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Abstract: One of the consequences of the increased level of oxidative stress that often characterizes
the cancer cell environment is the abnormal generation of lipid peroxidation products, above all
4-hydroxynonenal. The contribution of this aldehyde to the pathogenesis of several diseases is well
known. In this study, we characterized the ADF astrocytoma cell line both in terms of its pattern
of enzymatic activities devoted to 4-hydroxynonenal removal and its resistance to oxidative stress
induced by exposure to hydrogen peroxide. A comparison with lens cell lines, which, due to the
ocular function, are normally exposed to oxidative conditions is reported. Our results show that,
overall, ADF cells counteract oxidative stress conditions better than normal cells, thus confirming
the redox adaptation demonstrated for several cancer cells. In addition, the markedly high level
of NADP+-dependent dehydrogenase activity acting on the glutahionyl-hydroxynonanal adduct
detected in ADF cells may promote, at the same time, the detoxification and recovery of cell-reducing
power in these cells.
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1. Introduction

Cancer cells often have to deal with the generation of reactive oxygen species (ROS) and an altered
redox status [1,2]. At the same time, an increased antioxidant capacity often enables cancer cells to
adapt to oxidative stress. [3,4]. Thus, cancer cells can easily survive under oxidative stress conditions,
and this redox adaptation increases their resistance to anticancer and radiation therapies [5–7].

The high rate of oxygen consumption, the high level of lipids, and the relatively low level
of enzymes involved in the antioxidant defense make the central nervous system particularly
susceptible to oxidative stress [8]. In fact, evidence of a marked increase in lipid peroxidation
processes has been reported in patients with glioblastoma [9], the most common type of brain tumor.
In addition, isocitrate dehydrogenase (IDH) mutations have been frequently observed in glioma
cells [10]. ROS accumulation, disruption of the NADP/NADPH balance and abnormally high reduced
glutathione (GSH)/glutathione disulfide (GSSG) ratios have been observed in several glioma cells
and correlated with IDH mutations [11–13]. Astrocytoma is characterized by a high resistance
to radiotherapy and chemotherapy treatments [14]. The alkylating agent temozolomide (TMZ) is
currently used in standard chemotherapeutic treatment in addition to radiotherapy [15,16]. However,
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the sensitivity of glioblastomas to TMZ is variable and several mechanisms of drug resistance have been
hypothesized, linked to different DNA repair pathways [17]. Recently, a role for oxidative stress and
aldehyde dehydrogenase ALDH1A3 in the TMZ-induced therapeutic effects has been suggested [18,19].
It was shown that ALDH1A3, through its ability to detoxify lipid peroxidation products, confers to
glioblastoma cells chemoresistance against TMZ.

Among lipid peroxidation products, 4-hydroxy-2-nonenal (HNE) is one of the most abundant and
is considered a classical marker of oxidative stress in cells [20]. Due to its chemical reactivity, HNE
easily covalently reacts with low molecular weight compounds, such as GSH, and with proteins and
DNA, thus differentially affecting, depending on its intracellular concentration, cell cycle regulation
towards proliferation or apoptosis [21].

The main metabolic pathways of HNE involve both NAD(P)-dependent oxidoreductases and
GSH conjugation [20].

A set of specific enzymes presenting a high affinity for HNE are able to metabolize the free aldehyde
(i.e., aldo-keto reductases AKR1B1 and AKR1B10 and aldehyde dehydrogenases) [22–27]. However, HNE
is mainly metabolized by direct conjugation with GSH, forming 3-glutathionyl-4-hydroxynonanal
(GSHNE) [28]. In addition to its possible occurrence through the chemical reactivity of the reagents,
GSHNE formation is enhanced by the action of glutathione S-transferases (GSTs). Of the various GST
isoforms, GSTA4 presents the highest HNE affinity [29].

