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Abstract: The high incidence of fungal pathogens has become a global issue for crop protection.
A promising strategy to control fungal plant infections is based on the use of nature-inspired
compounds. The cytochrome bc1 complex is an essential component of the cellular respiratory chain
and is one of the most important fungicidal targets. Natural products have played a crucial role in the
discovery of cytochrome bc1 inhibitors, as proven by the development of strobilurins, one of the most
important classes of crop-protection agents, over the past two decades. In this review, we summarize
advances in the exploration of natural product scaffolds for the design and development of new
bc1 complex inhibitors. Particular emphasis is given to molecular modeling-based approaches and
structure–activity relationship (SAR) studies performed to improve the stability and increase the
potency of natural precursors. The collected results highlight the versatility of natural compounds and
provide an insight into the potential development of nature-inspired derivatives as antifungal agents.
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1. Introduction

Plant diseases caused by fungal pathogens are a major threat to the agricultural industry
worldwide. Controlling plant fungal infections is therefore key to increase food production, as the
planet’s continuously growing population demands maximized crop yields [1].

The cytochrome bc1 complex (also known as complex III) is one of the most important fungicidal
targets. The complex is an essential component of the cellular respiratory chain. It catalyzes the
ubiquinol oxidation (UQH2) to quinone (UQ) and channels the resulting electrons to cytochrome
c through the ubiquinone cycle (Qo cycle, Figure 1). Furthermore, the ubiquinol oxidation results
in a bifurcated electron transfer. One electron is transferred, via the Rieske iron–sulfur protein and
cytochrome c1, to cytochrome c, while the second electron passes through two b-type haems (bL and
bH) to reduce ubiquinone at the Qi site [2].

This process results in proton translocation and generates the proton motive force required in the
production of ATP. Protons are taken up from the mitochondrial matrix when ubiquinone is reduced
at the Qi site and they are released into the intermembrane space when ubiquinol is oxidized at the
Qo site.

Inhibition of the activity of the bc1 complex blocks the generation of ATP, leading to cell death.
For this reason, inhibitors of the cytochrome bc1 complex have aroused great interest in controlling
fungal diseases. The cyt bc1 inhibitors target either the ubiquinol oxidation site (Qo or QP) or the
ubiquinone reduction site (Qi or QN).
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Natural products have played a crucial role in the investigation of cytochrome bc1 inhibitors, 

leading to the discovery of one of the most important classes of crop-protection agents, the 

strobilurins. These compounds still have a dominant position in the global market. 

Natural products, with their enormous structural diversity, are an invaluable source of 

inspiration in the design and development of new biologically active compounds [3]. Having 

evolved over several millennia to acquire specific ligand–protein binding motifs, these privileged 

compounds serve as important, biologically pre-validated platforms for the development of new 

leads in medicinal chemistry and agriculture. However, the structural complexity, toxicity, and 

unfavorable bioavailability often associated with natural products can limit their potential, which is 

why as such structural modification is often required. 

 

Figure 1. Schematic model of cytochrome bc1 complex. The homodimeric bc1 complex presents three 

catalytic subunits: cytochrome b (cyt b) with two b-type haems (bH and bL), the Rieske iron–sulfur 

protein (FeS) and cytochrome c1 (cyt c1) with one c-type haem. The two binding sites for inhibitors 

and ubiquinone (UQ), Qi and Qo, are shown. The bifurcated electron transfer pathway from the Qo 

site is shown by red arrows. 
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for the design and development of bc1 complex inhibitors, focusing on what has been observed and 

achieved in the past decade. In particular, we concentrate on studies focused on optimization of the 

core natural scaffold by simplification, direct substitution, and/or by use of isosteric modifications. 

Molecular modeling-based approaches and structure–activity relationship (SAR) studies performed 

to improve the potency, selectivity, and stability of bioactive natural products are highlighted as 

well. 

2. Strobilurins 

Strobilurins are natural compounds isolated for the first time in 1977 from basidiomycetes. 

They are the first example of natural fungicides belonging to the group of QoI (quinone outside 

inhibitors, (FRAC group 11)). Strobilurin-based products, obtained by activity-guided rational 

design, have been a milestone in the fungicidal market worldwide. Indeed, these compounds have a 

broad-spectrum of activity, being effective against all four major classes of phytopathogenic 

organisms (ascomycetes, basidiomycetes, deuteromycetes, and oomycetes). They show acute 

toxicity against germinating fungal spores and relatively low toxicity for terrestrial animals. 

The major drawbacks of these fungicides are their toxicity to aquatic organisms and the 

increased number of fungal pathogens that are showing occurrence of resistance, mainly due to 

mutations on mitochondrial genes encoding for the Qo site [4]. 

Based on this evidence, the development of new strobilurin derivatives is still pressing because 

of their role in the market and the need of overcoming the explosive increase of fungal resistance 

worldwide. 

Figure 1. Schematic model of cytochrome bc1 complex. The homodimeric bc1 complex presents three
catalytic subunits: cytochrome b (cyt b) with two b-type haems (bH and bL), the Rieske iron–sulfur
protein (FeS) and cytochrome c1 (cyt c1) with one c-type haem. The two binding sites for inhibitors and
ubiquinone (UQ), Qi and Qo, are shown. The bifurcated electron transfer pathway from the Qo site is
shown by red arrows.

Natural products have played a crucial role in the investigation of cytochrome bc1 inhibitors,
leading to the discovery of one of the most important classes of crop-protection agents, the strobilurins.
These compounds still have a dominant position in the global market.

Natural products, with their enormous structural diversity, are an invaluable source of inspiration
in the design and development of new biologically active compounds [3]. Having evolved over
several millennia to acquire specific ligand–protein binding motifs, these privileged compounds serve
as important, biologically pre-validated platforms for the development of new leads in medicinal
chemistry and agriculture. However, the structural complexity, toxicity, and unfavorable bioavailability
often associated with natural products can limit their potential, which is why as such structural
modification is often required.

In this review, we summarize the efforts towards the exploration of natural product scaffolds
for the design and development of bc1 complex inhibitors, focusing on what has been observed and
achieved in the past decade. In particular, we concentrate on studies focused on optimization of the
core natural scaffold by simplification, direct substitution, and/or by use of isosteric modifications.
Molecular modeling-based approaches and structure–activity relationship (SAR) studies performed to
improve the potency, selectivity, and stability of bioactive natural products are highlighted as well.

2. Strobilurins

Strobilurins are natural compounds isolated for the first time in 1977 from basidiomycetes. They are
the first example of natural fungicides belonging to the group of QoI (quinone outside inhibitors,
(FRAC group 11)). Strobilurin-based products, obtained by activity-guided rational design, have been
a milestone in the fungicidal market worldwide. Indeed, these compounds have a broad-spectrum
of activity, being effective against all four major classes of phytopathogenic organisms (ascomycetes,
basidiomycetes, deuteromycetes, and oomycetes). They show acute toxicity against germinating fungal
spores and relatively low toxicity for terrestrial animals.

The major drawbacks of these fungicides are their toxicity to aquatic organisms and the increased
number of fungal pathogens that are showing occurrence of resistance, mainly due to mutations on
mitochondrial genes encoding for the Qo site [4].

