of the target volume are also exposed to radia-
tion — although at much smaller doses — due to 
the physical properties of radiation and the limita-
tions of current technologies [1, 2].

Although the dose of ionising radiation is 
a well-defined parameter that can be measured 
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to determine, especially for low doses (0.1 Gy–1 Gy). In recent years, Monte Carlo (MC) methods have been proposed to more 
accurately predict nontarget doses. The aim of the present study was to assess the feasibility of using Monte Carlo methods 
to predict the biological response of tissues and critical organs to low dose radiation (0.1 to 1 Gy) based on results published 
in the literature.

Materials and methods: Literature review, including studies published by our group.

Results and Conclusions: It has long been assumed that radiation doses to peripheral organs located far from the target 
volume are too low to have any clinical impact. In recent years, however, concerns about the risk of treatment-induced sec-
ondary cancers, even in peripheral organs, have continued to grow in line with increasing life expectancy. At present, it is 
difficult in routine calculations to accurately determine radiation doses to the whole body and peripheral organs. Moreover, 
the potential clinical impact of these doses remains uncertain and the biological response to low dose radiation depends 
on the organ. In this context, MC methods can predict biological response in those organs. Monte Carlo methods have be-
come a powerful tool to better predict the consequences of interactions between ionising radiation and biological matter. 
MC modelling can also help to characterise microscopic system dynamics and to provide a better understanding of processes 
occurring at the cellular, molecular, and nanoscales. 

Key words: Monte Carlo methods; biological response; out-of-field doses; dose calculation

Rep Pract Oncol Radiother 2024;29(5):1–11

https://doi.org/10.5603/rpor.103525


Reports of Practical Oncology and Radiotherapy 2024, vol. 29, no. 5

https://journals.viamedica.pl/rpor2

and calculated, the response of living organisms 
to a given dose is more complex and more diffi-
cult to describe qualitatively and quantitatively. 
Assessment of the effects of radiation (both curative 
and adverse) requires in vitro and in vivo studies 
and clinical observation. The biological response 
to irradiation in vitro can be assessed by examin-
ing damage to the cells and cellular components. 
Response can also be assessed in vivo by observing 
tissue and organ function impairment. 

Although it can be challenging to accurately as-
sess biological response, the main factor driving 
response is the dose. In this regard, the response 
to radiation — both on the cellular level and in 
the whole organism — is much better understood 
at doses above a 1 Gy because deterministic ef-
fects make the radiation effects more visible and it 
is easier to trace tissue damage and/or impaired or-
gan function. However, at doses < 0.1 Gy, the effects 
on the cellular functions are unclear. While cellular 
damage (e.g., DNA damage) caused by low-dose 
ionising radiation can be detected, it is much more 
difficult to predict how this damage influences 
the cell cycle and the cell’s capacity to repair itself 
and continue dividing.

Wang et al. showed that low radiation doses 
(0.25 Gy) could lead to cell growth and gene trans-
fer while doses > 1.5 Gy induced cell killing [3]. 
Those authors also showed that low dose radia-
tion delivered prior to higher doses can attenuate 
the effect of those consecutive doses. This adaptive 
response to radiation is characterised by several 
effects, including activation of multiple signalling 
pathways, augmented DNA damage response, in-
creased antioxidant function, and modulation 
of mitochondrial function [4]. 

The impact of radiation on DNA can be observed 
even at very small doses. For example, double 
strand breaks (DSB) begin to occur at doses as low 
as 1 mGy to 0.5 Gy. As the dose increases, the num-
ber of DSBs also increases, although this depends 
on the cell type [5]. The exposure of normal tissue 
to radiation doses > 0.5 Gy can induce persistent 
perturbations in molecular and cellular function 
[4]. High doses can cause irreparable DNA dam-
age and negatively impact cell cycle progression 
[6]. High dose radiation can induce numerous al-
terations to macromolecules, severe modulation of 
cell signalling pathways, and degenerative/carcino-
genic effects. For these reasons, it can be difficult 

to accurately describe the quantitative and qualita-
tive response of cells, tissues, organs, and the whole 
body to radiation. In turn, this makes it difficult to 
confirm theoretical models.