In turn, the metabolic fate of GSHNE takes place both through an oxidative and a reductive pathway.
Recent evidence indicates that GSHNE may undergo oxidation, at the level of its hemiacetal hydroxyl
group, through an efficient NADP+-dependent reaction catalysed by carbonyl reductase 1 (CBR1),
leading to the corresponding 3-glutathionyl-nonanoic-γ-lactone (GSHNA-γ-lactone) [30]. On the other
hand, GSHNE reduction, which is primarily driven by aldose reductase (AKR1B1) [26], generates
glutathione-1,4-dihydroxynonane (GSDHN), a signalling molecule involved in the inflammation
response through the NF-κB activation pathway. In addition, CBR1 can reduce GSHNE to GSDHN,
thus contributing to the inflammatory signalling action associated with GSHNE reduction [31].

In this work, we report the occurrence in the human ADF astrocytoma cell line of a substantial
enzymatic pattern that intervenes in HNE detoxification and is robust in oxidative stress conditions.

2. Materials and Methods

2.1. Materials

Cell culture media, fetal bovine serum (FBS), penicillin/streptomycin solution, gentamicin,
and glutamine were purchased from Euroclone (Pero, Italy). HNE was synthesized as previously
described [30]. GSHNE was synthesized as described [32]. NADP+, NAD+, NADPH and NADH
were from Carbosynth (Compton, England). GSH, GSSG, bovine serum albumin, D,L-glyceraldehyde
(GAL), propanal, 1,1,3,3-tetraetoxipropane (TEP), D,L-dithiothreitol (DTT), 1-(4,5-Dimethylthiazol-2-yl)-
3,5-diphenylformazan (MTT), sorbinil, disulfiram and amphotericin B were from Merck Life Science
(Milan, Italy). Hank’s balanced salt solution (HBSS) composition was: 0.014% (w/v) CaCl2, 0.01%
(w/v) MgSO4, 0.04% (w/v) KCl, 0.006% (w/v) KH2PO4, 0.8% (w/v) NaCl, 0.005% (w/v) Na2HPO4, 0.1%
(w/v) D-glucose. All inorganic chemicals were of reagent grade from BDH (VWR International,
Poole, Dorset, UK).

2.2. Cell Cultures

All the cell lines were cultured at 37 ◦C in a humidified atmosphere in the presence of 5% CO2.
Human astrocytoma ADF cells, established from a primary tumor (Grade IV astrocytoma) [33,34]
were kindly provided by Dr. W. Malorni, Istituto Superiore di Sanità, Rome, Italy. Concerning
genetic alteration regarding IDH mutations, ADF were classified, according to WHO, as NOS [35].
ADF cells were cultured in RPMI 1640 medium supplemented with 10% (v/v) FBS, 50 mU/mL
penicillin/streptomycin and 2 mM glutamine. The human lens epithelial cells (HLEC) line B3,
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was obtained from American Type Culture Collection (Rockville, MD, USA) and cultured in Eagle’s
modified essential medium (MEM) supplemented with 20% (v/v) FBS, 50 mU/mL penicillin/streptomycin
and 2 mM glutamine. Primary cultures of bovine lens epithelial cells (BLEC) were obtained from
the dissection of bovine (Bos taurus) lenses and cultured in RPMI 1640 medium supplemented with
10% (v/v) FBS, 2 mM glutamine, 2.5 mg/mL amphotericin B and 50 mU/mL penicillin/streptomycin.
The experiments were performed on BLEC that did not exceed three passages.

2.3. Cell Viability Assay

MTT assay was performed according to Mosman with minor modifications [36]. Briefly, an MTT
solution (0.5 mg/mL final concentration) was added to the cells, which were incubated at 37 ◦C for 1 h
in the case of the ADF cells and BLEC, or 30 min in the case of HLEC. Then, for the solubilization of
formazan crystals, an equal volume of a solution of isopropanol containing 0.4 N HCl was added to the
cell medium. Cells were maintained in agitation for 10 min at 37 ◦C. The absorbance of the solutions
was then read at 563 nm with a EL-808 microplate reader (BioTek Instruments, Winooski, VT, USA).

2.4. Oxidative Treatment of Cells

Before the oxidative treatment, BLECs and ADF cells were incubated for 24 h in RPMI 1640
medium containing 2% (v/v) FBS, 50 mU/mL penicillin/streptomycin and 2 mM glutamine, while HLEC
were incubated for 24 h in MEM containing 0.5% FBS (v/v), 50 µg/mL gentamicin and 2 mM glutamine.