Based on this evidence, the development of new strobilurin derivatives is still pressing
because of their role in the market and the need of overcoming the explosive increase of fungal
resistance worldwide.
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Various reviews have been published about the design and synthesis of new strobilurin-derived
compounds [5,6]. In the next section, we provide an overview of the efforts made in this field in the
last 10 years.

From Natural to Synthetic Strobilurins

Strobilurin A (1) was the first compound of this family isolated from Strobilurus tenacellus by
Anke et al. [7], followed by strobilurin B (2) and so on (Figure 2). Although isolated from different
fungi, the various strobilurins have a very similar structure characterized by a pharmacophore portion,
an unsaturated bridge, and a side chain, varying only in the aromatic ring substituents. The interest for
strobilurins increased following the discovery of their fungicidal activity by Anke et al. [7], which led
scientists to search for these compounds in various fungi. However, their activity was weak and,
more importantly, they exhibited stability problems because of their photo lability.
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Figure 3. Commercial strobilurins. 

Figure 2. Structure of natural strobilurin A and B, and the methoxyacrylate stilbene (MOAS)
lead structure.

During the first 1980s, the ICI and the BASF groups simultaneously, although working separately,
identified methoxyacrylate stilbene (3, MOAS, Figure 2) as a stable synthetic strobilurin with a benzene
ring in place of the central double bond of the original triene system [6].

Compound 3 immediately became the lead synthetic strobilurin because of its stability and
increased efficacy (Figure 2). Successive studies led to the introduction into the market of various
synthetic analogs, featuring broad structural variations on the side chain portion as well as containing
bioisosteres of the (E)-β-methoxyacrylate pharmacophoric group (Figure 3) [8].

While the early chemical modifications of the strobilurin scaffold addressed the improvement of
physical characteristics (i.e., volatility, stability, resistance to UV breakdown) and resulted in commercial
strobilurins like azoxystrobin, picoxystrobin, pyraclostrobin, and trifloxystrobin (Figure 3), in the latest
years new strobilurins were developed to increase their efficacy as well as to overcome the resistance
to their action on QoI-resistant strains.

For this purpose, different approaches were used, such as the me-too approach, biorational or
chemorational design, fragment-based drug design (FBDD), intermediate derivatization methods
based on bioisosteric replacement, and pharmacophore-linked fragment virtual screening (PFVS).

Hao et al. developed a new molecular design method based on PFVS, by integrating the advantages
of FBDD and the advantages of docking methods [9]. Through this approach, Yang and coworkers [10]
designed and synthesized a series of benzophenone/fluorenone-containing derivatives (Figure 4) to
obtain new strobilurin analogs with higher fungicidal activity. As shown in Figure 4, the O-bridged
derivative 14b (Ki = 3.28 nmol/L) is more active than its corresponding S-bridged derivative 14a
(Ki = 13.95 nmol/L) and the NH-bridged derivative 14c (Ki > 1000 nmol/L). Interestingly, compound 14d
showed an improved binding affinity (Ki = 1.89 nmol/L) to the porcine cytochrome bc1 complex
(porcine SCR, succinate cytochrome c reductase) compared to the commercial inhibitor azoxystrobin.
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Figure 4. Structural optimization of lead compound 13 and inhibitory activities of representative
compounds 14a–14d and azoxystrobin (AZ) against porcine SCR (succinate cytochrome c reductase)
with cytochrome c as substrate.

The binding mode of compound 14d in Qo site of bc1 complex demonstrated that the
pharmacophore of this new inhibitor bound in the same way of typical methoxyacrylate inhibitors,
interacting with Phe128, Tyr131, Phe274, and Glu271, and forming an H-bond between the methoxy
group of the methoxyacrylate moiety and the backbone nitrogen of Glu271. The presence of the
fluorenone ring in 14d significantly improved the π–π interactions with Phe274 compared with that
observed for the azoxystrobin, justifying the higher potency of the compound [10].

Moreover, most of the new compounds displayed excellent in vivo fungicidal activity against
Sphaerotheca fuliginea at the concentration of 200 µmol/L.

Starting from the scaffold of enoxastrobin (15, Figure 5) developed by Rohm and Haas Company,
Xie et al. introduced modifications in the side chain. In order to stabilize the E-styryl group,
the authors firstly synthesized a small library of indene-substituted oxime ethers (16, Figure 5) [11].
Afterward, they prepared new oxime ethers featuring heterocyclic moieties, which could drive some
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physicochemical properties, such as lipophilicity and solubility, toward the optimal balanced range
for uptake and bioavailability. In particular, benzothiophene, benzofuran, and indole analogs were
developed (Figure 5) [12–14].Molecules 2020, 25, 4582 5 of 28 
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Figure 5. Enoxastrobin-inspired analogs.

All the new synthesized compounds were tested on Pyricularia oryzae, Botrytis cinerea, Erysiphe graminis,
Colletotrichum lagenarium, Pseudoperonospora cubensis, and Puccinia sorghi Schw, and some of them
(e.g., 17, 18, and 19b) showed fungicidal activity similar or higher than enoxastrobin (Table 1).

Various research groups synthesized novel strobilurin derivatives containing a triazole moiety.
These studies focused on the introduction of 1,2,4-triazole group mainly because of its broad
spectrum of biological activity [15–20]. A large number of antifungal agents containing 1,2,4-triazole
group as pharmacophore inhibit the formation of the cell membrane by preventing the ergosterol
biosynthesis [21].

Remarkably, the 1,2,4-triazole analogs synthesized by Chaudhary et al. and Liu et al. showed
antifungal activities comparable to or better than azoxystrobin [15,17].

The authors studied the activity of 1,2,4-triazole thiol strobilurin analogs on plant pathogens
(Fusarium oxysporum, Magnaporthe grisea, Drechslera oryzae) as well as human pathogens (Cryptococcus
neoformans NCM3378, Cryptococcus neoformans NCM3542, Aspergillus fumigatus) [15].

The introduction of a chlorine atom in para position on the phenyl ring had a positive effect on
the fungicidal activity of these compounds. The p-chlorophenyl derivative 20 (Figure 6) was the most
effective inhibitor against all the tested pathogens with MIC (minimum inhibitory concentration) values
in the range of 16-64 µg/L). The inhibition of resazurin (RZ) reduction indicated that this compound
has a mechanism of action similar to azoxystrobin, inhibiting the mitochondrial respiration by binding
to the Qo site of cytochrome b (EC50 for inhibition of RZ reduction in D. oryzae by azoxystrobin
and compound 20 were 3.42 ± 0.03 µg/mL and 3.62 ± 0.21 µg/mL, respectively). At the same time,
the authors observed that 1,2,3-triazole derivatives (i.e., compound 21) were ineffective in controlling
the fungal growth at the highest concentration (512 µg/mL), and concluded that the 1,2,4-triazole
moiety contributed to the antifungal activity of these derivatives.
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Table 1. In vitro and in vivo fungicidal activity (inhibition %) of representative indene (16a),
benzothiophene (17), benzofuran (18), and indole (19a–c) -substituted oxime ethers. from References
[11–14].
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In vitro In vivo

25 mg/L 6.25 mg/L

Cpd Pyricularia orizae Botrytis cinerea Erysiphe graminis Colletotrichum lagenarium Puccinia sorghi Schw.

