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ABSTRACT

T cells are central to the immune response against
various pathogens and cancer cells. Complex net-
works of transcriptional and post-transcriptional
regulators, including microRNAs (miRNAs), coordi-
nate the T cell activation process. Available miRNA
datasets, however, do not sufficiently dissolve the
dynamic changes of miRNA controlled networks
upon T cell activation. Here, we established a quan-
titative and time-resolved expression pattern for the
entire miRNome over a period of 24 h upon human T-
cell activation. Based on our time-resolved datasets,
we identified central miRNAs and specified com-
mon miRNA expression profiles. We found the most
prominent quantitative expression changes for miR-
155-5p with a range from initially 40 molecules/cell to
1600 molecules/cell upon T-cell activation. We estab-
lished a comprehensive dynamic regulatory network
of both the up- and downstream regulation of miR-
155. Upstream, we highlight IRF4 and its complexes
with SPI1 and BATF as central for the transcriptional
regulation of miR-155. Downstream of miR-155-5p,
we verified 17 of its target genes by the time-resolved
data recorded after T cell activation. Our data pro-
vide comprehensive insights into the range of stimu-
lus induced miRNA abundance changes and lay the
ground to identify efficient points of intervention for
modifying the T cell response.

INTRODUCTION

T cells play a central role within the adaptive immune de-
fense. They fulfill a broad range of functions reaching from
regulating the activity of other immune cells and eliminat-
ing pathogen infected or abnormal cells (1), to forming a
pathogen specific immunological memory (2,3). T cell acti-
vation is induced by cellular interactions with antigen pre-
senting cells resulting in T cell proliferation and effector cell
differentiation (4–6). A strict regulation of T cell activity
is essential for an effective immune response and it is usu-
ally altered in context with autoimmunity or the develop-
ment of cancer (7,8). There is increasing evidence that miR-
NAs play a prominent role in the regulation of T cell activ-
ity (9–11). MiRNAs are small regulatory ribonucleic acids
that exert their function via a RNA-induced silencing com-
plex (RISC) leading to a down regulation of targets by a
sequence specific binding of the miRNA`s seed region to
a 3′UTR target sequence (12–14). Changes in miRNA ex-
pression and subsequently in their targeting are of special
interest to understand the gene regulatory processes that
are induced upon T cell activation (11,15,16). Furthermore,
miRNAs may allow the manipulation of specific T cell prop-
erties in context of immunotherapies and cancer treatment
(17). A detailed understanding of the complex dynamics
and consequences of miRNA expression changes upon T
cell activation will facilitate the application of miRNAs in
a therapeutic context. While most analyses on miRNA ex-
pression in T cells are focusing on specific time points, only
a few longitudinal studies analyzed a time window between
one and several days after T cell activation (11). During the
initial 24 h of T cell activation the cells undergo the transi-
tion from the resting to the proliferative stage, accompanied
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by pivotal changes of signaling pathways (18–21). MiRNA
expression profiles within the initial 24 h of T cell activation
are, however, rarely described and limited to the analysis
of individual time points (11,22). Here, we report a time-
resolved overall RNA expression profiling of early human
CD4+ T cell activation with a particular focus on the quan-
tification of miRNA molecules and the dynamic interplay
between the most prominent miRNA expression changes
as well as the regulation of gene expression. We identify
miRNAs that could become potent candidates for manip-
ulative interventions in T cells. We also provide quantita-
tive information about stimulus induced miRNA expres-
sion changes that can serve as a reference to improve future
miRNA transfection approaches.

MATERIALS AND METHODS

Isolation of untouched peripheral human CD4+ T cells

Venous blood samples were obtained from volunteers, who
were matched for age and gender (female). Cells from two
donors (donor 1: age 26 years; donor 2: age 23 years) were
used for the initial time-course analysis by microarray ex-
periments. Cells from four additional donors (donor 3: age
27 years; donor 4: age 24 years; donor 5: age 25 years;
donor 6: age 28 years) were used for the time-course val-
idation experiments. The blood cell experiments were ap-
proved by the ethics committee of the Saarland Univer-
sity (Approval ID: 121/18). Written informed consents were
obtained from all donors. Samples for subsequent CD4+
cell analysis were collected using lithium heparin contain-
ing collection tubes (S-Monovette®, Sarstedt AG& Co.
KG, Numbrecht, Germany). PBMCs were isolated by Fi-
coll density gradient centrifugation. To avoid pre-activation
of the T cells by any inadvertent receptor interactions,
CD4+ T cells were isolated by negative selection (Human
CD4+ T cell Isolation Kit, Miltenyi Biotech, Bergisch Glad-
bach, Germany). Cells were resuspended and cultured in
RPMI 1640 medium (Life Technologies GmbH, Darm-
stadt, Germany), supplemented with 10% heat inactivated
fetal bovine serum (Biochrom GmbH, Berlin, Germany),
penicillin (100 U/mL) and streptomycin (100 �g/ml). Re-
maining CD4+ cells of donor 1 and donor 6 that were
not utilized to study T cell activation over time were cryo-
conserved at maximum 13 months before further use (Ex-
traction of background RNA for standard curve genera-
tion in context with miRNA quantification analyses). Iso-
lated cells used for the microarray analyses were quanti-
fied by flow cytometric analysis of 100 000 cells after stain-
ing with �CD4-APC (Cat#561840, BD Biosciences, Heidel-
berg, Germany).

T cell activation and time-course sampling

3.5 × 105 per well of the freshly isolated CD4+ cells were
resuspended in 100 �l of medium and seeded into 96-well
plates by using a multichannel pipette. Cells were subse-
quently activated in separate wells by �CD2/�CD3/�CD28
MACSiBead™ particles (T cell activation/expansion kit,
human, Miltenyi Biotec GmbH, Bergisch Gladbach, Ger-
many). Samples for microarray analyses were taken over a
total time period of 24 h, collecting cells of each donor from

three separate wells at intervals of 2 h. Samples for the time-
course validation by TaqMan assays were collected at dif-
ferent time points after T cell activation (0, 2, 4, 8, 12 and
24 h) from four donors (3, 4, 5 and 6), each. As a control we
used cells that were collected after 24 h of incubation with-
out MACSiBead™ particles. Cells were pelleted and lysed
immediately by QIAzol® Lysis Reagent from miRNeasy
Micro Kit (Qiagen, Hilden, Germany). Samples were frozen
(−70◦C) for <2 months before RNA extraction.

RNA extraction and quality control

Total RNA extraction was performed in a semi-automated
procedure, using QIAcube robot systems and following
the manufacturers` instructions for miRNeasy Micro Kit
(Qiagen, Hilden, Germany). The RNA was quantified by
Qubit® Fluorometer using Qubit® RNA HS Assay Kit
(Thermo Fisher Scientific Inc., Waltham, MA, USA). RNA
integrity was verified using Agilent 2100 Bioanalyzer in-
strument and RNA Pico Kit (Agilent Technologies, Santa
Clara, CA, USA).