Oxidative treatment with H2O2 was applied to ADF cells and BLEC maintained in HBSS
supplemented with 2 mM glutamine, and to HLEC maintained in MEM containing 0.5% FBS (v/v),
50 µg/mL gentamicin and 2mM glutamine.

Measurement of H2O2 concentration was performed as described [37].

2.5. Enzyme Activity Assays

The enzymatic activities described below were measured on cell lysates obtained through
a freezing and thawing protocol, followed by a 10,000 x g centrifugation at 4 ◦C for 30 min,
and subjected to an over-night dialysis (dialysis tubing cut off: 10 kDa) against 10 mM sodium
phosphate buffer pH 7. All the enzymatic activities were determined using a Libra Biochrom (Biochrom
Ltd., Cambourne Cambridge, UK) spectrophotometer.

Glutathione reductase activity was determined at 30 ◦C following the decrease in absorbance
at 340 nm due to the oxidation of 0.2 mM NADPH (ε340 = 6.22 mM−1 cm−1) in a 0.2 M potassium
phosphate pH 7 buffer, in the presence of 10 mM EDTA and 0.5 mM GSSG.

Glutathione peroxidase activity was determined at 37 ◦C following the decrease in absorbance at
340 nm due to the oxidation of 0.2 mM NADPH in a 0.1 M Tris-HCl pH 7 buffer, in the presence of
1.3 U/mL glutathione reductase, 0.5 mM EDTA, 0.2 mM GSH and 0.125 mM H2O2.

Glutathione S-transferase activity was evaluated at 25 ◦C following the increase in absorbance
at 340 nm linked to the formation of the adduct between 1-chloro-2,4-dinitrobenzene (CDNB) and
GSH (ε340 = 9.6 mM−1cm−1). The assay mixture contained 0.1 M potassium phosphate pH 6.5 buffer,
0.6 mM CDNB and 1 mM GSH.

Catalase activity was measured at 25 ◦C following the decrease in absorbance at 240 nm (ε240 = 0.04
mM−1 cm−1) in a reaction mixture containing 0.05 M sodium phosphate pH 7.4 buffer and 10 mM H2O2.

The NADPH-dependent reductase activities were measured at 37 ◦C as described [38], using 5 mM
of GAL or 0.1 mM of either HNE or GSHNE as substrates. The dehydrogenase activities were measured
at 37 ◦C following the increase in absorbance at 340 nm due to the reduction of NAD(P)+. The reaction
mixtures contained 50 mM sodium phosphate buffer pH 8.4, 0.18 mM of either NAD+ or NADP+ and
one of the following substrates: 5 mM GAL, 5 mM propanal, 0.1 mM HNE or 0.1 mM GSHNE.

For all the activities mentioned, one unit of enzyme activity refers to the amount of enzyme that
catalyses the conversion of 1 µmol of substrate/min in the conditions described.
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2.6. Malondialdehyde Determination

Malondialdehyde (MDA) levels were determined by the thiobarbituric acid (TBA) assay according
to [39]. At the end of the treatment, harvested cells were immediately analyzed. Whole lysate was
obtained by ultrasonic treatment in the presence of 0.375 mM butylated hydroxytoluene and 1 mM
EDTA. The TBA solution (1.2 mL), composed of 15% (w/v) trichloroacetic acid, 2% (v/v) acetic acid and
0.375% (w/v) TBA, was added to the sample (0.25 mL). The mixture was placed in a boiling bath for 10 min
and then subjected to a 3000 x g centrifugation at room temperature for 2 min. The fluorescence intensity
of the supernatant obtained was measured with a Jasco FP6500 spectrofluorimeter (Jasco Europe,
Lecco, Italy) with excitation and emission wavelengths of 515 nm and 550 nm, respectively. MDA
content was evaluated referring to a calibration curve obtained using TEP as a standard.

2.7. Other Methods

Reduced, oxidized and total intracellular glutathione levels were measured as previously
described [40]. Protein concentration was determined according to Bradford [41], using a Bio-Rad
(Hercules, CA, USA) protein assay kit with a calibration curve obtained using bovine serum albumin
as the standard. Statistical analysis was performed using one-way ANOVA and Tukey’s post hoc test
carried out with Graphpad 6.0.