In clinical practice, it is particularly difficult 
to determine the impact of low radiation doses 
(0.1–1 Gy) on peripheral organs. Although algo-
rithms have been developed in an effort to estimate 
the biological response to such doses, including 
early and late effects and induction of secondary 
neoplasms, those algorithms are not sufficiently ac-
curate [7]. Moreover, there is no agreed value for 
the dose to be taken as borderline to distinguish 
between stochastic/deterministic; dosimetrical-
ly measurable and non-measurable and, finally, be-
ing clinically relevant or not. In literature, depend-
ing on the point of view, 0.3, 0.5, 1.0, 1.5 or 3.0 Gy 
is used [8–11]. With this difficulty in mind, we set 
in our analysis a borderline at 1 Gy.

The aim of the present study was to assess 
the feasibility of using Monte Carlo methods to 
predict the biological response of tissues and criti-
cal organs to low dose radiation (0.1 to 1 Gy) based 
on results published in the literature.

Nontarget doses during radiotherapy 
One of the guiding principles of radiotherapy is 

that the dose outside of the target volume (“nontar-
get dose”) should be as low as reasonably achiev-
able (ALARA criteria). This is important because 
nontarget radiation increases the risks of radio-
therapy without providing any therapeutic benefit. 
According to Kry et al. [11], nontarget doses may 
be classified as either “in-field” or “out-of-field”. 
In-field radiation refers to the doses delivered to 
tissues that are not included in the treatment plan-
ning volume (TPV) but are located in the path of 
one or more radiation fields. In-field doses main-
ly originate from the primary radiation source. 
The out-of-field dose is defined as the radiation 
dose received by tissues located outside of the TPV 
and outside of all radiation fields. These tissues 
absorb secondary scatter radiation from the body, 
collimator, or other devices.

Physical processes leading to radiation 
dose in a body 

Ionising radiation can be delivered in different 
forms, including electromagnetic waves (gamma 
or X-rays) or as particles that carry enough ener-
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gy to ionise atoms. Electrons can break chemical 
bonds and as a result the cellular matter becomes 
ionised. While ionising radiation affects both 
cancerous and normal tissues, the risks of harm-
ing healthy cells can be mitigated by modifying 
the beam configuration during treatment planning. 
The absorbed dose refers to the energy that is de-
posited from ionising radiation due to interactions 
between the photons and particles, and the tissue. 

Interaction of photons and high-energy elec-
trons with structural elements of linear accelera-
tor (shielding, target, flattening filter, collimators, 
multi-leaf collimators) might cause the creation of 
secondary particles, particularly neutrons (photo-
nuclear effect) [12]. The fast (En > 10 keV) and ther-
mal (En < 0.5 eV) neutrons may induce extra doses 
to patients during treatment [12–14].

Neutrons are significant contributor to 
the out-of-field dose for photon beams of 15 MV 
and their dose component is independent of 
the distance from the treatment field edge and is 
decreasing with depth in a body [15]. The most 
accurate technique to calculate the parameters of 
these secondary neutrons is the Monte Carlo tech-
nique [16].

Growing input of Monte Carlo 
simulation in dose determination 

during radiotherapy 
The radiation dose is the key value that must be 

accurately known during radiotherapy. The dose can 
be calculated prior to treatment based on measure-
ments and known interaction formulas. The dose 
can also be measured during radiotherapy. In any 
case, the dose must be determined with an accu-
racy of 3–5% [17], which is feasible for the dose 
from the primary beam. This level of accuracy is 
sufficient to ensure tumour eradication and to ac-
curately predict the early and late side effects in 
normal tissues. However, the situation in the pe-
ripheral body parts is more complex. The doses 
there are much smaller (0.1–1 Gy) and their exact 
determination is influenced by much more compli-
cated processes due to the contribution of scattered 
radiation. From a clinical point of view, achieving 
the 3-5% level of accuracy is not important for 
these low doses, because 3-5% deviation will have 
neither clinical manifestation nor a significant ef-
fect on the cell viability. The reality is that in the pe-
ripheral body parts the dose uncertainty increas-