Time-resolved analysis of miRNA and mRNA expression pro-
files by microarray

To determine miRNA expression profiles, 75 ng total RNA
of each sample was utilized for miRNA labeling and hy-
bridization to Human SurePrint G3 Unrestricted miRNA
8 × 60K arrays (Release 21.0, G4872A, Agilent Technolo-
gies, Santa Clara, CA, USA) following the instructions
of miRNA Complete Labeling and Hyb Kit. To deter-
mine mRNA expression profiles, 25 ng total RNA of each
sample was utilized within mRNA One-Color Microarray-
Based Gene Expression analysis. The synthesis of labeled
cRNA was performed using Low Input Quick Amp La-
beling Kit (One-Color) (Agilent Technologies, Santa Clara,
CA, USA). The cRNA samples were purified by RNeasy
Mini Kit (Qiagen, Hilden, Germany) and concentrations
of the purified samples were determined by NanoDrop™
2000c Spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) following the instructions of the la-
beling kit. Hybridization was performed using the Gene Ex-
pression Hybridization Kit and Human SurePrint G3 Gene
Expression Microarrays (V3, G4851C; Agilent Technolo-
gies, Santa Clara, CA, USA) following the manufacturer’s
protocol. Arrays were scanned with a resolution of 3 �m.
Raw data was extracted using Feature Extraction software
(Agilent Technologies, Santa Clara, CA, USA). We then
used the limma R-package (23) for background correction
(method = normexp, offset = 16), quantile normalization
and log2 transformation.

Examination of time-resolved miRNA expression profiles

For the statistical evaluation of miRNA expression changes
that were detected by microarray, the R programming lan-
guage was utilized. In order to identify the most relevant
miRNAs for further inspection, we conducted the follow-
ing analyses. The time points of maximum and minimum
expression during the 24 h time-course were determined for
each microRNA based on the median log2 expression data
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obtained from the measurement of three independently ac-
tivated samples per time point. To identify the significantly
changed miRNAs, a paired t-test was performed on the trip-
licate analysis of the respective time points, assuming a nor-
mal distribution of the data. P-values were adjusted by the
Benjamini-Hochberg method (24). Fold changes (FC) be-
tween the maximum and minimum expression were then
calculated based on the corresponding median log2 expres-
sion. Significantly changed miRNAs that held FC ≥1.5
within both donors were considered as miRNA candidates
for further analyses. The miRNA candidates were clustered
using a two-stage clustering. In a first step, initial clus-
ters of highly similar miRNAs were created using a graph-
based clustering algorithm based on the ILP formulation
by Grötschel and Wakabayashi (25). In this approach, each
miRNA is represented as a vertex in a graph. Two vertices
in this graph are connected by an edge if their similarity is
above a given threshold. Clusters were then calculated as
maximal cliques in this graph. We used a threshold of 0.895
to create the initial clusters. These were then combined us-
ing standard hierarchical clustering with Ward’s minimum
variance method (26). In both clustering steps, we use the
Euclidean distance for the gradients of two consecutive time
points as a distance measure (27).

Microarray-based quantification of miRNA expression

Microarrays were calibrated using synthetic miRNA
oligonucleotides (Supplementary Table S1). The lyophilized
single stranded RNA oligonucleotides were purchased,
synthesized and quality controlled by mass spectrometry
(MALDI-TOF) from Eurofins Genomics (Ebersberg, Ger-
many). MiRNA oligonucleotides were resolved to a concen-
tration of 100 pmol/�l using RNAse free water, according
the manufacturers’ instructions. For the calibration assay
of the relative quantification, different amounts of RNA
oligonucleotides (50, 500 and 1000 amol), corresponding to
the mature miRNA sequences, were pooled and spiked-in
to total RNA from inactive CD4+ T cells. The total RNA
(75 ng) was extracted from CD4+ T cells of donor 1 (cryo-
conserved at 0 h of activation). Raw expression signals of
microarray analysis were corrected from array noise. These
noise-corrected signals are in the following referred to as �
raw expression signals. In addition, we analyzed the total
RNA from CD4+ T cells of donor 1, in the following re-
ferred to as background RNA, in a separate array reaction
without oligonucleotides. The � raw expression signals of
the background RNA analysis were subtracted from the �
raw expression signals with the spike-ins. The resulting nor-
malized data are referred to as �� raw expression signals.
To determine a calibration curve for each miRNA, the ��
raw expression signals of each miRNA were then related to
the corresponding amounts of the spiked miRNA oligonu-
cleotides.

We first subtracted the array noise from the time-resolved
miRNA expression data to obtain the corresponding � raw
expression signals. From these data, we further subtracted
the expression values from the inactive CD4+ cells (ana-
lyzed at 0 h time point) to determine the �� raw expres-
sion signals. The above determined calibration curve of each

miRNA was then applied to time-resolved miRNA expres-
sion data. For each miRNA we obtained a corresponding
amount [amol], representing its change relative to the in-
active T cell state within each of the time-course analyses.
Using Avogadro´s constant we then calculated the numbers
of molecules for each miRNA at each time point analysis.
Since this calculation was based on the amount of RNA
within a single array reaction (75 ng RNA), we next ex-
trapolated the corresponding values for the total amount
of each RNA sample. We obtained the number of miRNA
molecules representing the total result of all analyzed cells
for each time-course sample. Molecules per cell were then
calculated, based on the assumption that the initial cell
count stayed unchanged.

For the calibration assay of the absolute quantification,
different amounts of RNA oligonucleotides (50, 500, 1000,
2000 and 5000 amol), corresponding to the mature miRNA
sequences, were pooled and spiked-in to total RNA (75 ng)
from bacteriophage MS2 (Roche, Basel, Switzerland). Raw
expression signals of microarray analysis were again cor-
rected from array noise (� raw expression signals). To deter-
mine an average calibration curve for all miRNA, the aver-
age � raw expression signals of all tested miRNAs were then
related to the corresponding amounts of the spiked miRNA
oligonucleotides. The calibration curve was applied to the �
raw expression signals of the spike-in test samples and the
time course samples. Molecules/cell were calculated as de-
scribed above.

Validation of time-resolved miRNA expression patterns

To validate time-resolved miRNA expression patterns,
RNA samples of the donors 3, 4, 5 and 6 were ana-
lyzed by TaqMan assays. RNA of donor 2 was included
as a reference for the initial microarray analyses. Taq-
Man assays were conducted using TaqMan™ MicroRNA
Reverse Transcription (RT) Kit and TaqMan™ Fast Ad-
vanced Master Mix in combination with RT primers and
specific assay probes for hsa-let-7b-5p (Assay ID: 002619),
hsa-miR-17-5p (Assay ID: 002308), hsa-miR-20a-5p (As-
say ID: 000580), hsa-miR-21-5p (Assay ID: 000397), hsa-
miR-26a-5p (Assay ID: 000405), hsa-miR-132-3p (Assay
ID: 000457), hsa-miR-155-5p (Assay ID: 002623), hsa-
miR-223-3p (Assay ID: 002295) and RNU48 (Assay ID:
001006). Materials were purchased from Thermo Fisher
Scientific (Waltham, Massachusetts, United States) and
used following the manufacturers` instructions (TaqMan™
Small RNA Assay user guide). 5 ng of RNA was used for
miRNA specific reverse transcription and 3 �l of the re-
sulting cDNA were used for the assay reactions. The sam-
ples were assayed on a StepOnePlus™ real-time PCR instru-
ment (Thermo Fisher Scientific). The Cq (quantitation cy-
cle) threshold of the amplification curves was set to 0.2. �Cq
was determined by subtraction of the Cq from houskeeping
gene (RNU48). The time points of maximum and minimum
expression were determined for each microRNA based on
the median �Cq expression (donors 3, 4, 5 and 6). A
paired t-test was performed, comparing the respective time
points under the assumption of a normal distribution of the
data.
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Validation of the miRNA quantification