3. Results and Discussion

3.1. HNE and GSHNE Detoxification Pathways in ADF Cells Crude Extracts

The incubation of ADF cell crude extracts with HNE and GSHNE in the presence of pyridine
cofactors revealed that reduction took place on both substrates only through NADPH-dependent
reactions. On the contrary, oxidation occurred only on GSHNE, through both NAD+ and
NADP+-dependent reactions. The levels of the enzyme activities involved in the redox transformations
of HNE and GSHNE in ADF cells are reported in Table 1, which also gives the results obtained
on crude extracts of HLEC. These cells, because of the eye function, are constantly exposed to
oxidative stress conditions, as a consequence of the daily exposure to sunlight and atmospheric
oxygen [42–46]. As different eye components, also epithelial lens cells are well equipped with several
antioxidant systems to counteract oxidative stress arising from the environmental exposure [47].
Thus, HLEC (as for BLEC, see below) were used as control non-tumor cells for the comparison
with ADF to evaluate the antioxidant defense capability. The two cell extracts displayed similar
NADPH-dependent activity patterns. In contrast, differences were observed in the GSHNE oxidation
patterns. In fact, the NAD+-dependent dehydrogenase activity on GSHNE measured in ADF
cells was lacking in HLEC. Moreover, the NADP+-dependent oxidative reaction on GSHNE was
at least ten times higher in ADF cells than in HLEC. The specificity of NADPH as a cofactor
for HNE transformation suggests the involvement of aldo-keto reductases (AKRs), pre-eminently
AKR1B1. In fact, there is evidence that in astrocytomas, there is a simultaneous over-expression of
AKR1B1 and under-expression of AKR1B10 [48]. In addition to the activity on HNE, in the ADF cell
extracts, we measured an NADPH-dependent reduction of GAL, a typical AKR1B1 substrate (specific
activity 7.5 ± 1.7 mU/mg).
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Table 1. Levels of pyridine cofactor-dependent oxido/reductase activities acting on 4- hydroxynonenal
(HNE) and glutathionylhydroxynonanal (GSHNE) in cultured ADF cells and human lens epithelial
cells (HLEC).

Reaction Specific Activity (mU/mg)

Substrate Cofactor ADF HLEC

HNE

NAD+

NADP+

NADH
NADPH

n.d.
n.d
n.d.

3.0 ± 0.3

n.d.
n.d.
n.d.

2 ± 0.3

GSHNE

NAD+

NADP+

NADH
NADPH

2.2 ± 0.1
57.0 ± 2.0 ****

n.d.
2.5 ± 0.5

n.d.
5.7 ± 0.3

n.d.
1.5 ± 0.2

n.d. stands for “not detectable”. The values are the mean ± SEM from at least three independent biological repeats.
See Section 2.5 for details on assays conditions. Statistical significance with respect to HLEC: **** p < 0.0001.

When 10 µM sorbinil (a classical AKR1B1 inhibitor) [49] was present in the assay mixture, both this
reduction and the reduction of HNE were inhibited by 82% and 87%, respectively. No other possible
pathway of HNE removal was considered to affect the NADPH-dependent reduction of the aldehyde.
In fact, the α,β-double bond of HNE may undergo reduction catalysed by alkenal/one oxidase
(also known as leucotriene B4 synthase) [50] generating 4-hydroxynonanal. Although this molecule
theoretically has features that are the same as those in an AKR1B1 substrate [51], it is reduced by
purified hAKR1B1 in the presence of NADPH at a rate of even less than 10% of that measured for GAL
reduction (data not shown). This may be because the stabilization of 4-hydroxynonanal as γ-hemiacetal
reduces the availability of the open aldehyde. In addition, 4-hydroxynonanoic acid (4HNA) may also
be generated and further reduced. However, no NADPH-dependent activity was measured in the ADF
extract in the presence of 100 µM 4HNA. Furthermore, given the NAD(P)+-dependent activities present
in the crude extract, we found that 4HNA was not an oxidable substrate. This evidence suggests
that the main pyridine-dependent HNE reductive pathway is linked to a direct NADPH-dependent
transformation. Table 1 highlights the markedly high potential of pyridine cofactor dependent activities
of cell extracts toward GSHNE. This indirectly supports the relevance of a shift in the HNE metabolism
toward the glutathionylated adduct pathway. Comparing ADF and HLEC enzymatic patterns shows
that this metabolic strategy is highly developed in the cancer cell line.