16a 100 50 100 70 /

19a 80 80 50 0 100

19b 100 80 95 80 90

19c 100 80 99 75 60

enoxastrobin 50 100 100 85 100

In vitro In vivo

6.25 mg/L 6.25 mg/L

Cpd Pyricularia orizae Botrytis cinerea Erysiphe graminis Colletotrichum lagenarium Puccinia sorghi Schw.

17 50 100 50 100 70

18 / 100 100 98 40

enoxastrobin 50 100 100 90 98
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Liu and coworkers [17] obtained a small library of strobilurin 1,2,4-triazole derivatives
containing furan or thiophene rings (22a–e, Figure 6), which exhibited in vitro fungicidal activities
against Physalospora piricola, Cercospora arachidicola Hori, Rhizoctonia cerealis comparable to or higher
than azoxystrobin.

Among the furanyl derivatives, compounds featuring a three- or four-carbon chain
(22b, 22c, Table 2) linked to the 1,2,4-triazole group had the highest inhibitory effect (Table 2).
The EC50 values of compounds 22a (14.82 mg/L) and 22b (18.72 mg/L) against Cercospora arachidicola
Hori were much lower than that of the control (40.54 mg/L). Moreover, the introduction of a bromine
atom linked to the furan ring allowed to obtain compound 22d with an inhibition rate of 90% against
Rhizoctonia cerealis. The EC50 values of compounds 22d (9.89 mg/L) and 22e (8.66 mg/L) against
Rhizoctonia cerealis were lower than that of azoxystrobin (10.86 mg/L).

Table 2. Fungicidal activity (growth inhibition rate, %) of compounds 22a–e at 50 mg/L in vitro from
Reference [17].

Compd X Y R PP a CH a RC a CO a SS a FG a

22a H O C2H5 60.0 87.0 80.3 38.9 76.3 54.8
22b H O i-C3H7 60.0 84.8 83.1 36.1 80.3 42.9
22c H O i-C4H9 43.3 73.9 87.3 19.4 31.6 38.1
22d Br O n-C4H9 63.3 69.6 90.1 25.0 82.9 61.9
22e H S i-C4H9 56.7 50.0 94.4 33.3 56.6 57.1
AZ 63.3 56.5 81.7 72.2 82.9 73.8

a PP: Physalospora piricola; CH: Cercospora arachidicola Hori; RC: Rhizoctonia cerealis; CO: Colletotrichum orbiculare;
SS: Sclerotinia sclerotiorum; FG: Fusarium graminearum; AZ: azoxystrobin.

In 2017 the same research group obtained strobilurin analogs containing the 1,3,4-oxadiazole
moiety [22] (Figure 6). The antifungal activity of some representative compounds (23a–c, 24) is reported
in Table 3. In general, the efficacy of these new analogs in controlling the fungal growth of Sclerotinia
sclerotiorum was comparable to that of azoxystrobin. Interestingly, some of them were more effective
than the control against Rhizoctonia cerealis.

Table 3. Inhibition of fungal growth (%) of compounds 23a-c and 24 at 50 mg/L and EC50 (mg/L) against
Sclerotinia sclerotiorum and Rhizoctonia cerealis from Reference [22].

% Inhibition (50 mg/L) EC50 (mg/L)

Compd Sclerotinia sclerotiorum Rhizoctonia cerealis Sclerotinia sclerotiorum Rhizoctonia cerealis

23a 100.0 98.8 7.67 15.93

23b 98.8 97.7 7.35 9.35

23c 100.0 87.2 6.15 13.45

24 82.7 95.3 / 9.20

azoxystrobin 96.3 70.9 4.67 22.86

Li and coworkers designed new strobilurin analogs combining the 2-(2-methylphenyl)-3-
methoxyacrylate pharmacophore with a series of 4-halo-5-aryl-1,2,3-triazoles, which had previously
showed excellent fungicidal activity against Phytophthora capsici and Sclerotinia sclerotiorum [23].
The compounds exhibited moderate to good fungicidal activity against Phytophthora capsici and
Alternaria alternata. In particular, compounds 25a and 25b (Figure 6) inhibited the fungal growth of
Phytophthora capsici up to 73.6%, a significantly higher value than the 42.5% observed for difenoconazole.

Based on the active substructure combination approach, Liu et al. designed and synthesized new
azoxystrobin analogs with various substituted phenyl groups linked to the pyrimidine ring [24].
The analogs exhibited moderate or remarkable antifungal activities against three tested fungi,
Botrytis cinerea, Colletotrichum orbiculare, and Phytophthora capsici Leonian.
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Preliminary structure–activity relationships (SAR) studies showed that the introduction of an
electron-withdrawing group on the phenyl ring increased the activity against all the tested fungi with
the following trend: 2-substituted phenyl derivative > 4-substituted phenyl derivative > 3-substituted
phenyl derivative. Conversely, the effect of the introduction of electron-donating groups was the
following (in terms of activity): 4-substituted phenyl derivative > 3-substituted phenyl derivative >

2-substituted phenyl derivative. Interestingly, among the tested compounds, the 2,5-dimethylphenyl
derivative 26 (Figure 6) displayed the most promising activity, with a growth inhibition rate (%)
comparable (75–78%) to that of azoxystrobin (66–71%) against Colletotrichum orbiculare, Botrytis cinerea
Pers, and Phytophthora capsici Leonian.

The discovery of coumoxystrobin (27, Figure ??) [25], containing the coumarin skeleton, paved the
way to the synthesis of new strobilurins. Starting from the structure of this compound, Liu et al.
investigated the activity of derivatives containing the quinolin-2(1H)-one moiety as a bioisoster of
coumarin (Figure ??) and tested their efficacy in controlling the growth of ten plant pathogens [26].
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The modification of the lactam ring resulted in crucial for the fungicidal activity. The introduction
of the ethyl group at N1-position gave compounds more effective against all the tested fungi compared
to the N-H-containing compounds (e.g., 29 vs. 28). Compounds featuring an amino group at C7
position of the quinolinone moiety (e.g., 30) displayed better antifungal activity against Gibberella
fujikuroi, Sclerotinia sclerotiorum, Phytophthora infestans, Alternaria solani, and Fusarium graminearum
than compounds containing an ether linkage, which, on the contrary, was beneficial to the antifungal
activity against Fusarium oxysporum and Rhizoctonia cerealis.

In particular, the growth inhibition activity of compound 29 was comparable and in some
cases higher than the activity of the reference coumoxystrobin. The authors reported the EC50

values of compounds 29 (EC50 3.4646 µg/mL) and 30 (EC50 8.9148 µg/mL) against Rhizoctonia cerealis.
The results indicate that compound 29 is 4.17- and 5.07-fold more effective than coumoxystrobin (EC50

14.4593 µg/mL) and azoxystrobin (EC50 17.5804 µg/mL), respectively, against this pathogen.
In 2017 Chen et al. published two papers about the synthesis of novel fungicides containing

isothiazole-, thiadiazole-, and thiazole-based structures (Figure 8).
Using trifloxystrobin (7) structure as a template, the authors first designed and synthesized

3,4-dichloroisothiazole-containing strobilurins [27]. This heterocyclic scaffold can be found in numerous
biologically active molecules [28]. In particular, the 3,4-dichloroisothiazole-5-carboxylic acid derivative
isotianil was developed as a novel fungicide with activating defense responses against a wide range of
plant pathogens [29].
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Figure 8. Structure of 3,4-dichloroisothiazole and 1,2,3-thiadiazole-containing strobilurins.