For the validation of the microarray based miRNA quan-
tification, relative miRNA expression changes were quanti-
fied by calibrated TaqMan assays. The TaqMan assay pro-
tocol was conducted as described above (’Independent val-
idation of time-resolved miRNA expression patterns’ sec-
tion). RT primers and assay probes were used for hsa-miR-
155-5p (Assay ID: 002623), hsa-miR-221-3p (Assay ID:
000524), hsa-miR-132-3p (Assay ID: 000457) TaqMan™
microRNA assays and RNU48 (Assay ID: 001006) Taq-
Man™ microRNA control assay. Each cDNA was assayed
three times. TaqMan™ analyses were performed on one of
the three replicates of donor 1 and donor 2 using the same
time course RNA samples for each miRNA. Due to the
low amount of RNA, remaining from former microarray
analyses, not all of the time points were tested for all of the
miRNA assays. �Cq was determined by subtraction of the
Cq from houskeeping gene, RNU48, and ��Cq was calcu-
lated by subtraction of �Cq from inactive state (0 h).

For the quantification of the miRNA changes measured
by TaqMan assay approaches, we used calibration curves
analogous to those of the microarray analyses. In detail, 50,
500 and 1000 amol of the respective oligonucleotides were
added to 75 ng of background RNA, also extracted from
CD4+ T cells of donor 1. 5 ng of these RNA samples were
utilized for miRNA specific cDNA syntheses, respectively.
The resulting Cq values were normalized by subtraction
of the corresponding housekeeping gene (RNU48) signal
(�Cq) and the oligonucleotide caused changes were deter-
mined by the subtraction of CD4+ background signal with-
out accessory oligonucleotides (��Cq). Calibration curves
were then determined as a result of exponential increase in
-��Cq (abscissa: −��Cq; ordinate: oligonucleotide con-
centration added to 75 ng RNA). The trend line equations
were applied to the time-resolved TaqMan data as described
for microarray based quantification.

Regulator analysis of miR-155

Transcription factor (TF) binding sites, extracted from
chromatin immunoprecipitation sequencing experiments,
within the regulatory regions of the miR-155 encoding gene
(MIR155HG) were identified by the in silico tool Regula-
torTrail (28). Binding motifs of transcription factor com-
plexes were extracted from literature (29). We used a custom
python script to find matches of these motifs in regulatory
regions. In detail, the script reads reference sequences of
regulatory regions of the TF binding motif and searches for
exact matches of the motif within the reference sequences
that were gathered from the GENCODE basic annotation
of GRCh38 (V30) (30). Promotor regions were defined as
windows surrounding the transcription start side (TSS) of
each gene (TSS ± 1000 bp). Enhancer regions were ex-
tracted from the GeneHancer database (31).

Prediction and validation of putative miR-155-5p targets by
dual luciferase reporter gene assays

In silico target prediction was performed utilizing miRWalk
2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/

index.html), choosing all available databases and a mini-
mum seed binding of 6 nt within the 3′UTRs of the pre-
dicted targets (32). Results were filtered for a prediction by
at least five databases. The resulting list of predicted miR-
155-5p targets was checked for an inverse correlation of the
corresponding mRNA profile with time-resolved miR-155-
5p profile. By requiring a Pearson’s (PCC) and/or Spear-
man´s correlation coefficient (SCC) of at least −0.8 and a
different range in fold decrease compared to the inactive
state, we chose 19 putative miR-155-5p targets. 3′UTR se-
quences of the chosen genes were cloned (Supplementary
Tables S2 and S3a) into pMIR-RNL-TK dual luciferase re-
porter plasmid (33). The pMIR-ZFP36 3′UTR plasmid was
carried on from a former publication (34). Mutagenesis of
miR-155-5p binding sites was conducted by overlap exten-
sion PCRs (35) (Supplementary Table S3b).

The reporter constructs were then tested with an auto-
mated liquid handling system based dual luciferase reporter
assay. HEK293T cells were seeded to a count of 2.4–2.6 ×
104 cells/ well in 96-well plates using the liquid handling sys-
tem epMotion 5075 (Eppendorf, Hamburg, Germany). The
following day, cells were transfected with 200 ng of empty
pSG5 (Agilent Technologies Inc., CA, USA) or pSG5-miR-
155 expression plasmid, in combination with either 50 ng
3′-UTR reporter construct or empty pMIR-RNL-TK re-
porter plasmid by the liquid handling system. The pSG5-
miR-155 plasmid was kindly provided and former described
by Grässer et al. (36). Transfection was performed following
the protocol of Polyfect™ transfection reagent (Qiagen N.V.,
Hilden, Germany). Cells were lysed 48 h after transfection,
using the liquid handling system and cell lysates were pre-
pared according the protocol of Promega Dual Luciferase®

Reporter Assay System (Mannheim, Germany). Lumines-
cence was measured using a GlowMax navigator microplate
luminometer (Promega, Madison, USA). Firefly luciferase
activity was standardized by constitutively expressed renilla
luciferase (pMIR-RNL-TK encoded) and by relative lu-
ciferase activity of the respective 3′UTR construct without
an ectopic miR-155 expression (empty pSG5 vector). Re-
sults were statistically evaluated in comparison to the empty
reporter plasmid in combination with ectopic miR-155 ex-
pression by unpaired t testing (two-side), assuming a nor-
mal distribution of the data. P-values were adjusted for mul-
tiple comparisons by the Benjamini and Hochberg proce-
dure (24). A positive control was carried out for all mea-
surements by testing a plasmid containing the FOS 3′UTR;
(Chr.14: 75 281 425–75 281 901), which was described as a
target of miR-155 by Dunand-Sauthier et al. (37). Further
information about the results of empty reporter control as
well as positive control measurements is included within the
supplement (Supplementary Figure S1).

Analysis of miRNA−Target interaction networks

MiRNA-Target interaction networks were generated by
miRTargetLink (38). To this end, we used the ‘Search by mi-
croRNA’ function of the tool with a strong evidence type
for the experimentally validated target interactions. The
function of shared target genes, was determined by Gene-
Trail2 enrichment analysis (39), choosing the top 5 results
of the category ‘Gene Ontology (GO): Biological Process’

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/index.html
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sorted by hits (Over-representation analysis, FDR adjust-
ment (40)).