es by tenfold while the does decrease to 0.1 Gy. 
Obviously, such low accuracy has virtually no clin-
ical implications in altered cell killing. However, 
such a high uncertainty can modify the likelihood 
of inducing mutations, which are associated with 
these small doses and which can lead to carcino-
genesis. At present, it is hardly possible to deter-
mine accurately low doses (up to 1 Gy) in peripher-
al organs attributable to scatter, particularly when 
using non-coplanar beams [18].  

Dose can be measured using various types of de-
tectors which can accurately measure the dose, but 
only if the calibration factors are known. It is sub-
stantially more difficult to measure radiation doses 
located outside the primary beam (out-of-field ra-
diation) because the scattered spectral energy level 
is unknown and much lower than that caused by 
in-field radiation. As a result, there is no reference 
condition (no known calibration factor) that can be 
used for comparison with the actual measurement. 
This implies that it is much more difficult to accu-
rately measure doses to peripheral organs that only 
receive scattered radiation [19]. 

In addition to ionisation chambers, several other 
detectors can be used to measure out-of-field ra-
diation, including thermoluminescent detectors, 
semiconductor detectors, and radiochromic films. 
Certain types of detectors (i.e., ionisation chambers 
constructed using low-atomic number (Z ≤ 13) 
materials, gafchromic films, thermoluminescent 
dosimeters) are much less dependent on changes in 
energy spectrum of radiation, thus, the determina-
tion of calibration factors for such detectors is asso-
ciated with lesser error (over- or under-response to 
low energy radiation is less than 5–12%) [11].

The dose distribution is calculated prior to start-
ing the course of radiotherapy. Several different 
types of algorithms (i.e., correction‐based, mod-
el‐based, and Monte Carlo) are used in computer-
ized treatment planning systems (TPS). 

The limitations of pencil beam algorithms 
in heterogeneous media are well known. These al-
gorithms use a one-dimensional density correction, 
which does not accurately imitate the distribution 
of secondary electrons in media with different den-
sities [20–22]. These limitations can be overcome by 
using MC algorithms, a model‐based dose calcula-
tion algorithm widely considered to be the most ac-
curate treatment planning method. Although MC 
algorithms are more accurate than pencil beam 
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algorithms, MC is a time-consuming method, 
which may make its use in routine clinical treat-
ment planning impractical. Nevertheless, due to 
recent advances in computing capacity, the use of 
MC methods continues to grow. 

The convolution/superposition approach (mod-
el-based algorithm) is not specific for dose calcu-
lation in homogenous media, but it is clinically 
acceptable in heterogeneous media. The convo-
lution algorithm requires a significantly shorter 
calculation time than the more accurate superpo-
sition method. In tissues with large inhomogene-
ities, the superposition method provides exact dose 
distributions in the target volume. The superposi-
tion method, a variant of the convolution meth-
od, can determine the dose with an accuracy that 
is only a few percent lower than that achieved by 
Monte Carlo methods, but an order of magnitude 
faster [23].

Due to the emergence of ever more powerful 
computers, Monte Carlo techniques are increas-
ingly being used to perform dose calculations [24]. 
MC models may be particularly useful to calculate 
low doses in peripheral organs [25]. 

Our group has carried out several studies to in-
vestigate the feasibility of using Monte Carlo simu-
lations for dose determination in peripheral organs 
[26,27]. However, assessing biological response 
with MC methods is much more complex [28]. 

The successful implantation of Monte Carlo meth-
ods to routine dose calculation and treatment plan-
ning is both a prerequisite and an incentive to use 
this approach also for simulation of normal organ 
and tissue side effects caused during radiotherapy 
[29].