The specific activities related to GSHNE transformation clearly underline the high value of the
NADP+-dependent dehydrogenase activity. In fact, it is approximately 26 times higher than the
corresponding NAD+-dependent dehydrogenase activity on the same substrate, and 23 times higher
than the NADPH-dependent reductase.

Although it may be unwise to univocally ascribe activities detected in crude extracts to specific
enzymes, the NADP+-dependent dehydrogenase activity acting on GSHNE is conceivably related to
CBR1, with the formation of GSHNA-γ-lactone [30].

It is well known that although different aldo-keto reductases (AKRs) are able to reduce the free
aldehyde [27], the only NADPH-dependent activity reported to be able to reduce its glutathionylated
adduct is represented by AKRB1. We tested this association in ADF cells by evaluating the inhibitory
effect on the NADPH-dependent activities acting on GSHNE exerted by 10 µM sorbinil. This effect
accounted for approximately 40% of inhibition. The failure of sorbinil to completely inhibit the
GSHNE reducing activities may be due to the fact that also CBR1, which is insensitive to Sorbinil [52],
may catalyse the NADPH-dependent reduction of GSHNE [30].

The catalytic action of CBR1 on GSHNE generates a disproportionation of the substrate that
produces GSHNA-γ-lactone and GSDHN even in sub saturating conditions of the cofactor [53].
Thus, the HNE removal through glutathionylation may be more efficient than what appears from
the direct measurement of NADPH oxidation in the presence of GSHNE. An NAD+-dependent
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dehydrogenase activity associated with aldehyde dehydrogenases (ALDHs), which is able to act on
GSHNE has already been hypothesised [54]. However, in our tests, the NAD+ dependent oxidation of
GSHNE measured in crude extracts of ADF cells was not affected at all when disulfiram, a classical
inhibitor of ALDHs, was present in the assay at a final concentration of 10 µM. This suggests that
disulfiram-insensitive NAD+-dependent dehydrogenase activities may be involved in the HNE
metabolism. These may include activities acting on oxidizable centres of GSHNE different than
the aldehydic group, and that may generate, besides GSHNA, 3-glutathionyl-4-oxononanal or
GSHNA-γ-lactone.

3.2. Antioxidant Enzymes’ Pattern and Antioxidant Detoxification Ability of Human ADF Cells

ADF cells, in addition to the above described efficiency in the removal of GSHNE through
both reductive and, even more efficiently, oxidative NADP-dependent steps, also appear to be
characterized by an efficient antioxidant/detoxifying enzyme pattern devoted to antagonizing
peroxidative phenomena. Table 2 compares the levels of antioxidant enzymes measured in ADF, HLEC
and BLEC crude extracts.

Table 2. Levels of enzymatic activities involved in antioxidant defense.

Enzyme Activity Specific Activity (mU/mg)

ADF HLEC BLEC

Glutathione reductase 50.7 ± 1.2 (****) (####) 13.7 ± 2.3 14.0 ± 0.98

Glutathione peroxidase 1.4 ± 0.4 1.77 ± 0.16 1.6 ± 0.58

Catalase 5800 ± 238 (****), (####) 1390 ± 142 348 ± 53.1

Glutathione S-transferase 580.0 ± 54.2 (****), (####) 34.7 ± 2.3 24 ± 5.4

The values are the mean ± SEM from at least three independent biological repeats. See Section 2.5 for details on the
assays. Statistical significance of ADF with respect to HLEC (*) and of ADF with respect to bovine lens epithelial
cells (BLEC) (#); **** and #### p < 0.0001.