Compound 31 (Figure 8) exhibited excellent activity with EC50 of 0.07 µg/mL and 0.49 µg/mL
against R. cerealis and P. infestans, respectively (Table 4). These values are comparable to that of
the positive control azoxystrobin. Moreover, compound 31 was more effective than azoxystrobin in
controlling the growth of G. zeae and B. cinerea (Table 4).

Table 4. EC50 value of compounds 31 and 32 from References [27,30].

EC50 (µg/mL)

R.c a P.i a G.z a B.c a S.s a

31 0.07 0.49 1.75 0.15 /
32 0.01 / 2.68 / /
AZ 0.06 0.040 6.92 6.31 4.04

a R. c, Rhizoctonia cerealis; P. i, Phytophthora infestans (Mont) de Bary; G. z, Gibberella zeae; B. c, Botrytis cinerea;
S. s, Sclerotinia sclerotiorum; AZ, azoxystrobin.

Similarly, the same authors prepared novel 1,2,3-thiadiazole and thiazole-based strobilurins [30].
The 1,2,3-thiadiazole derivative 32 (Figure 8) exhibited excellent activities against G. zeae, S. sclerotiorum,
and R. cerealis with EC50 values of 2.68, 0.44, and 0.01 µg/mL, respectively.

The most active compounds of each series were evaluated as fungicide candidates against
Sphaerotheca fuliginea and Pseudoperonospora cubensis in cucumber fields.

Both the 3,4-dichloroisothiazole derivative 31 and the 1,2,3-thiadiazole derivative 32 showed better
efficacy against cucumber S. fuliginea than azoxystrobin and trifloxystrobin at the same application
rate (37.5 g ai/ha). Moreover, compound 32 showed significantly better efficacy (p < 0.05) against
P. cubensis than trifloxystrobin and efficacy comparable to azoxystrobin (at the same application rate
of 75 g ai/ha). Compounds 31 showed efficacy against P. cubensis comparable to pyraclostrobin but
significantly better than that of trifloxystrobin at the same application rate (75 g ai/ha.).

An interesting approach to develop new strobilurin-based fungicides was recently reported by
Su et al. [31]. The strategy is based on the combination of the pharmacophore moieties of strobilurins
(β-methoxyacrylate, methoxyiminoacetamide, or methoxy-N-methylacrylamide) with a monoterpenic
phenol typically found in plant essential oils (EOs).

Antifungal activity of EOs has been frequently associated with the presence of monoterpenic
phenols, such as thymol, carvacrol, and paeonol [32]. However, EOs components are generally volatile,
unstable to light or heat. Additionally, their short-term fungicidal efficacy and slow action considerably
restrict their possible practical application.

The authors prepared seventeen new compounds and tested their potential fungicidal activity
against eleven species of plant pathogen fungi. The structure of representative analogs containing
carvacrol and thymol moiety and EC50 values against Sclerotinia sclerotiourum are reported in Figure 9.
Compound 33 exhibited a very interesting activity against Pestalotiopsis theae, Phomopsis adianticola,
Sclerotinia sclerotiorum, and Magnapothe grisea as well.
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Figure 9. Structure of representative compounds and EC50 values against Sclerotinia sclerotiourum
(azoxystrobin EC50 = 18.75 ± 1.10 mg/L) [EC50 values from Reference [31]].

Using pyraclostrobin (10) as a lead compound, Liu and coworkers [33] obtained 44 new strobilurin
analogs by introducing the methoxyiminoacetate or the methoxyacrylate pharmacophore into halo- or
(un)substituted arylpyrazole scaffolds (Figure 10). In particular, the authors focused their attention on
three structural aspects: the effect of different pharmacophores and their position; the effect of nature
and position of the substituent on the terminal benzene ring; the effect of halogen substituent on the
pyrazole ring.

The SARs study highlighted that the combination of both methoxyiminoacetate pharmacophore
and electron-withdrawing substituent R on phenyl ring improved the fungicidal activity.
Moreover, the type and size of the halogen on the pyrazole ring resulted crucial for the efficacy.
In particular, the presence of a chloro substituent had a positive effect on the fungicidal activity,
whether it was on the pyrazole ring or on the phenyl ring. The collected biological data and the
comparative molecular field analysis allowed the authors to build up a 3D-QSAR model for these new
strobilurin analogs with high correlative and predictive abilities [33].

Among the obtained analogs, compounds 38–41 (Figure 10) exhibited 98.94%, 83.40%, 71.40%,
and 65.87% inhibition rates at 0.1 µg/mL against Rhizoctonia solani, respectively, which are better than
commercial pyraclostrobin (35.73%).
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Figure 10. Structure of pyraclostrobin analogs from Reference [33].

In 2018, Wang et al. [34] introduced a pyridinyl group as bridge portion and side chain modifications,
obtaining a library of N-ortho substituted pyridine analogs of pyraclostrobin (Figure 11). Besides the
in vitro fungicidal activities against five important plant pathogens (Botrytis cinerea, Phytophthora capsici,
Fusarium sulphureum, Gloeosporium pestis, and Sclerotinia sclerotiorum), the authors evaluated the
percentage of inhibition, the IC50 values, and predicted the total binding free energy of representative
compounds against porcine SCR (Table 5). Compound 43 exhibited the lowest IC50 value (0.95 µM).
In contrast, compound 42, without the methylene linker, displayed only 11% inhibitory activity at
100 µM concentration, suggesting that the flexible side chain is favorable for the enzymatic inhibition
activity. In general, the presence of a hydrophobic side chain is critical for the antifungal activity of
these analogs. Moreover, biaryl rings at the side chain are preferable and certain flexibility is beneficial
to the inhibitory activity against SCR bc1 complex.

Interestingly, docking studies into the binding pocket of the cytochrome bc1 complex showed that
the pyridinyl group can form stable arene-H interaction with residue proline-271, thus improving the
binding to cytochrome bc1 complex.
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pyraclostrobin 99.9 1.76 ± 0.17nM −35.85 

penthiopyrad 95 1.56 ± 0.12  
a Values are the mean ± standard deviation (SD) of three replicates. b Predicted binding free energies 

between each compound and cytochrome bc1 complex (PDB ID: 3TGU, ein = 1.0). 
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Table 5. Percentage of inhibition, IC50 values, and predicted total binding free energy of selected
compounds against porcine SCR from Reference [34].

Compd % Inhibition (100 µM) IC50 ± SD
(µM) a

∆Gpred.
b

(Kcal/mol)

42 11 / −23.84
43 99.9 0.95 ± 0.012 −44.17

pyraclostrobin 99.9 1.76 ± 0.17nM −35.85
penthiopyrad 95 1.56 ± 0.12

a Values are the mean ± standard deviation (SD) of three replicates. b Predicted binding free energies between each
compound and cytochrome bc1 complex (PDB ID: 3TGU, ein = 1.0).