Radiation-induced damages to be 
mathematically modelled 

The dose is the main parameter that determines 
the clinical and biological (cells, tissues, organs, 
whole body) response to radiation. However, in 
addition to the radiation dose, other factors like 
cell cycle phase can significantly modify the bio-
logical effects of radiation. Consequently, many 
factors must be considered to accurately assess 
the effects of ionising radiation [4]. Numerous 
studies, including several by our group, have been 
carried out to better characterise the effects of ion-
ising radiation in different situations, including 
the biological response to radiation in peripher-

al organs during radiotherapy, the involvement 
of DNA damage repair mechanisms induced by 
various radiotherapy techniques (e.g., hypofrac-
tionated stereotactic body radiation therapy) [30] 
and cellular response measured in a quasi-human-
oid phantom [31–33].

Even small doses can cause tissue toxicity leading 
to long-term complications, including secondary 
cancers (carcinogenesis). In organs, the damaging 
effects of radiation generally depend on tissue struc-
ture. During radiotherapy, doses > 0.5 Gy to healthy 
tissues can damage DNA, lipids, and endoplasmic 
reticulum. In turn, this damage may lead to cell 
senescence or death through apoptosis, mitotic 
catastrophe, necrosis, pyroptosis, and/or autopha-
gy [34]. At lower doses (< 0.5 Gy), the probability 
of cell death is quite low and generally attributable 
to apoptosis or senescence. Nevertheless, low dose 
radiation can damage the DNA of surviving cells, 
potentially inducing dangerous mutations and, 
eventually, carcinogenesis [31]. 

Radiation damage to the DNA and the follow-
ing erroneous repair can lead to gene mutations, 
frequency of which increases in proportion to 
the dose. However, these mutations are highly 
dependent on the cell type, the gene, and radia-
tion quality. Some studies suggest that the fre-
quency of mutations and genomic instability pla-
teaus at radiation doses of 1 to 3 Gy [35]. Other 
studies have found that the number of mutations 
increases up to doses of 7 Gy [36], plateauing 
around 10–20 Gy [37]. For some genomic effects, 
the plateau can be explained by increased cell kill-
ing at higher doses [38].

Irradiation can induce cell death in a multifacto-
rial manner, depending on the cell type, radiation 
dose, oxygen tension, and DNA repair capacity. 
Cell death, which is defined as the loss of replicative 
capacity (i.e., replicative or reproductive death), is 
usually measured in vitro by a clonogenic assay. 
The three major types of morphologically distinct 
cell death that are most relevant to radiation re-
sponse are as follows: apoptosis (type I), autophagy 
(type II), and necrosis (type III) [39].

Although biological response can be assessed 
experimentally, it is difficult to do so with high ac-
curacy [40]. MC methods take a different approach 
to assessing radiation effects, offering the poten-
tial for more accurate predictions of biological re-
sponse. Many such MC approaches have been tested 
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[41, 42]. The main challenge of predicting the bio-
logical response to ionising radiation is related to 
the uncertainty of the relative biological effective-
ness (RBE). Empirical radiobiological models com-
monly used in clinical practice do not incorporate 
the radiation response of individual cells and do 
not predict the sensitivity of an individual tumour. 
However, such information could play an important 
role in response given that clinical data suggest that 
even tumours of the same type can present vastly 
different responses to radiation due to differences 
in their molecular makeup. Unfortunately, models 
that include molecular markers are scarce, in large 
part due to the lack of parameters that link biologi-
cal response to genetic pathways or tumour charac-
teristics. Additionally, data quality is highly depen-
dent on mathematical formulas, which means that 
large volumes of data are needed to fully parame-
terize empirical models. The complicated nature of 
biological response means that we must use pop-
ulation-based approaches, which have significant 
shortcomings and often result in dose under- or 
overestimation [40]. 