Except for glutathione peroxidase, whose level was similar in the extracts of the three cell
lines, the other detoxifying enzymes are far more represented in the tumor cells. Thus, glutathione
reductase level in ADF cells is approximately 4-fold higher than those measured in the lens cell
extracts, while catalase was 4- and 16-fold higher in ADF than in HLEC and BLEC, respectively.
For glutathione S-transferase, we found an approximately 17- and 24-fold difference for ADF with
respect to HLEC and BLEC, respectively. Glutathione S-transferase is considered to play a key role
as a catalyst of the glutathionylation of alkenals. This is a crucial step in addressing HNE to its most
relevant detoxification pathway.

The susceptibility of ADF cells to oxidative stress was assessed by measuring, under a prolonged
treatment with hydrogen peroxide, both the ability of H2O2 removal from the medium and the cell
viability by MTT assay (see Section 2.3). Thus, cells in HBSS medium were supplemented with different
concentrations of H2O2 and incubated for 30 min at 37 ◦C. At the end of the incubation, the residual
H2O2 was measured, consumed H2O2 was replenished, and the cells incubated again for 30 min before
a third replenishment/incubation step. Sixty minutes after the last H2O2 supplementation (2 h of overall
incubation), the cell viability was evaluated by MTT assay. The time course of H2O2 consumption as
well as the results of the viability test are reported in Figure 1.
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Figure 1. Treatment of ADF cells with H2O2. (A): removal of H2O2. ADF cells at 70% confluence
(2.2 × 106 cells) were incubated in Hank’s balanced salt solution (HBSS) (7 mL) at 37 ◦C; cells were
supplemented with 50 (gray), 100 (green) or 150 (red) µM H2O2 at the times indicated and the
concentration of the peroxide was measured as described in Section 2.4. (B): Stability of H2O2 in the
free-cell medium. H2O2 at the concentration of 100 µM (gray squares) or 150 µM (red circles) was
incubated at 37 ◦C in a fresh HBSS medium. Blue squares and green circles refer to the incubation of
150µM H2O2 in cell free HBSS medium previously maintained for 60 min at 37 ◦C in the presence of ADF
cells alone or supplemented with 100 µM H2O2, respectively. (C): Viability assay for ADF cells subjected
to oxidative insult by H2O2 treatment. 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay
was performed at the end of the incubation in the presence of the indicated H2O2 concentrations under
the conditions described in Panel (A). All the values are the mean ± SEM of at least three independent
experiments. Significance was evaluated with respect to untreated cells; *** p < 0.001.

The figure highlights the marked ability of ADF cells to detoxify the peroxide. No significant
differences were observed in the rate of H2O2 removal after repeated additions of the oxidant,
which suggests a strong antioxidant capacity (Figure 1A). Given that H2O2 is stable in fresh HBSS
medium or in the cell free medium withdrawn after 60 min of incubation of ADF cells (Figure 1B),
oxidant removal appears to take place following cell permeation, likely exploiting the robust antioxidant
enzyme pattern reported in Table 2.

The MTT assay performed on ADF cells at the end of the oxidative insult confirms the resistance of
this cancer cell line to oxidative stress at least for up to 2 h of incubation with 100 µM H2O2 (Figure 1C).

In order to verify the intracellular impact of the oxidative insult on the activities acting on HNE
and its glutathionyl adduct (Table 1), the levels of these activities were measured at the end of the
most severe oxidative treatment described in Figure 1 (i.e., 150 µM H2O2). The results are reported
in Figure 2. No significant changes were observed for the NADPH-dependent reductase activities
acting on HNE and GSHNE, or for the NAD(P)+-dependent dehydrogenase activities acting on
GSHNE (Figure 2A, B and C). In addition, to evaluate the effect of peroxidative conditions on other
reductase/dehydrogenase activities, different substrates were used (Figure 2D, E and F). No effect was
observed on the NADPH-dependent reductase activity measured using GAL as substrate; this activity
is likely associated with AKRs for which GAL, HNE and GSHNE are good substrates. On the other
hand, there was a significant decrease in the NAD-dependent-dehydrogenase activity assayed with
either GAL or propanal as substrates. The loss of these activities, which are probably linked to ALDH(s),
which itself is indicative of the heterogeneity of the dehydrogenase pool present in the extract, could be
easily reverted by DTT treatment.