RESULTS

Quality control of time-resolved RNA profiling data

To determine RNA expression profiles upon CD4+ T cells
activation, we isolated CD4+ T cells from the peripheral
blood of two young adult female donors (Donor 1 and
donor 2). Complete blood counts of the two donors ver-
ified that red and white blood cell content, hemoglobin,
and hematocrit values were within healthy reference ranges
(41,42). Flow cytometric determination of CD4+ surface
expression on the isolated cells of both donors showed high
purity of CD4+ T cells of 95.0 % and 83.7 % for donor1 and
donor 2, respectively (Supplementary Figure S2a). Freshly
isolated T cells were in vitro activated by bead coupled an-
tibodies. To allow a time-resolved RNA expression profil-
ing, we collected samples at intervals of 2 h from 0 h-24 h.
Harvesting the cells form three separate wells for each time
point and each donor resulted in a collective of 78 sam-
ples (Schematic Figure 1A). A high RNA integrity was con-
firmed by RNA integrity numbers ranging from 8.2 to 10.0.
Total RNA yields were within a range of 130–540 ng and
showed a slight increase at the later time points (Figure 1B).
Analysis of time-resolved mRNA profiles (Figure 1C) con-
firmed T cell activation by significant increases in related
pathways. An increased CD28 mRNA expression upon T-
cell activation as compared to the inactive cells (0 h) argues
against an in vitro aging. Likewise, the significant changes
of genes involved in the mitotic cell cycle, preferentially at
the later time points of the 24 h analysis, speak against this
effect (43,44) (Supplementary Figure S2b and c).

Detection of discrete time-resolved miRNA expression pat-
terns

In total, 815 miRNAs were detected by miRNA specific
time course analyses. By comparing the maximal and mini-
mal expression of each miRNA during the 24 h time course,
we found 140 significantly changed miRNAs for donor 1
and 231 miRNAs for donor 2 with 73 miRNAs found for
both donors. Out of these, there were 39 miRNAs with me-
dian log2 fold changes of at least 1.5 for the two donors.
We considered these miRNAs as the most promising can-
didates relevant for the regulation of early CD4+ T cell ac-
tivation (Supplementary Table S4; Figure 2A). To test the
statistical significance of the concordance between the de-
tected miRNA expression patterns, we calculated how high
the probability has to be to obtain 39 or more common
miRNAs, when drawing the significantly changed miRNAs
for each donor independently and at random (without re-
placements). The results of this hypergeometric distribu-
tion analysis verified a highly significant overlap of 39 (P
= 1.46e−41).

Comparing the time-resolved log2 expression data of
these miRNA candidates revealed a very high concordance
between the three independently activated samples at each
time point and also between the two donors. When donor-
wise plotting the log2 expression data of the replicates for
the complete time course, the slopes of regression lines were

in a range of 0.9988–1.0019 and coefficients of determina-
tion (R2) were between 0.9934–0.9978 (Figure 2B). Corre-
lating the median log2 expression data between both donors
resulted in a regression line slope of 0.999 and a R2 of
0.9921 (Figure 2B). This consistency of time-resolved ex-
pression courses allowed to group the 39 miRNAs into dis-
tinct classes, characterized by a similarity of time-resolved
miRNA changes. Initial clusters of highly similar miRNAs
were determined by using a graph-based clustering algo-
rithm based on the ILP formulation by Grötschel and Wak-
abayashi (25). These clusters were then refined using stan-
dard hierarchical clustering with Ward’s minimum variance
method (26). The clustering analyses resulted in the detec-
tion of 11 distinct classes of time-resolved expression pat-
terns (Figure 2C and Supplementary Figure S3). The largest
class (class 1) contained 10 miRNAs that were character-
ized by steady and moderately decreasing expression lev-
els. The second largest class (class 4) vice versa contained
eight miRNAs with steady and moderately increasing ex-
pression levels. Four miRNAs (miR-223-3p, miR-155-5p,
miR-132-3p and miR-21-3p), however, showed unique ex-
pression courses and were therefore grouped into separate
classes, each (classes 2, 9, 10 and 11). Out of all miRNAs,
miR-155-5p yielded the most prominent expressional in-
crease over time of all miRNAs. We found steady increases
or decreases of miRNAs as well as expression curves with a
plateau like course. None of the expression patterns showed
an alternating course with a change of increasing and de-
creasing expression levels.

MiRNAs of the same family often showed similar expres-
sion patterns, e.g. the miR-15 family members miR-15a-5p
and miR-15b-5p in class 1. Likewise, miRNAs with a differ-
ent strand bias (45) also showed similar expression patterns,
e.g. the non-star strands of miR-17 and miR-18a were con-
tained in class 3 and star strands of miR-155 and miR-29b-
1 in class 8. The 3p- and 5p-strands of the same miRNA
duplex were frequently found in different classes, e.g. miR-
21-5p in class 4 and -3p in class 11.

Validation of time-resolved miRNA expression patterns

To confirm the validity of the time-resolved miRNA expres-
sion patterns, the time-course experiments were reproduced
with cells that were isolated from four additional age and
gender matched donors (donor 3, 4, 5 and 6). Time-course
samples were collected at time-points 0, 2, 4, 8, 12 and 24 h
after activation. Since the 0 h RNA sample of donor 6 was
lost during its processing, this sample was replaced by RNA
that was extracted from a cyro-conserved aliquot of the cor-
responding non-activated cells. To control for in vitro ag-
ing during the 24 h time period, we included non-activated
cells, that were analyzed after 24 h. RNA integrity was con-
firmed by RNA integrity numbers ranging from 8.6 to 9.6.
Time-resolved miRNA expression patterns were analyzed
by TaqMan assays for eight miRNAs that were representa-
tive for different expressional ranges and shapes of expres-
sion courses.

We found a striking similarity between the results of
donor 2, which was also tested in the initial experiment,
and the four additional donors. Both, the �Cq ranges and
the shapes of the expression curves of donor 2, were con-
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Figure 1. Time-resolved RNA profiling within 24 h of CD4+ T cell activation. (A) Schematic overview on the experimental setup. Peripheral CD4+ T cells
were isolated from the blood of two healthy, age and gender matched donors. The cells were in vitro activated by antibody-coupled beads. RNA samples
were collected from three independently activated samples per time point and donor at intervals of 2 h and over a total time period of 24 h (n = 78 samples).
Expression courses of miRNAs and mRNAs were determined by microarray-based profiling. (B) The total RNA yield of each time-course sample is shown
for each time point. (C) T cell activation pathways (GO terms) were significantly upregulated, comparing the time-resolved mRNA expression data after
T-cell activation to the expression values at 0 h (P-values adjusted by Benjamini−Hochberg). At each time point, three samples were analyzed for each
donor.
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Figure 2. Overview on the detected miRNA expression changes within early CD4+ T cell activation. (A) Overview on the number of miRNAs that were
detected by time-resolved expression profiling. Significantly changed miRNAs were identified for each donor. Out of these, 39 miRNAs showed a median
fold change larger 1.5 in both donors and were defined as potential candidates for the general regulation of early T cell activation signaling. (B) The
identified 39 miRNA candidates showed a high correlation for a donor-wise comparison between the time-resolved miRNA expression data (log2) of the
three separate T cell activation reactions per time point (denoted as A, B and C) and for the comparison between the median results of the two donors (n
= 507 comparisons each). Regression equations and coefficients (R2) are indicated. (C) Grouping of the 39 miRNAs into classes of similar time-resolved
expression patterns The analysis was based on the median result of all RNA samples from donor 1 and 2 (n = 6) per time point. Clusters were calculated
using the ILP formulation by Grötschel and Wakabayashi in combination with a hierarchical clustering (B and A). The red line indicates the cut off, used
to create the final clustering. The heatmap (C) shows scaled log2 expression values for each miRNA with the resulting classes of time-resolved expression
patterns (D).
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firmed by the results of the donors 3–6 (Figure 3). The RNA
sample derived from the cryo-conserved cells (donor 6, 0 h),
however, revealed some variance in �Cq, which may be due
to the storage process. All of the analyzed miRNAs showed
significant expressional changes over time for the additional
4 donors, supporting the general involvement of these miR-
NAs in the regulation of early human CD4+ T cell activa-
tion. The non-activated control cells showed no significant
miRNA expression changes, with exception of miR-26a-5p
that showed a slight change, which was, however, oppositely
from the change found in activated cells.