In contrast to empirical models, mechanis-
tic models incorporate the underlying mechanisms 
of radiobiological response and include the known 
determinants of radiosensitivity (i.e., DNA repair 
processes and the cell cycle). More complex mech-
anistic models may be used to predict the role of 
genes involved in DNA repair without requiring 
extensive preclinical trials [43]. Some models ap-
pear capable of predicting radiation response based 
on cell phenotype or genotype characteristics, 
but more evidence is needed to confirm the predic-
tive capacity of those models [44]. 

The biological response to low dose radiation 
is stochastic, which means that artificial neu-
ral network could potentially be used to predict 
the response in the complex setting of healthy tis-
sues and organs. Objective methods are required 
for dose determination. However, numerous vari-
ables can influence biological response, which is 
why modelling methods, such as Monte Carlo 
or models based on artificial intelligence (AI), have 
been proposed [45,46]. Clearly, AI-based methods 
require large amounts of data. In this regard, col-
lecting data on the biological response to low dose 
radiation in a simple setting would provide valuable 
information, but response still needs to be modelled 
in a more complicated setting (e.g., organs).

Monte Carlo codes used in radiobiology 
to predict biological processes in cells 

and tissues
Three approaches are used to simulate early 

DNA damage caused by radiation: 1) clustering 
algorithms, 2) explicit geometrical modelling of 
the DNA double strand and associated biologi-
cal structures, and 3) a combination of the above. 
The clustering algorithm, developed by Francis 
et al. [47], is based on experimental data on DSBs 
and survival rates in GEANT4-DNA. Those au-
thors simulated energy deposition from sever-
al types of radiation with the same linear energy 
transfer (LET), thus obtaining the ratio of clustered 
and single energy depositions for each type using 
the Geant4-DNA toolkit. Clustered depositions 
are especially significant in terms of biological ef-
fects because they are more likely to produce mul-
tiple strand breaks, which are more lethal. Due to 
limitations in the physicochemical stages of sim-
ulation, another approach to simulation was de-
veloped. This approach uses a geometrical model 
of the biological target, with the DNA volume as-
sumed to be cylindrical [48]. This model devel-
ops a high-resolution atomistic description (up to 
30-nm chromatin strand) of the biological target 
[49]. The third approach — the mixed approach 
based on GEANT4-DNA — was proposed by Dos 
Santos et al. [50]. That model simulates direct dam-
age from proton irradiation (range, 0.5–50 MeV) 
using a clustering algorithm to quantify potential 
single-strand breaks (SSB) and DSBs. Those au-
thors found that the quantity and complexity of po-
tential direct damage is higher in the nucleus of en-
dothelial cells than in fibroblast cells, primarily due 
to chromatin condensation. Moreover, compared 
to alpha particles, proton irradiation induced more 
complex clustered damage. Meylan et al. [51] de-
scribed the generation and management of com-
plex DNA geometrical models by representing 
DNA as spherical volumes for the phosphate 
groups, the deoxyribose, and the bases. Based on 
the findings of that study, it is possible to calculate 
the direct and indirect DNA strand break yields for 
a primary particle [52].

Sakata et al. [25] found that the increase in 
LET due to the proximity of ionisation increases 
the DSB yield, which surpasses the SSB yield. In 
that study, the indirect SSB yield revealed a strong 
LET dependence; that is, the number of indirect 
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breaks decreases as the LET increases. Compared 
to indirect SSBs, the number of direct SSBs is pro-
portional to LET. The extent of DNA damage in-
creases as LET values increase (> 40 keV/µm). 
The probability of direct SSBs after each simu-
lation of the tracking of an incident particle can 
be calculated by assigning energy deposition to 
the closest strand molecule, with the probability of 
a break occurring being a function of the energy. 
An earlier study by that same group showed that 
indirect damage depends mostly on the probability 
of a chemical reaction between a hydroxyl radical 
and the sugar phosphate backbone, thus leading to 
SSB. It is expected that the GEANT4-DNA model 
will soon allow users to simulate indirect damage 
by merging the atomistic approach with radiolysis 
simulation [25]. 