These results show that the pattern of the pyridine cofactor dependent enzymes responsible for
the HNE metabolic control is well preserved in ADF cells undergoing oxidative treatment. The efficient
removal of H2O2 by these cells, despite the recurrent oxidative challenge, highlights the overall
effectiveness of the detoxification. In addition, the possibility of GSHNE generation from HNE is also
preserved, since GST activity results completely unaffected by the oxidative treatment (data not shown).
The analysis of intracellular markers of oxidative stress indicate that no significant changes were
observed for MDA levels, a common marker of lipid peroxidation (Figure 3A). In addition, the H2O2

treatment does not appear to affect the glutathione levels (Figure 3B); the tripeptide, besides being
an antioxidant, is key for HNE metabolism and extrusion.
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Figure 2. Effect of peroxidative treatment on oxidoreductase activities present in ADF cells. The cells
were subjected to the treatment with H2O2 as described in Figure 1, using 150 µM of H2O2.
The following activities were measured in ADF crude extracts as described in Section 2.5 before
(blue bars) or after the oxidative treatment (red bars). NADP+-dependent (A) and NAD+-dependent
(B) oxidation of glutathionylhydroxynonanal (GSHNE); NADPH-dependent reduction of GSHNE (C);
NADPH-dependent reduction of glyceraldehyde (GAL) (D); NAD+-dependent oxidation of GAL (E)
or propanal (F). Dashed bars refer to the activity values measured after incubation of the indicated
sample for 60 min at 37 ◦C in the presence of 2 mM dithiothreitol (DTT). The values are expressed as %
of the specific activity measured in control cells (incubated in the absence of the peroxide) and are the
mean ± SEM of at least three independent experiments. Significance was evaluated with respect to the
treatment indicated. (** p < 0.01; *** p < 0.001).

In fact, although no significant changes were observed for the levels of oxidized glutathione
(i.e., GSSG plus GS-protein mixed disulfides) upon oxidative treatment, total glutathione levels slightly
increased, thus leaving the reduced active form of this metabolic defense tool essentially unaltered.
The adaptation of the defense system to oxidative conditions by enhancing the GSH synthesis is likely
to be underestimated, since the fraction of glutathione linked to targets through a non-disulfide bond
was not evaluated by the assay.

On the bases of the modest antioxidant enzymes’ pattern exhibited by HLEC (Table 2), these cells
would be expected to be more sensitive to oxidative insult than ADF. However, the survival of these
cells in the HBSS medium in the absence of peroxidative insult was too low (approximately 50%
survival after 1 h of incubation) to enable a direct comparison with ADF cells. Such a comparison
would have entailed using a more complete incubation medium, such as the MEM, in which HLEC
are sufficiently stable (100% survival after 8 h of incubation) to be challenged with H2O2. In these
conditions, the oxidative insult inflicted by H2O2 treatment, as described in ADF cells, highlights that
HLEC have a significantly reduced resistance to oxidative insult, both in terms of the efficiency of
H2O2 removal and cell viability (Figure 4A,B). In fact, a decrease in cell viability of up to 60% of the
control value was observed along with an increase in the severity of the oxidative treatment.
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Figure 3. Oxidative stress markers in ADF cells following peroxidative insult. (A): Malondialdehyde
(MDA) content in cells before (blue bar) and after (red bar) exposure to 150 µM H2O2 for 2 h at 37 ◦C
as described in Figure 1. MDA values are expressed as % of MDA content measured in control cells
± SEM. (B): Total glutathione, reduced glutathione (GSH) and oxidized glutathione (i.e. glutathione
disulfide plus GS-protein mixed disulfides) were measured after exposure of ADF cells, as described
in Figure 1, at the following H2O2 concentrations: zero, blue bars; 50 µM, gray bars; 100 µM green
bars; 150 µM red bars. Oxidized glutathione refers to the difference between total glutathione and GSH.
The values are the mean ± SEM of at least three independent experiments. Significance was evaluated
with respect to control cells (* p < 0.05).