In 2016, Jia et al. investigated compounds that shared structural characteristics of strobilurin
and N′-nitrohydrazinecarboximidamide, discovering compound 44 (Figure 12) as the main
byproduct. The compound showed excellent fungicidal activity against Phytophthora infestans,
Botryosphaeria dothidea, Botrytis cinerea, and several other plant pathogenic fungi. For this reason,
in 2019 the same authors synthesized (E)-methyl 2-(2-((1-cyano-2-hydrocarbylidenehydrazinyl)-
methyl)-phenyl)-2-(methoxyimino)acetates using 44 as a lead compound [35]. Although no new
molecules resulted more active than the lead compound, they isolated compound 45 (Figure 12),
which showed a broad spectrum of activity, as a byproduct of their synthetic pathway.
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Recently, Matsuzaki and coworkers [36] obtained new Qo inhibitors characterized by a tetrazolinone
pharmacophore and a methyl group at position 3 on the central phenyl ring. These compounds were
designed to overcome the resistance developed by different pathogenic species and associated with the
G143A mutation at the target site. The presence of the methyl group of the alanine residue at position
143 seems to cause severe steric hindrance at the central linking rings of QoIs.

Through an initial random screening on 200 QoI-like compounds to identify the key structural
moieties to retain the activity against G143A mutant, the authors found that compound 46 (Figure 13),
featuring the tetrazolinone pharmacophore and the same side chain of trifloxystrobin, was less affected
by this mutation, showing a resistant factor RF = 2 (Figure 13, Table 6). After a careful structure–activity
relationship investigation, the authors obtained compound 47 (Figure 14) with the same side chain
of pyraclostrobin (4-chlorophenylpyrazole structure). The EC50 of compound 47 in the wild-type
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sensitive strain (WT) and G143A mutant were both 0.02 ppm, showing a 10- to 20-fold increase of
activity compared to compound 46 (Table 6).
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Finally, the introduction of the 3-methyl group on the central phenyl ring led to obtain
methyltetraprole 48, showing a 10-fold higher activity than that of compound 47 (Table 6). The authors
hypothesized that the presence of the methyl group might have a role in limiting the rotation of the
side chain and in avoiding steric hindrance between the QoI and the mutated target site.
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Table 6. In vitro antifungal tests against sensitive wild-type and G143A mutant of Zymoseptoria tritici
from Reference [36].

Cpd Sensitive Wild Type
EC50 (ppm) a

G143A Mutant
EC50 (ppm) Resistant Factor b

strobilurin A 0.02 0.2 10
pyraclostrobin 0.001 0.2 200

46 0.2 0.4 2.0
47 0.02 0.02 1.0

methyltetraprole (48) 0.002 0.002 1.0
a The values represent the 50% effective concentration (EC50) determined from two biological replicates. The 95%
confidence intervals of all EC50 values ranged between 50% (MIN) and 200% (MAX) of the representative values.
b Resistance Factor: ([EC50 of resistant strain]/[EC50 of sensitive strain]).

3. Other Natural Products Inhibiting the Cytochrome bc1 Complex

3.1. Cyrmenin A, B1 and B2

Cyrmenins A, B1, and B2 (49a–c, Figure 14) are antifungal metabolites isolated from the
culture broth of myxobacteria Cystobacter armeniaca and Archangium gephyra. These modified
N-acyldipeptide compounds contain a dehydroalanine, a 2-amino-3-methoxyacrylate moiety, and a
(2E, 4Z)-undecadienoic or dodecadienoic acid residue. Cyrmenines exhibit high antifungal activity,
showing at the same time exceptionally low toxicity for animal cell cultures [37].

The first total synthesis of cyrmenin B1 (Figure 14) was reported in 2009 [38] and the same authors
reported the synthesis of some representative derivatives for structure–activity relationship studies [39].
The antifungal activity of cyrmenin B1 and analogs (50–53) was tested against Saccharomyces cerevisiae
Meyen ex Ec. Hansen, strain IPV 637, Aspergillus niger Tegh., strain IPV F303, Botrytis cinerea Pers.,
strain IPV F5.2, Cochliobolus miyabeanus, (S.Ito and Kurib) Drechsler ex Dastur, and Pyricularia oryzae
Cavara, strain IPV A1.

The bioassay results clearly indicated the relevance of each portion of the parent molecule
(lipophilic unsaturated chain, dehydroalanine moiety, and β-methoxyacrylate system), leaving very
little space for synthetic modifications.

Interestingly, only the modification of the conjugated double bond geometry (cyrmenin B1 vs.
its (8E,10E)-geometrical isomer 50a) was tolerated. The complete lack of activity of compounds 50b
and 50c underlined that maintaining the lipophilicity of the molecule was not enough to have active
compounds. The exo double bond of the parent molecule was also crucial for the antifungal activity.
In fact, both compound 51, bearing an alanine residue, and the compound bearing a serine residue (52)
were inactive against all the tested strains. The modification of the expected crucial β-methoxyacrylate
group was also deleterious (compound 53). All these results evidenced a limitation for the development
of new fungicide compounds derived from natural cyrmenins.

3.2. Mixothiazols, Melithiazols and Fulvuthiacens

Myxobacteria are a rich source of various biologically active secondary metabolites. These include
the antifungal agents myxothiazol and melithiazol, which are very potent inhibitors of the electron
transport through the cytochrome bc1 complex of the eukaryotic respiratory chain.

In 1980, Reichenbach et al. and Hofle et al. reported the isolation of a novel myxobacterial
antibiotic named myxothiazol A (54) [40,41], whose structure is characterized by a central bis-thiazole
unit linked to a β-methoxyacrylate moiety and a heptadienyl side-chain bearing a stereogenic center at
the α-position of the thiazole ring (Figure 15). Acting as potent inhibitors of the electron transport
through the cytochrome bc1 complex, both myxothiazol A (54) and its corresponding methyl ester,
myxothiazol Z (55), exhibit broad antifungal activity as well as significant cytotoxicity against different
human tumor cell lines with IC50 values reaching as low as 0.01 ng/mL [42,43]. The high mammalian
toxicity hampered the development of myxothiazol synthetic derivatives. During the following three
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decades, more than 20 structurally related fungicides have been isolated from various strains of
myxobacteria, including the congeneric melithiazols.
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Melithiazols A–N contain a β-substituted β-methoxyacrylate pharmacophore and act as inhibitors
of the cytochrome bc1 complex as well [44].

Unlike myxothiazols, all melithiazols occur only as methyl esters and lack the lipophilic heptadienyl
side chain. Moreover, the greatly reduced mammalian toxicity of these metabolites with respect to
the toxicity of myxothiazols makes melithiazols interesting for the development of new fungicides.
Unfortunately, due to the poor amounts of melithiazols usually obtained from fermentation, it has
not been possible to develop a derivatization program to investigate structure–activity relationships.
However, synthetic efforts to obtain melithiazol B (56) [45] and C (57) [46] through oxidative degradation
of myxothiazol A and reductive cleavage of a thiazole ring, respectively, allowed to test the biological
activities of intermediates and derivatives, to obtain some structure–activity correlations.