The radiation-induced bystander effect (RIBE) 
also plays a role in the number of DSBs. RIBE 
depends on cellular communication (through 
gap junctions and secreted factors), by which irra-
diated cells spread radiobiological effects to neigh-
bouring cells [53]. Given that RIBE can damage 
DNA, adding this process to simulations could be 
of value. The observed biological effects of RIBE, 
such as reduced cell survival and mutations, are 
due to DSB induction. The Monte Carlo model de-
veloped by McMahon et al. [54] described the radi-
ation response of cells by simulating their internal 
conditions (cell cycle, radiation damage, cell mo-
tility). Those authors used data from a study by 
Butterworth and colleagues who irradiated fibro-
blasts and prostate cancer cells in partially shielded 
flasks [55]. That in vitro experiment showed that 
RIBE mediates radiation effects to unirradiated 
cells and that it mainly contributes to cell response 
at low radiation doses (< 1 Gy). The aforemen-
tioned MC model developed by McMahon et al. 
[54] described RIBE as a soluble signal dispersing 
from irradiated cells through the medium. Based 
on that model, the authors showed that the by-
stander effect might significantly contribute to cell 
killing of uniformly irradiated cells at doses below 
2 Gy (killing up to 80% at low doses). 

The aforementioned examples show that Monte 
Carlo models can be successfully used to simulate 
complex molecular effects caused by different types 
of radiotherapy. Moreover, different models may 
consider different biological processes, depending 
on their target application. 

Mathematical modelling has been applied 
in radiobiology since the 1920s [56]. Although 
the first models were relatively simple, over time, 
more reliable models of radiation-induced DNA 
damage have been developed. Monte Carlo sim-
ulation is a valuable method to understand 
and characterise radiation effects. As an example 
of a stochastic model, Monte Carlo methods al-
low for the visualization of radiation interactions 
on an event-by-event basis, including the tracking 
of scattering, excitation, and ionisation generated 
by the particles. This tool ensures modelling of ra-
diation transport by simulating early events that 
induce DNA damage [57]. Monte Carlo methods 
used for these simulations include track structure 
codes, Monte Carlo damage simulation (MCDS) 
codes, and Geant4-DNA codes.

Track structure code 
Radiation damage to biological structures at 

the DNA level can be evaluated by using dedi-
cated MC codes known as track structure (TS) 
codes [41,58]. The specific spatial resolution of TS 
codes makes them particularly suitable to calcu-
late energy deposition at molecular and subcellu-
lar levels for a wide range of energies, and to esti-
mate clustered DNA damage and repair. TS codes 
provide detailed information about excitation 
and the energy released by atomic ionisation along 
the ionising particle’s path. They can also simulate 
the process of free radical diffusion, which is cru-
cial in the chemical stage of the radiation effect. In 
1997, Nikjoo et al. [57] published a parameter study 
of mechanistic DNA damage simulations. In that 
study, TS codes were used to calculate the initial 
DNA damage yields caused by low energy electrons 
(range, 100 eV – 4.5 keV). Diffusing hydroxyl radi-
cals substantially contributed to DNA breakage. 

Monte Carlo damage simulation (MCDS) 
code

Tracking codes are useful but time-consuming, 
which limits their application. Semenenko et al. 
[59] proposed a faster, quasi-phenomenological 
MCDS model as an alternative to the TS simula-
tions proposed by Nikjoo et al. [58]. The re-parame-
trized algorithm can estimate cellular DSBs, SSBs, 
and multiple base damage. This model presents 
the total spectrum of damage generated by elec-
trons, protons, α particles, and can provide detailed 
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estimates of the number of lesions per gigabase 
pair. This model showed that the main difference 
between energetic electrons, protons, and α parti-
cles was the degree of lesion clustering. New MCDS 
parameter values can be used to estimate cluster 
yields for a wide range of particle types, kinetic 
energies, and oxygen concentrations [60]. In that 
study, the observations obtained by MCDS were in 
line with the TS simulations, which suggests that 
MCDS parameter values can help to characterise 
the relative effectiveness of radiation type, which is 
useful in particle-based cancer therapy. The authors 
concluded that the most complex, difficult-to-re-
pair DNA damage occurs at the end of a charged 
particle’s track, a finding that can also be useful for 
radiotherapy.