Figure 4. Treatment of lens epithelial cells with H2O2. (A) and (B) refer to H2O2 removal and viability
assay in HLEC, respectively. (C) and (D) refer to H2O2 removal and viability assay in bovine lens epithelial
cells (BLEC), respectively. Panel (A): HLEC at 70% confluence (2.5 × 106 cells) were incubated in Minimum
Essential Medium (7 mL) at 37 ◦C; at the indicated times cells were supplemented with 50 (gray), 100 (green)
or 150 (red) µM H2O2 and the concentration of the peroxide was measured as described in Section 2.4.
C: BLEC at 70% confluence (1.0 × 106 cells) were incubated in HBSS (7 mL) at 37 ◦C; at the indicated
times, cells were supplemented with 50 (gray), 100 (green) or 150 (red) µM H2O2 and the concentration
of the peroxide was measured as described in Section 2.4. (C) and (D): Cell viability was evaluated by
MTT assay (see Section 2.3) at the end of overall oxidative treatment at the indicated concentrations of
H2O2. The values represent the mean ± SEM of at least three independent experiments. Significance was
evaluated with respect to untreated cells (** p < 0.01, *** p < 0.001, **** p < 0.0001).

Similarly, primary cultures of BLEC, used as non-tumor cells normally highly exposed to oxidative
conditions (as HLEC), were significantly less resistant to oxidative insult than ADF. BLEC, which are
highly stable in HBSS medium (100% survival after 2 h of incubation in the absence of peroxidative
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insult) could be subjected to peroxidative stress in the same medium conditions as ADF cells by
repeated exposure to H2O2. In this case, after several additions of H2O2, BLEC displayed both a lower
ability to remove the peroxide from the medium (Figure 4C) and, similar to HLEC, a higher sensitivity
to the oxidative treatment with respect to ADF cells. This is highlighted by a significant decrease in
viability related to the severity in stress conditions from 17% to 40% of the control value (Figure 4D).
As stated in Section 2.2, our experiments were performed at atmospheric oxygen pressure; oxygen
pressure is known to differently affect the response to oxidative stress of cultured cells, depending not
only on cell types, but also on cells being a primary line or an immortalized one [55]. The possible
effect of oxygen pressure on the ADF response to oxidative stress conditions remains an aspect to be
furthered in order to complete the characterization of this cell line.

4. Conclusions

We made a direct comparison of the astrocytoma cell line ADF with two non-tumor cell lines (HLEC
and BLEC) that normally face in vivo radiating and chemical oxidative conditions. We thereby confirmed
the resistance of tumor cells to oxidative stress conditions, which is considered a feature exhibited by several
cancer cells. On the basis of the measured levels of antioxidant/detoxifying enzymes, the higher survival
ability of ADF cells in peroxidative conditions shows that these cells are better equipped than normal cells
to counteract oxidative stress. This aspect may be relevant in counteracting the oxidative stress induced by
chemotherapy treatment, as specifically observed for ALDH1A3 in TMZ treatment [18,19].

In addition, in several cancer cells, an abnormally low NADPH/NADP+ ratio has been reported [56–58];
this suggests the recovery of cell reducing power as a primary necessity for tumor cells, often linked to IDH
mutations frequently observed in glioma cells. Despite the fact that ADF cells have not been characterized
in terms of possible IDH mutations, the GSH/GSSG ratio measured in this cell line is far from the marked
glutathione red/ox unbalance observed for other IDH1 mutated glioma cells. In any case, the markedly high
level of an NADP+ dependent dehydrogenase activity acting on GSHNE detected in ADF cells may help
these cells to support cell detoxification, through the removal of the main HNE metabolite (i.e., the GSHNE
adduct) and the recovery of cell reducing power. Whether the antioxidant pattern described for ADF is
common in other astrocytoma cell lines remains a relevant aspect to be furthered in future work.

We believe that our results highlight the importance for ADF cells of NADP(H)-dependent
oxidoreductases (conceivable CBR1 and AKR1B1) in antioxidant/detoxification processes. These
enzymes may be useful additional inhibition targets to antagonize the survival of cancer ADF cells
under stressful conditions.
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