Relative quantification of miRNA expression changes in con-
text with T cell activation

We next quantified the miRNA changes observed during
the time course. Therefore, we selected 5 miRNAs, each
with a different fold change over the 24 h period. MiR-
30c-5p, miR-132-3p, miR-155-5p and miR-221-3p were sig-
nificantly changed while miR-182-5p stayed largely un-
changed. Different amounts of RNA oligonucleotides, cor-
responding to the mature miRNA sequences, were pooled
and spiked-in to a cellular background RNA from inac-
tive CD4+ T cells (RIN: 7.8). The resulting samples were
analyzed by microarrays. Background RNA without the
addition of any oligonucleotides was analyzed in a sepa-
rate array reaction and utilized to subsequently normalize
the results of the spike-in reactions (Supplementary Fig-
ure S4). The normalized array signals were then related to
the corresponding amounts of accessory miRNA oligonu-
cleotides. We obtained standard curves with regression co-
efficients (R2) between 0.9952 and 0.9997 (Supplementary
Figure S5a−e). To ensure that the standard curves could
be applied to time-resolved miRNA data, the background
RNA signaling of the calibration array was compared to
the array signals of the time course samples (0 h). The re-
sults were in good agreement with less than 20 % difference
between the samples of the calibration assay and the time
course analysis (Supplementary Figure S5f).

Applying the calibration equations to time-resolved data
(microarray datasets), the miRNA expression changes
(molecules/cell) were calculated relative to their expression
at time point 0 h (inactive cell). Resulting amounts of all
miRNA changes were within the calibrated range. Accord-
ing changes in molecule numbers were determined based on
the total yield of isolated RNA and the assumption that the
initial cell count stayed unchanged. As shown in Figure 4,
the median decrease of miR-30c-5p was between 13 and 17
molecules/cell after 24 h for donor 2 and donor 1, respec-
tively. For miR-132-3p the expression changes in the period
of 2–24 h, were within a median range of 4–7 molecules/cell
in donor 1 and 4–9 molecules/cell in donor 2 samples. MiR-
155-5p increased with a high rate of ∼60 molecules/h af-
ter the initial 2 h (Supplementary Figure S5g), resulting
in a total increase of up to 1300 and 1357 molecules/cell
(donors 1 and 2). MiR-182-5p showed almost no variability
during the time course of activation with median changes
in molecules per cell between 1 and −1. For miR-221-3p
there were no median changes for donor 1 and minimal
changes for donor 2 (0–1 molecules/cell) during the first
4 h. Over the entire time course, there was a median increase

of 2 and 6 molecules/cell in donor 1 and donor 2, respec-
tively. The results of the quantification were validated by a
TaqMan assay based quantification (Supplementary Figure
S6a-c). The TaqMan assay confirmed the relative changes
found by the array analysis for miR-132-3p, miR-155-5p
and miR-221-3p (Supplementary Figure S6d−f). In sum-
mary, we were able to quantify miRNA expression changes
relative to the inactive cell state by microarray calibration.

Time-resolved absolute miRNA abundances in context with
T cell activation

To quantify the absolute expression status of all detected
miRNAs, we repeated the array calibration assay using a
viral background RNA (MS2 bacteriophage carrier RNA)
that had only a minor impact on the calibration curves.
Upon hybridization, we determined the averaged signals re-
lated to specific amounts of the various spike-in miRNAs.
The resulting average calibration curve (y = 0.02301 x +
(4.613 × 107) x2) assigned microarray signals to the corre-
sponding miRNA amounts [amol] (Supplementary Figure
S7a).

We next tested the performance of the calibration curve
by using different miRNA oligonucleotide spike-ins. The
employed spike-in amounts of miR-15a-5p, miR-17-5p,
miR-150–5p and miR-223-3p corresponded on average to
the amounts calculated by the standard curve (Supplemen-
tary Figure S7b). These results confirm the general ap-
plicability of standard curve to quantify absolute miRNA
amounts.

MiRNA molecules/cell of the time-resolved miRNA ex-
pression patterns were determined based on the total RNA
yield and the assumption of no change of the initial cell
count. A quantitative overview of all detected miRNAs over
time is given in Supplementary Table S5. For miR-7975 and
miR-7977 the quantified amounts were beyond the range
of the calibration curve. Quantitative data about these two
miRNAs are provided under the assumption that the cali-
bration curve is valid beyond the calibrated range. The re-
sults of our absolute quantification were also in good agree-
ment with the results of the microarray based relative quan-
tification (Supplementary Figure S7c−g).

The total amount of all miRNA molecules/cell showed
an increase from 2.51 × 105 molecules (0 h) to 5.06 × 105