Geant4-DNA code
Geant4-DNA, an extension of the Geant4 MC 

code, is a promising tool for the radiobiological 
evaluation of DNA damage events and nanodosim-
etry [41]. Geant4-DNA, which was first released in 
2007, has been applied to describe the interaction 
between electromagnetic particles and liquid water 
at the nanoscale [2]. The code has been improved 
by adding models of free radical production/dif-
fusion and chemical processes, and can be used to 
simulate water radiolysis up to one microsecond 
after irradiation. 

Several research groups have developed simula-
tion codes to model ionising radiation damage to 
sensitive biological targets such as DNA molecules 
[61–63]. Geant4-DNA implementations include 
external beam radiotherapy, hadron therapy based 
on proton and heavy ions, radiotherapy using 
nanoparticles, and targeted therapies [7, 64].

In conventional models, DNA damage 
yield and lethality are estimated empirically. 
Consequently, there is a clear need to develop 
and improve these models. The inclusion of by-
stander effect models can improve existing mod-
els, especially in the context of low dose radiation 
processes, as suggested by the developers of some 
MC models. For example, Douglass et al. [63] de-
veloped a stochastic MC cell death model that 
simulates the spatial distribution of ionisation 
events and clusters them into DSBs. This model 
also simulates the biochemical process of DSB re-
pair. The model can predict individual cell death 
and thus the cell surviving fraction. Those authors 

developed an algorithm that clusters the ionisa-
tion events into two categories (simple or complex 
DSBs) present in each cell. This approach demon-
strated that it was possible to accurately evaluate 
the radiobiological effects of different types of LET 
radiation on DSB formation. The two-lesion ki-
netic (TLK) model has been used to calculate cell 
survival probability for each cell in a geometric tu-
mour, an approach that differs from standard cal-
culations, which only calculate the average proba-
bility of cell survival. Douglass and colleagues [65] 
observed that the cell’s capacity to effectively repair 
and overcome radiation-induced damage depends 
on several factors, including the volume of the nu-
cleus occupied by the DNA, the ability of neigh-
bouring DSBs to interact and cause lethal damage, 
and on the accuracy of repair processes.

Zhang et al. developed a new multi-scale 
MC model [66] to estimate radiation-induced 
cellular death in clinical radiotherapy. This mod-
el, which is based on the Geant4 code, performs 
simulations at various levels, ranging from 
the macroscopic (organs) to the microscopic 
(cells). Radiation damage is calculated at the cellu-
lar level. The repair process was modelled by an ex-
panded reaction-rate, TLK model. The model was 
compatible with the linear-quadratic (LQ) model 
in terms of the relationship between the macro 
dose and radiation-induced cell killing. The mod-
elled radiobiological effects demonstrated that low 
energy electrons had a greater dose effect, causing 
relatively more local cancer cell killing than higher 
doses. This type of low-energy radiation is found 
in gold nanoparticle (GNP)-enhanced radiothera-
py, in which the probability of tumour control is 
increased by the presence of low energy electrons 
in close proximity to nanoparticles during irradia-
tion [67]. MC methods can also be used to simulate 
the interactions of low-energy radiation particles. 
The energy spectrum is a pivotal factor in radio-
biological mechanisms and can be used to identify 
volumes likely to respond better to an individual-
ized, patient-specific treatment plan. 

Relativistic Ion Tracks (RITRACKS) code
The Monte Carlo simulation code RITRACKS 

(Relativistic Ion Tracks) is used to simulate the ra-
diation track structure of heavy ions and electrons 
[68]. The code simulates the energy deposition 
events and the position of all radiolytic species 
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generated of all tracks in a pre-defined irradiat-
ed volume. RITRACKS can simulate DNA dam-
age at the atomic scale, DNA-associated pro-
teins, and resulting DNA damage events. Using 
RITRACKS codes, Plante et al. [69] have shown how 
the histone protection is significant in the DNA 
damage process. They reported, that the presence 
of histones reduced the number of DNA breaks 
by about 50%. The breaks have been observed in 
the periphery of the nucleosome when histones 
were present. 