Concerning melithiazol B (56) and its derivatives, the authors highlighted that compounds with an
ester pharmacophore and a short polar side-chain (e.g., compounds 58 and 59) showed high antifungal
activity (Table 7). Moreover, in general, the cytotoxicity decreased significantly by decreasing the
lipophilicity of these molecules.
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Table 7. Biological activities and lipophilicity of selected myxothiazol and melithiazol derivatives. [a].

Cpd
Botrytis cinerea

Inibition Zone at 2
µg/disc (mm)

Citotoxicity
IC50 (ng/mL) [b]

Inibition of
NADH Oxidation

IC50 (ng/mL) [c]

Lipophilicity
Log POW

[d]

54 [e] 16 1 11 5.29
55 13 2 17 7.17
56 29 20 18 4.75
58 39 55 29 3.37
59 19 220 37 2.36
57 18 700 730 2.92
60 35 2000 250 3.97

63a 42 500 42 3.62
63b 42 400 85 3.81

Kresoxim-methyl [e] 33 400 72 3.70
[a] from References [45,46]. [b] The cytotoxicity was measured by an MTT assay with the mouse fibroblast cell line
L929. [c] The inhibition of the NADH oxidation was measured with submitochondrial particles isolated from beef
heart. [d] Estimated by RP-18 TLC. [e] Values taken from Reference [44].

Structure–activity relationship studies on melithiazol C (57) derivatives showed that the
amide analog (61) and the 14-hydroxy derivative lost the antifungal activity (62a), whereas the
14-ethoxy derivative (62b) showed good antifungal activity and only slightly increased cytotoxicity.
Moreover, the (6Z)-isomer of melithiazol C was essentially inactive in all test systems.

The vinyl derivative 60 and the (11E) and (11Z) methoximes 63a and 63b showed an
exceptionally high antifungal activity and low cytotoxicity, comparable to that of the commercial
fungicide kresoxim-methyl.

Recently, Panter and coworkers [47] elucidated the structure of two new secondary metabolites
(fulvuthiacene A (64) and B (65), Figure 15) isolated from Myxococcus fulvus MCy9280 by combining
the statistics-based mining of mass spectrometry approach and multidimensional NMR spectroscopy.

These compounds contain a terminal β-methoxymethyl acrylate moiety and their evaluation
provided new insights into the overall structure–activity relationship picture of the β- methoxyacrylate
class of bc1 complex inhibitors.

Indeed, fulvuthiacene A and B showed very poor activity against a panel of fungi and yeast.
Comparing the NADH oxidation IC50 values of known naturally occurring methoxymethacrylate type
respiratory chain inhibitors, the authors observed that a wide variety of residues are tolerated in C-2
position of the β-methoxymethacrylate pharmacophore (strobilurin A IC50 = 83 ng/mL, oudemansin
IC50 = 400 ng/mL, and cyrmenin A IC50 = 27 ng/mL). On the contrary, for compounds bearing a C-3
extended β-methoxyacrylate warhead, the structural requirements are very narrow and a bisthiazol or
thiazolinethiazol moiety is needed to produce a strong bc-1 inhibitor (melithiazol B IC50 = 18 ng/mL,
melithiazol C IC50 = 1600 ng/mL, fulvuthiacene A no inhibition of NADH oxidation up to 64,000 ng/mL).
The results reported in this study might thus serve as starting points for the development of the next
generation of β-methoxymethacrylate fungicides.

3.3. Miuraenamides

Miuraenamide A–F (66–71, Figure 16) are cyclic hybrid polyketide-peptide antibiotics isolated
from Paraliomixa miuraensis, a slightly halophilic myxobacterium discovered by Ojika et al. at the
seashore on Miura Peninsula in Kanagawa, Japan [48,49]. The biological properties of these natural
products included antimicrobial activity and inhibitory activity against NADH oxidase.
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Structure–activity relationship studies on miuraenamides A–F and related derivatives were
conducted on the phytopathogen Phytophthora capsici (Table 8). The authors highlighted that the type
of halogen present in the tyrosine residue in miuraenamides A–C is not important for their activity.
Moreover, the presence and the geometry of the β-methoxyacrylate moiety (C12–C14, compounds 69,
70, and 74) affects the activity of these compounds. The lipophilicity of the polyketide moiety and the
free phenol group on the peptide portion of the structure seem to be important for the activity of these
compounds, as demonstrated by the low activity observed for miuraenamide F (71) and acetate 72.
The macrocyclic structure of the miuraenamides is essential as well, with the anti-Phytophthora activity
being completely lost in the case of the ring-opened derivatives 74 and 75, although these compounds
contain the β-methoxyacrylate moiety.

Table 8. Minimum doses of miuraenamides and derivatives for anti-Phytophthora activity from
Reference [49].

Compd 1 2 3 4 5 6 7 8 9 10

Dose[µg per disk] 0.025 0.025 0.025 1 10 0.13 5 2 >50 50

3.4. Crocacins

In 1994, crocacins A, B, C, and D (76–79, Figure 17) were isolated from the myxobacterium
Chondromyces crocatus. The compounds crocacin A and D inhibited the electron transport chain at
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complex III in a beef heart mitochondrial respiration assay and inhibited the growth of several fungi
in vitro. [50]. Although natural crocacins had interesting biological activity, their practical use would be
severely limited by their physical properties, such as the very poor photostability and their structural
complexity. However, the emergence of resistance to different pathogenic species associated with
G143A mutation renewed the interest toward crocacin A, as it showed little or no cross-resistance to a
strobilurin-resistant strain of Plasmopara viticola in small vine plants in the glasshouse, or against a
strain of yeast engineered with the G143A mutation.
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Crowley and coworkers [51] studied the binding of crocacins to the active site in order to design
structurally simpler and more stable synthetic analogs. An inhibitor binding model to the mammalian
cytochrome bc1 complex was constructed, which was consistent with X-ray crystallographic analysis
of an analog bound to the chicken heart cytochrome bc1 complex. The proposed binding mode for the
crocacins combined some binding features of stigmatellin A (80, Figure 17, a potent inhibitor of the
quinol oxidation (Qo) site of the cytochrome bc1 complex) and some binding features of strobilurins.
The differences in binding between the crocacins and methoxyacrylate stilbene could explain the
apparent lack of cross-resistance of the crocacins with strobilurins.

The binding site model, coupled with further molecular modeling, was used to design analogs
of crocacins A (76) and D (79), with mixed results. To improve the stability of the synthetic analogs,
efforts were made to replace the three double bonds, which most likely could give rise to significant
instability to sunlight, with more robust groups, such as aromatic rings. This strategy had been
successful in the development of stable analogs of the strobilurins.

Replacement of the side chain with simple n-alkyl chains or with side chains containing aromatic
rings (e.g., n-alkoxybenzamide) gave compounds very active in the beef heart mitochondrial respiration
assay but inactive as fungicides. Further modeling showed that substituting the benzamide with a
4-substituted benzyl group gave a very good overlay with the crocacin side chain. Some compounds
(84–87) showed not only potent inhibition of respiration but also activity on vine downy mildew on
small vine plants similar to or better than crocacins (Table 9).
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Table 9. Activity of crocacin analogues on NADH oxidase and vine downy mildew on plants.
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The fact that some of the designed compounds were inactive despite good modeling into the active
site highlights the limitations of a rather simple model based on shape fit, the complementarity
of hydrogen bonding groups, and ligand conformational analysis, as the authors themselves
suggest. Actually, other important factors, such as solvation and entropic effects, could be critical in
binding interactions.