miRNA molecules/cell after 24 h of activation (Figure 5A).
Out of the 815 detected miRNAs we found 78 miRNAs
with expression values of 20–99 molecules/cell and 54 miR-
NAs with expression maximum of ≥100 molecules/cell.
The maximal expression values for most of the remain-
ing miRNAs were <20 molecules/cell during the ob-
served time (Figure 5B). Comparing the values of the 54
highly expressed miRNAs between 0, 12 and 24 h (Fig-
ure 5C), we found 31 miRNAs that were constantly ex-
pressed within the same order of magnitude. In detail, 16
miRNAs stayed at ≥100 molecules/cell throughout that
time course, 7 miRNAs at ≥500 molecules/cell and 8 miR-
NAs at ≥1000 molecules/cell. As for the miRNAs with al-
tered expression levels, we found one miRNA (miR-155-5p)
that increased from a low expression (≤100 molecules) to
≥1000 molecules/cell within 24 h. We found 11 miRNAs
that showed expression changes reaching from low (<100
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Figure 3. Validation of time-resolved miRNA expression patterns by TaqMan assays for independent donors. To confirm the validity of the time-resolved
miRNA expression patterns of the microarray analyses (donors 1 and 2), the time-course experiments were reproduced with cells of four independent
donors (donors 3, 4, 5 and 6). Time-course RNA samples were collected at 0, 2, 4, 8, 12 and 24 h after activation. As control, RNA samples was collected
from non-activated cells after 24 h. Time-resolved miRNA expression patterns were analyzed by TaqMan assays. Donor 2 served as a reference of the
microarray time-courses. A paired t-test was performed, comparing the time points of minimum and maximum expression that were determined based on
the median results of the donors 3–6, assuming a normal distribution of the data.
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Figure 4. Changes of miRNA molecules per cell upon activation of CD4+ T cells. MiRNA expression changes [molecules/cell] related to the 0 h time-
point (non-activated cells) were exemplary determined for selected miRNAs by the application of corresponding microarray calibration curves to the
time-resolved expression data. Results of the represented miRNAs are shown as median (line) of the three separate T cell activation reactions per time
point and donor. The expressional ranges of the three activation reactions are shown for each time point by filled areas.
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Figure 5. Quantification of absolute miRNA molecules per cell in context with CD4+ T cell activation. Absolute miRNA expression [molecules/cell]
was determined for all detected miRNAs by the application of a microarray calibration curve to the time-resolved expression data. The quantitative and
time-resolved miRNA patterns were evaluated based on the median result of all RNA samples from donors 1 and 2 (n = 6 per time point). (A) Total
miRNA expression was determined by the sum of all detected miRNAs at 0 and 24 h after activation (n = 815). (B) The maximum expression of each
miRNA was determined for the total 24 h time frame. (C) The highest expressed miRNAs were compared between the 0, 12 and 24 h time points. The
increase of miR-451a was during 7–8 h after activation and is therefore not represented by the displayed time points.
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molecules/cell) to high expression (≥100 molecules/cell).
Among the highly expressed miRNAs, we found miR-20a-
5p with an expression increase by two orders of magnitude.
We also found 11 highly expressed miRNAs that changed
their expression by one order of magnitude.

Identification of miR-155 regulators

Due to its prominent expression changes amongst the de-
tected miRNAs and its pivotal role for T cell activation ca-
pability (46), we chose miR-155-5p to further capture its
regulatory network in context with T cell activation. We
first analyzed transcription factors (TFs) that could be in-
volved in the upstream regulation of miR-155. We iden-
tified 80 potential regulators by the in silico tool Regula-
torTrail (28). We then condensed the set of TFs by con-
sidering only genes that showed increased expression im-
mediately after the CD4+ T cell activation, i.e. genes with
an absolute log2-fold-change of at least 1 between the first
time point (0 h) and the three consecutive time points (2,
4 or 6 h) in both donors. This resulted in 24 potential reg-
ulators of miR-155. We next measured the association be-
tween these TFs and miR-155-5p by calculating different
distance correlations (47): (i) between our mRNA data of
the MIR155HG and all potential regulators, (ii) between the
expression values of miR-155-5p in our miRNA data set
and corresponding time points of all potential regulators
in the mRNA data set, and (iii) between the GTEx tissue
atlas expression data of MIR155HG and all potential reg-
ulators (48). An overview of all distance correlation mea-
surements between the TFs and miR-155 is given in Sup-
plementary Table S6. Figure 6A shows the top 10 regula-
tors based on the average distance correlation of the three
comparisons. The average distance correlation indicated In-
terferon Regulatory Factor 4 (IRF4) as a promising candi-
date to regulate miR-155, a finding that is consistent with
previous reports on IRF4 binding to regulatory regions of
the encoding MIR155HG gene (49). The role of IRF4 as a
central regulator of miR-155 was further supported by our
finding that SPI1 and BATF were also amongst the top 10
regulators of miR-155. Since several binding motifs (EICE,
ISRE, and AICE) have been described for IRF4 homod-
imers and its heterodimer complexes with SPI1 and BATF
(29) (see Figure 6B), we performed a sequence analysis and
found all three motifs in the upstream enhancer region of
the MIR155HG gene. We additionally found the ISRE mo-
tif in the promotor region of MIR155HG, which indicates
that IRF4 homodimers might be the predominant regula-
tor complex. This complex primarily forms, when IRF4 is
highly abundant (50). The time course expression data ver-
ified a high increase of IRF4 mRNA with a plateau ap-
proached after 4 h of T cell activation and a consecutive ex-
pressional increase of MIR155HG gene (pre-miR-155) ex-
pression with a plateau approached after 6 h (Figure 6c).

We next analyzed the GTEx tissue atlas, which sum-
marizes expressional datasets of different tissues (48) and
found a dependency between the expression of IRF4 and
the expression of miR-155, i.e. increased expression values
of miR-155-5p were found almost exclusively within a dis-
crete expression range of IRF4 (Figure 6d). Overall, the in
silico analyses of time-resolved expression data highlight

a central role of IRF4 and its complexes with SPI1 and
BATF for the transcriptional regulation of miR-155 in con-
text with T cell activation.

Identification of miR-155-5p target genes

To further analyze the miR-155-5p regulatory network in
context of T cell activation, we expanded our analyses to
the downstream effects of miR-155-5p. For miRNA-target
identification, we performed in silico prediction of miR-155-
5p targets by miRWalk 2.0, which combines the information
of 13 independent databases (32). This analysis identified 42
554 putative miR-155-5p−target interactions. To condense
the number of potential targets, we limited our analysis to
targets that were identified by at least five databases (5305
targets). As the next selection criterion, we utilized the time-
resolved mRNA expression data. In detail, we chose targets
with mRNA expression levels inversely correlated to miR-
155-5p with Pearson´s and/or Spearman´s correlation coef-
ficients of ≤−0.8 in at least one donor. From the remaining
535 genes, we exemplarily selected 19 putative targets show-
ing either strong, average and less pronounced mRNA fold
decreases and different expression ranges (Supplementary
Table S7; Figure 7A).

Twenty 3′UTR sequences of these potential targets were
cloned into pMIR-RNL-TK reporter plasmid to simulta-
neously test them in combination with miR-155 overex-
pression by dual luciferase reporter assay. The 3′UTR of
KDM5B was subdivided into two constructs, due to its
length and two miR-155 binding sites. The results con-
firmed the functional miR-155-5p binding for 17 of the 19
tested genes (Figure 7B), which corresponds to a valida-
tion rate of 89.47 %. Only RXRA and RASA3 showed no
significant changes in relative luciferase activity. Compared
to empty reporter control, a significantly decreased relative
luciferase activity was detected upon miR-155 overexpres-
sion for 3′UTR reporter constructs of ADD3, CYP2U1,
DDX17, EZH1, HERC3, IFT80, JMY, KDM5B, LAT2,
LDLRAP1, S100B, SH3BP4, SORL1, STARD8, TADA2B,
TAF7 and ZFP36. Out of these, ADD3, LAT2, S100B and
STARD8 were chosen for the validation of the results. We
mutated the putative miR-155 binding sites and performed
comparative luciferase assays with both the wild type and
corresponding mutated reporter constructs (Figure 7C). By
this mutation the significant effect of an ectopic miR-155
expression on relative luciferase activity was reverted for all
four targets, confirming the effects on wild type constructs
of being based on miR-155 binding.