PARticle TRACks (PARTRAC) code
The PARTRAC code is one of the most ad-

vanced track-structure tools [70, 71]. It is set up 
on cross-section databases for photons, electrons, 
protons and ions over wide energy ranges rele-
vant for medical, biological and technical appli-
cations. The tool enables simulation of water radi-
olysis, diffusion and reactions of chemical species. 
Comparing with TS code, the PARTRAC is less ac-
curate but considerably faster in calculating dam-
ages in structures [59]. The PARTRAC was used to 
reproduce both the physics of the passage of a par-
ticle inside the matter and the biological target 
(the DNA) at different spatial levels.

Artificial intelligence for Monte Carlo
Artificial neural networks can be used for deep 

learning and to simulate scattered radiation. Sarrut 
et al. [72] discussed the application of artificial 
neural networks for dose prediction. Neural net-
works might also be used to simulate biological 
response based on a dataset of results. The ad-
vantage of this approach is that no prior knowl-
edge of the nature of these processes is necessary. 
MC methods are widely considered the gold stan-
dard for radiation dose calculations because they 
provide an accurate and highly detailed simulation 
of the physical processes involved in the interaction 
of radiation with matter. The radiotherapy TPS de-
termines the optimal dose distribution needed to 
achieve the therapeutic goals while minimizing 
damage to surrounding healthy tissue. The divi-
sion of treatment planning into knowledge-based, 
expert-based, and AI-based categories reflects 
the different approaches and technologies that can 
be used at this stage of radiotherapy. Combining 
AI-based treatment planning with MC dose cal-
culations could provide a powerful framework to 

improve the accuracy and effectiveness of radio-
therapy [73]. AI techniques, including machine 
learning algorithms, can be used to optimize 
treatment planning [74]. The integration of AI 
and MC methods in radiotherapy would increase 
the precision of dose calculations and the predic-
tive accuracy with regards to biological response. 
Combining these two tools would streamline both 
planning and treatment, thereby ensuring better 
patient outcomes.

Conclusion 

Until recently, radiation doses in peripheral or-
gans located far from the target were not routinely 
determined as part of the planning process because 
it was assumed that low doses (0.1–1 Gy) were un-
likely to have any adverse effects. Moreover, there is 
no clinical evidence to support the need for further 
treatment optimization, even in sensitive organs, 
such as the thorax, which can receive doses of up to 
1 Gy during prostate irradiation. 

Even if the doses in the entire body are known, 
the impact on clinical response remains uncertain. 
The biological response to low dose radiation de-
pends on the organ. The response to low doses on 
the cellular level can be detected using experimen-
tal methods. DNA damage is the dominant mech-
anism by which ionizing radiation causes bio-
logical response.  However, the determination of 
whether or how these cellular damages impair spe-
cific organ function remains not well evidenced. 
On the other hand, induction of secondary neo-
plasm has been extensively documented. Further 
study should investigate more in-depth the pro-
cesses that occur within the range of 0.1–1 Gy 
and probably analyse these effects separately in 
smaller dose sub-ranges. 

Monte Carlo methods can be used to predict 
response. Monte Carlo simulation is a potentially 
powerful tool to predict the consequences of in-
teractions between ionising radiation and biolog-
ical matter. These simulations can reveal the mi-
croscopic system dynamics and provide a deeper 
understanding of cellular, molecular, and nanoscale 
processes.  We analysed different approaches to 
predict early DNA damage and application of var-
ious Monte Carlo codes. Monte Carlo methods are 
a highly promising tool for radiotherapy, offering 
the potential to more accurately predict the bio-
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logical effects of low radiation doses in peripheral 
body parts.
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