Nevertheless, the design strategy was successful in that analogs of the naturally occurring
fungicide crocacin D (79) were synthesized. These compounds were active both in a respiration assay,
on fungi, and on plants, and were significantly more stable than the natural compounds.

3.5. Neopeltolide

Neopeltolide (88, Figure 18), a marine natural product isolated in 2007, was found to inhibit
the bovine heart mitochondrial cytochrome bc1 complex with an IC50 value of 2.0 nM [52].
However, its complex structure prevented the obtainment of the compound by chemical synthesis.
SAR studies showed that the carbamate-containing oxazole moiety was the key structural feature,
whereas the 14-membered macrolactone moiety did not make a significant contribution to binding.

Zhu and coworkers [53] determined the binding mode of neopeltolide by integrating molecular
docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface
area calculations (MM/PBSA), which showed that neopeltolide is a Qo site inhibitor of the bc1 complex.
Based on neopeltolide binding mode, structural modification was carried out with the aim to simplify
its structure. Thus, a series of new neopeltolide derivatives with much simpler chemical structures
were rationally designed and synthesized.

Compound 89 bearing a naphthylether fragment in place of the structurally complex 14-membered
macrolactone moiety showed high inhibitory activity against porcine SCR, with an IC50 value of
0.047 µM. The introduction of a bromo group on the naphthalene ring (compounds 90a and 90b)
further improved the activity against SCR. Compound 90a was the most potent candidate against SCR
(IC50 = 12 nM, Table 10) [53].
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Figure 18. Structure of neopeltolide (88) and representative simplified analogs (89, 90a,b and 91).

Table 10. IC50 (µM) value of compounds 89–91 against porcine SCR. [a].

Cpd R IC50 (µM) ± SD

89 H 0.045 ± 0.001
90a 7-Br 0.012 ± 0.002
90b 6-Br 0.016 ± 0.001
91 0.70 ± 0.012

AZ [b] 0.205 ± 0.001
[a] from Reference [53,54]. [b] azoxystrobin.

Molecular docking of the newly synthesized compounds was performed, followed by MD
simulations and MM/PBSA calculations. Computational simulations revealed that most of the
compounds inside the Qo site of the bc1 complex formed a hydrogen bond with Glu271 and a π-π
interaction with Phe274, while the most active compound (90a) formed an additional hydrogen bond
with His161.

Recently, the same authors prepared a new set of analogs by replacing the 14-membered
macrolactone ring with an indole ring linked to the carbamate moiety by an ester or an amide
bond [54]. The new analogs exhibited IC50 values ranging from 0.70 to 1.75 µM, and compound 91
showed the highest inhibitory activity against porcine SCR (IC50 0.70 µM).

3.6. Chromanols

In the search for non-redox effects of chromanols (vitamin E-related compounds), it was noted
that chromanols share structural similarity to stigmatellin (80, Figure 17), e.g., the chroman core.

Based on this common structural feature, Mullebner and coworkers [55] studied the extent and
the mechanism of inhibitory effects of natural tocopherols (α, β, γ-, and δ-Toc, 92–95), their oxidation
products tocopheryl quinones (α, β, γ-, and δ-TQ, 96–99), and synthetic (low molecular weight TQ
analogs and chromanones) compounds 100 and 101 (Figure 19).
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Figure 19. Structures of natural tocopherols (α, β, γ-, and δ-Toc, 92–95), of tocopheryl quinones
(α, β, γ -, and δ-TQ, 96–99), and low molecular weight analogs (100 and 101).

The authors found by enzymatic experiments that the 6-hydroxychroman structures of Toc-related
compounds and the para-benzoquinone structure of TQ-related molecules can modulate the function
of the mitochondrial cyt bc1 complex.

For both Toc and TQ, an incomplete methyl substitution (β, γ-, and δ-congeners) increased the
inhibitory potential. This affinity was further enhanced by the introduction of keto groups into the
chroman ring, thus leading to chromanones. For TMC2O (6-hydroxy-4,4,7,8-tetramethylchroman-
2-one, 100), it was shown that it binds to the Qo pocket of the cyt bc1 complex and delays the electron
transfer from dUQH2 to cyt c1 in the complex.

Docking experiments were performed to study the interaction of 100 with the cyt bc1 complex,
which was similar but not identical to that of stigmatellin.

3.7. Karrikinolide

Karrikinolide (3-methyl-2H-furo[2,3-c]-pyran-2-one, KAR1, 102) is a natural butenolide found
in the smoke of burning plant material, which promotes the seed germination of a wide range of
plants [56]. The molecular simplicity, structural stability, and the novel skeleton of 102 inspired the
synthesis of numerous analogs in order to study their efficacy in promoting seed germination [57].

In 2016, Chen et al. exploited this scaffold with the aim to develop new cytochrome bc1 complex
inhibitors and reported the synthesis of 20 karrikinolide derivatives by introducing different functional
groups at C3-position (Figure 20) [58]. The inhibitory activity of the newly prepared compounds
was tested against SCR. SCR is composed of respiratory complex II (SQR) and complex III (the bc1
complex), which are believed to form a complex II–complex III supercomplex. Out of the tested
derivatives, compound 103a–d exhibited limited activity against SQR at a concentration of 10 mM
(Table 11). On the other hand, their inhibitory activities against SCR and the bc1 complex support the
hypothesis that these compounds act as inhibitors of the bc1 complex. In spite of the promising results,
further studies will be necessary to confirm the antifungal activity of the compounds.
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Table 11. Inhibitory effect of selected compounds on SCR, SQR, and cyt bc1. 

Cpd 
IC50 (µM) 

SCR 
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originally isolated from fermentation broths of the actinomycete Streptomyces sp. 517–02 [59].
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the cytochrome bc1 complex. Remarkably, no target site-based cross-resistance with Qo inhibitors was
observed for these compounds. However, to date only two molecules acting as Qi site inhibitors have
been commercialized: cyazofamid and amisulbrom as oomycete-specific substances.

Molecules 2020, 25, 4582 23 of 28 

 

Among the analogs featuring modifications to the macrocycle benzyl position, the cyclohexyl 

analog (108) was the most active derivative on mitochondrial electron transport (MET) assays (IC50 

1.23 nM) and inhibited the in vitro growth of Zymoseptoria tritici (EC50 2.8 ppb) and Leptosphaeria 

nodorum (EC50 6.2 ppb) more strongly than UK-2A (EC50 5.3 and 11.3 ppb for Z. tritici and L. nodorum, 

respectively). On the contrary, the introduction of heterocyclic ring systems and polar linker 

functionalities on this position resulted in substantial loss of activity. 

 

Figure 21. Structure of natural picolinamide UK-2A (104), of fenpicoxamid (105), and structures of 

representative analogs (106–108). 

Table 12. Comparative target site and in vitro antifungal activities of UK-2A and representative 

compounds 106–108 from References [61–63]. 