Concerning the functions of the identified miR-155 target
genes, we performed an over-representation analysis (FDR
adjusted (40)) using the online pathway enrichment analysis
tool Genetrail 3.0 (27). Six out of the 17 identified targets
(DDX17, EZH1, JMY, KDM5B, TADA2B, TAF7) were
significantly enriched in the GO molecular function term
‘transcription coregulator activity’ (P = 6.89E−04). Four
of them (DDX17, JMY, TADA2B, TAF7) were also signifi-
cantly enriched in the term ‘transcription coactivator activ-
ity’ (P = 9.52E−03).

Literature investigation of further identified targets (Ta-
ble 1) highlight their implication in other basic cellular pro-
cesses, such as the regulation of endocytosis, cytoskeleton
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Figure 6. Potential upstream regulators of miR-155 in context with T cell activation. (A) Top 10 list of potential regulators of MIR155HG gene sorted
by their mean distance correlation on all investigated data sets. (B) Network of miR-155 and its potential upstream regulators IRF4, SPI1, BATF and
annotation of corresponding binding motifs of their complexes within the regulatory regions of MIR155HG gene. (C) Time-resolved expression patterns
(Median results of the mRNA data) of IRF4 and pre-miR-155 (MIR155HG) within 24 h of CD4+ T cell activation. (D) Scatter plot between the expression
(TPM: transcripts per million) of IRF4 and MIR155HG in the GTEx data set.

and subcellular localization (LDLRAP1, SH3BP4, SORL1
and STARD8), RNA and protein degradation (HERC3
and ZFP36), calcium signaling (ADD3, S100B), and the
general modulation of immune cell signaling (CYP2U1 and
LAT2). IFT80 has originally been described as a flagellar
transport protein in ciliated cells (51,52). Ciliary transport
processes have been implicated in the process of T cell acti-
vation (53).

Identification of potential cooperative miRNA pairs

Since the identification of cooperative miRNA pairs is a
central request of current miRNA research (72), we uti-
lized the absolute miRNA expression data (Supplemen-
tary Table S5) in context with miRNA-target networks to
highlight presumable miRNA cooperativity. Amongst the
former defined miRNA candidates (see also Figure 2), we

considered miRNAs with high abundance changes of >20
molecules/cell. We obtained a list of 23 miRNAs, including
15 miRNAs with increasing and 8 miRNAs with decreasing
expression changes (Figure 8A). Considering only the miR-
NAs with increasing expression changes, we performed an
interaction network analysis by miRTargetLink (38). Since
miRTargetLink analysis is based on the availability of data
of formerly identified miRNA targets, the analysis did not
include miR-1260a, miR-4286, miR-1273g-3p, miR-6085,
miR-21–3p, miR-29b-1–5p. We identified multiple shared
targets common to both miR-17–5p and miR-20a-5p (Fig-
ure 8B). These 31 targets are involved in central cellular
processes such as cell cycle regulation, Notch signaling and
cell maturation (Figure 8C). Likewise, common target genes
were shared by miR-155-5p and miR-21-5p. The eight tar-
gets are mostly involved in the regulation of immune cell
activation pathways (Figure 8D). Considering the miRNAs
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Figure 7. MiR-155-5p and its target genes. (A) Overview on the time-resolved expression patterns of miR-155-5p and of its potential target genes (mRNA).
Time courses (log2 expression) are donor-wise represented as median result of the three activation reactions per time point. Putative targets were selected
based on an in silico prediction and an inverse correlation between their time-resolved mRNA profile and the corresponding miR-155-5p expression. (B)
The interactions of miR-155-5p with its putative target genes were analyzed by dual luciferase assays. 3′UTR sequences of putative target genes were
cloned into luciferase reporter plasmids (pMIR-RNL-TK) and tested in presence of miR-155 expression plasmid (pSG5-miR-155) or (empty) pSG5
control, respectively. The KDM5B 3′UTR was subdivided into two reporter constructs. Firefly and Renilla luciferase activities were measured 48 h after
transfection of HEK293T cells. Results were standardized based on the transfection efficiency (determined by Renilla luciferase activity) and the basic
activity of the 3′UTR-plasmid (empty pSG5 co-transfection). Results are shown in relation to the activity of an empty reporter control (pMIR without
3′UTR with miR-155 co-transfection ≡ 100%) as the average (line) with range (bars) of three independent experiments (conducted in duplicates). Statistical
evaluation was performed in comparison to empty reporter control. P-values were adjusted by Benjamini–Hochberg. (C) For the exemplary validation of
the luciferase assays, putative miR-155 binding sites in the 3′UTRs of four positively tested target genes were mutated and tested in comparative luciferase
assays with both the wild type and corresponding mutated reporter constructs.
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Table 1. Overview on the functions of miR-155-5p target genes that were identified by dual luciferase reporter assays

Putative target gene Function Reference

ADD3 Membrane skeleton protein; regulator of spectrin-actin network; interaction with
proteinkinases and Ca2+ binding calmodulin

(54)

CYP2U1 Cytochrome P450 family member; suggested modulation of signal transduction in immune
cells

(55,56)

DDX17 RNA helicase; broad impact on RNA metabolism (57)
EZH1 Component of the Polycomb repressive complex 2; direct negative regulator of transcription (58)
HERC3 Ubiquitin ligase; regulator of NF-�B signaling (59)
IFT80 Flagellar transport protein (51,52)
JMY Transcriptional co-activator in context with p53 (60)
KDM5B Histone demethylase; negative regulator of transcription (61)
LAT2 Transmembrane adaptor; fine regulator of lymphocyte activation (62)
LDLRAP1 Low density lipoprotein receptor adaptor protein; regulator of endocytosis and subcellular

localization
(63)

S100B Calcium binding protein of the S100 family; calcium induced signal transduction (64)
SH3BP4 SH3 domain binding protein; regulator of clathrin endocytosis (65)
SORL1 Sortilin related receptor; regulator of protein subcellular localisation (66)
STARD8 Rho GTPase activating protein; negative regulator of Rho-ROCK signaling (67,68)
TADA2B Transcriptional adaptor protein; transcriptional coactivator (69)
TAF7 TATA-box binding protein associated factor; regulator of transcriptional initiation (70)
ZFP36 RNA-binding protein; inductor of targeted mRNA degradation (71)

with decreasing expression changes, miRTargetLink identi-
fied nine shared targets for let-7b-5p and miR-26a-5p. These
targets are involved in the regulation of cellular senescence
and the negative regulation of metabolism and translation
(Figure 8e and f).

DISCUSSION

MicroRNAs play a central role in the regulation of T cell
functions (9,10,73) and the application of miRNAs in im-
mune therapeutics is envisaged (15–17). We performed time-
resolved RNA profiling during the initial 24 h of human
CD4+ T cell activation to address imminent challenges in
T cell related miRNA research, including the identification
of miRNA candidates for future immune manipulation ap-
proaches (17,74), the specification of common profiles in
miRNA processing (75) and the characterization of miR-
NAs in context with T cell functionality.

We found 39 miRNAs, which showed consistent and sig-
nificant changes for both of the initially tested donors. The
time-curves of eight selected miRNAs were reproduced for
four additional donors. These data indicate that the iden-
tified miRNAs are most likely involved in the regulation
of T cell activation and may serve as potent candidates for
T cell manipulation at the early stages of activity. Former
long-term analyses of miRNA expression in mouse and hu-
man reported comparable expressional changes for several
of these miRNAs upon T cell activation (11), supporting
their central involvement in T cell regulation. Grouping of
these miRNAs into classes with similar expression patterns
yielded a surprisingly limited number of time-resolved ex-
pression patterns, considering the large number of theoret-
ically possible time courses. Commonly grouped miRNAs
may therefore share common regulatory mechanisms. This
hypothesis is further supported by the finding that classes
frequently contained miRNAs from the same family or of
the same strand type, e.g. star and non-star strand. The
3p-strand and 5p-strands of the same miRNA duplex fre-
quently showed different expression pattern e.g. have been
grouped into different classes. This difference between 3p-

and 5p-strand of the same miRNA duplex may result from
different miRNA turnover rates (76,77). We found striking
concordance in the ranges and shapes of the time-resolved
miRNA expression patterns. The high degree of consistency
indicates a rather low susceptibility to inter-individual im-
mune variability (78). Since the blood donors shared the
same sex and were nearly of the same age, analyzing CD4+T
cells from elderly, male or diseased donors may yield dif-
ferent miRNA profiles due to differences in immune func-
tionality (79). This has to be taken into account towards a
possible future use of miRNA time-courses related to T cell
activation as biomarker.

Regarding the overall pattern changes, we found that de-
creasing miRNAs showed less pronounced fold changes
than the miRNAs, which increased during T cell activation.
This may be due to the generally long half-lives of miR-
NAs or the speed in processing the precursors and may be
even more evident with prolonged observation time (80–82).
Additionally, miRNA decay may be impacted by the abun-
dance of mRNA targets, which can affect the miRNA sta-
bility either in a positive or a negative way (76,83). In gen-
eral, declining miRNAs may not only be a leftover from the
quiescent T cell state, but may also actively contribute to the
down-regulation of target genes.

MiR-155-5p, which has been extensively described in
context with T cell functionality (46,73), was the most
prominent miRNA within the time-resolved analyses and
it yielded an exceptional abundance increase. Potential up-
stream regulators of miR-155 in the context of T cell acti-
vation are IRF4 together with SPI1 and BATF. The regula-
tory impact of IRF4 has also been indicated by former find-
ings showing that IRF4 homodimers are capable to bind
to ISRE motives at the MIR155HG locus preferentially in
context of high IRF4 expression rates as found after T cell
receptor activation (50). In detail, the IRF4 mRNA shows a
high increase within the early hours of T cell activation fol-
lowed by increase in miR-155 expression. IRF4 can form
complexes with SPI1 and BATF, an involvement of which
has been described in context with B lymphocyte activation
(29). It is conceivable that these TF complexes also play a
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Figure 8. MiRNA-Target network analysis of prominently changed miRNA candidates. (A) Based on the quantitative and time-resolved miRNA patterns,
23 of the miRNA candidates showed abundance changes of more than 20 molecules/cell. (B) A miRNA-Target network was determined for those of the
23 miRNAs with increasing expression levels. (C, D) Multiple shared targets were detected between miR-17–5p and miR-20a-5p and between miR-21-5p
and miR-155-5p. Major functional involvements of the shared target genes are indicated. (B) A miRNA-Target network was determined for those of the 23
miRNAs with decreasing expression levels. (F) Multiple shared targets were detected between let-7b-5p and miR-26a-5p. Major functional involvements
of the shared target genes are indicated. (The network images in B−F were exported from miRTargetLink (38).)
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role in context of the activation of T lymphocytes. There is
also evidence for a regulation of SPI1 by miR-155 (84) and
a feedback loop between SPI1 and miR-155 (85).

While most studies of miRNA functions are based
on analyses at supraphysiological miRNA concentra-
tions (86), we quantitatively analyzed stimulus induced
miRNA abundance changes. Knowing the magnitude
(∼103 molecules/cell) and the rate of expressional changes,
which was e.g. for miR-155 in the range of about
60 molecules/h helps to advance future miRNA manipula-
tion approaches and miRNA target analyses. Our quantita-
tive time-course data provide a physiological reference that
can help to avoid toxicity and off-target effects, which may
occur due to supraphysiological doses in miRNA transfec-
tion (86).

Overall, the quantified range of total miRNA con-
tent is consistent with former quantitative analyses on
different cell types and organisms. These studies report
a total miRNA content within the magnitude of ∼105

molecules/cell (87–89). Likewise, the overall range of the
most abundant miRNAs (∼103–105 molecules/cell) is ac-
cording with a former quantification approach of human
cell lines (90). Moreover, the finding of only a limited num-
ber of highly abundant miRNAs within specific cell types is
consistent with the literature (88,91).

Formerly, a threshold in miRNA expression level has
been suggested for a sufficient target regulation (92). Con-
sistent with this hypothesis, we assume that those miRNAs,
which become highly abundant upon the activation stimu-
lus play a prominent role within the miRNA regulated net-
works of early T cell activation. The list of miRNA candi-
dates for manipulating immune cells was condensed to 23
candidates by using the quantification data. Notwithstand-
ing the dominant role of highly changed miRNAs, miR-
NAs with a rather constant expression and low or moder-
ate abundance changes may also play a role in the overall
miRNA target network via high target affinities and altered
miRNA-target ratios (81).

There is evidence for a repeated activity of single miRNA
molecules. This mechanism may further increase the effi-
ciency of miRNAs to regulate a wide spectrum of targets
via multiple rounds of targeting (83,93). In addition, miR-
NAs may exhibit cooperative functions, which could further
increase their effects on specific signaling pathways (94).
By miRNA-target network analysis of miRNAs with high
abundance changes, we found putative miRNA pairs that
share both the basic expression courses as well as multiple
common targets. Amongst the pairs of miRNAs with an in-
creasing expression, we identified miR-17-5p and miR-20a-
5p, which show high homology and also share the same seed
sequence. We cannot exclude a competition for target bind-
ing sites between these two miRNAs (95). There is however
evidence by studies on other cell types, where both miR-
17 and miR-20a promote the cell cycle progression and the
cell proliferation (96,97). For the second miRNAs pair with
increasing expression i.e. miR-21 and miR-155 there is ev-
idence for a cooperative regulation of the ubiquitin con-
jugating enzyme E2K in context with T cell activity (98).
MiR-21 and miR-155 are both involved in the regulation of
IFN-gamma signaling and the differentiation of specific T
cell subtypes (99,100). Other targets of miR-21 and miR-

155 suggest that the miRNA pair could balance the activa-
tion signaling (101,102). The basic functions of the miR-155
target genes that we identified in our study further support
the central role of this miRNA for the modulation of the T
cell signaling.

Among the decreasing miRNAs, we identified let-7b-5p
and miR-26a-5p, which possibly act in a cooperative man-
ner to inhibit cell cycle progression and metabolic processes
(103–106). The down-regulation of these two miRNAs in
context with T cell stimulation qualifies them as promising
candidates for inhibitory T cell manipulation approaches.

Overall, the combination of our time-resolved expression
analysis with an absolute quantification of miRNA expres-
sion changes offers new opportunities to unravel miRNA
regulatory networks and highlights the functional domi-
nance of specific miRNAs within the early T cell activation.
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