Compd 
IC50 MET 

(nM) 

EC50  

(µg/L) 

UK-2A 1.46 4.4 

106  1.08 5.3 

107  1.44 6.3 

108  1.23 2.8 

AZ 11.49 3.5 

MET: Mitochondrial electron transport assays. 

4. Conclusions 

There is an urgent need for new compounds that specifically target pathogenic fungi due to the 

increasing rates of resistance to the drugs currently available on the market. The cytochrome bc1 

complex is one of the most important fungicidal targets. Inhibitors of the cytochrome bc1 complex 

have been broadly studied, in particular for controlling fungal diseases. In this context, natural 

products have played a crucial role. Commercial analogs of the natural compound strobilurin are 

among the most successful classes of agricultural fungicides, with a dominant position on the global 

market. 

This review provides an outline of advances in the investigation of new bc1 complex inhibitors 

based on natural products. Emphasis has been given to studies involved in the optimization of the 

natural scaffold. In fact, despite their enormous potential, natural compounds are often 

Figure 21. Structure of natural picolinamide UK-2A (104), of fenpicoxamid (105), and structures of
representative analogs (106–108).



Molecules 2020, 25, 4582 23 of 28

Picolinamide UK-2A was used as a lead compound to design new macrocyclic fungicidal molecules,
and recently at Dow AgroSciences LLC the novel fungicide fenpicoxamid (105, Inatreq™, Figure 21)
was developed by semi-synthetic modification of the natural compound.

The acyloxymethyl ether derivative fenpicoxamid showed a broad spectrum of activity in in vitro
assays and excellent efficacy on Zymoseptoria tritici (synonym, Mycosphaerella graminicola, wheat leaf
blotch), the pathogen of greatest concern for wheat production in Europe.

Recently, Owen and coworkers [60–62] described structure–activity relationship (SAR) studies
on UK-2A, analyzing the impact of modifications of the macrocycle isobutyryl ester position,
ring replacement, and modifications to the macrocycle benzyl position. Moreover, the relative
activities of the new analogs were rationalized, based on a homology model constructed for the Z. tritici
Qi binding site.

In particular, the isobutyryl ester of UK-2A was replaced by a series of ester groups and a set of
ether groups, carbonate, and carbamate moieties. The authors reported that linkages other than esters
are well tolerated at the 7-position of the macrocycle, with the only exception of the carbamate analogs.
The n-butyl ether (106) was the most active analog evaluated, and compound 107 (pivaloate ester) was
the most active among the ester derivatives (Table 12).

Table 12. Comparative target site and in vitro antifungal activities of UK-2A and representative
compounds 106–108 from References [61–63].

Compd IC50 MET
(nM)

EC50
(µg/L)

UK-2A 1.46 4.4
106 1.08 5.3
107 1.44 6.3
108 1.23 2.8
AZ 11.49 3.5

MET: Mitochondrial electron transport assays.

The 3-hydroxy-4-methoxypicolinic acid moiety of UK-2A can be replaced by a variety of
o-hydroxy-substituted arylcarboxylic acids, while retaining strong activity against Z. tritici and
other relevant fungi.

Among the analogs featuring modifications to the macrocycle benzyl position, the cyclohexyl
analog (108) was the most active derivative on mitochondrial electron transport (MET) assays
(IC50 1.23 nM) and inhibited the in vitro growth of Zymoseptoria tritici (EC50 2.8 ppb) and Leptosphaeria
nodorum (EC50 6.2 ppb) more strongly than UK-2A (EC50 5.3 and 11.3 ppb for Z. tritici and L. nodorum,
respectively). On the contrary, the introduction of heterocyclic ring systems and polar linker
functionalities on this position resulted in substantial loss of activity.

4. Conclusions

There is an urgent need for new compounds that specifically target pathogenic fungi due to the
increasing rates of resistance to the drugs currently available on the market. The cytochrome bc1
complex is one of the most important fungicidal targets. Inhibitors of the cytochrome bc1 complex have
been broadly studied, in particular for controlling fungal diseases. In this context, natural products
have played a crucial role. Commercial analogs of the natural compound strobilurin are among the
most successful classes of agricultural fungicides, with a dominant position on the global market.

This review provides an outline of advances in the investigation of new bc1 complex inhibitors
based on natural products. Emphasis has been given to studies involved in the optimization of the
natural scaffold. In fact, despite their enormous potential, natural compounds are often characterized
by structural complexity, toxicity, and unfavorable bioavailability, which can limit their investigation
and severely hamper their development. For this reason, this review focuses on those modifications
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of the natural core that have expanded the potency and stability of analogs compared to the parent
compounds, opening the possibility of further development.

In this context, it should be stressed that, besides the in vitro antifungal test (percentage of
inhibition of fungal growth or EC50 values), a significant number of enzymatic tests to evaluate the
cyt bc1 inhibitory activity were performed using as a model system the porcine succinate cytochrome
c reductase, a mixture of respiratory complex II, and bc1 complex [10,34,50,52–54,56]. Despite the
general lack of data around the fungal cytochrome bc1 complex, those studies were also included
in the review in order to obtain a complete overview of the SAR investigations on cytochrome bc1
complex inhibitors.

The history of strobilurins clearly demonstrates the value of a detailed structure–activity
investigation in the context of a strategy focused on the variation of molecular structures to optimize
the biological profile of the parent molecule. From the analysis of all the reported studies, it has
emerged that the knowledge of the target binding site is often crucial to define the effect of substituent
changes and predict modifications for enhanced potency, safety, and circumvention of resistance.

However, a major concern in the development of new cytochrome bc1 complex inhibitors is
related to the toxicity to non-target organisms., e.g., plants and animals. In some cases, the evolutionary
conservation of sequence and structure of the key functional subunits of the respiratory chain complexes
is reflected in a low selectivity of electron transport inhibitors in different species [6]. In fact, it has
recently been demonstrated that even strobilurins, which are allegedly non-toxic to humans, can also
exert their mode of action in mammalian cells [63].

Despite the improved understanding of the existing targets and their inhibitors given by
crystallographic and structural biology studies [64], the design of novel inhibitors of the bc1 complex
with appropriate species selectivity still remains a very challenging goal. A few papers report efforts
towards this aim. Monzote et al. [65] and Rotsaert et al. [66], found a certain degree of selectivity in the
inhibition of the cyt bc1 activity of different species by selected molecules.

Nevertheless, it should be stressed that the relevance of the molecular target of a fungicide may
change during the life cycle of the treated organism. As a consequence, different development stages
may exhibit different sensitivities to a given molecule. The ATP energy-demanding spore germination
is, compared to mycelial growth, particularly sensitive to respiration inhibitors such as strobilurins.
Since, among eukaryotes, spore germination occurs almost exclusively in fungi, this also contributes,
on the physiological level, to selective action against fungal pathogens [6].

It should be also considered that careful optimization of the biological profile of the
antifungal compounds—including modulation of their pharmacodynamic and pharmacokinetic
properties—can contribute to the reduction of mammalian toxicity.

Overall, recently reported results highlight the importance of cytochrome bc1 complex as a
fungicidal target and spark a renewed interest in natural products as sources for new antifungal
molecules. However, a great effort to increase species selectivity and to reduce the toxicity of fungicides
is still needed and remains of primary importance for future antifungal drug discoveries.
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