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Abstract: Reliable and efficient sensing and tracking of multiple weak or time-varying frequency
line components in underwater acoustic signals is the topic of this paper. We propose a method for
automatic detection and tracking of multiple frequency lines in lofargram based on hidden Markov
model (HMM). Instead of being directly subjected to frequency line tracking, the whole lofargram is
first segmented into several sub-lofargrams. Then, the sub-lofargrams suspected to contain frequency
lines are screened. In these sub-lofargrams, the HMM-based method is used for detection of multiple
frequency lines. Using image stitching and statistical model method, the frequency lines with
overlapping parts detected by different sub-lofargrams are merged to obtain the final detection results.
The method can effectively detect multiple time-varying frequency lines of underwater acoustic
signals while ensuring the performance under the condition of low signal-to-noise ratio (SNR). It can
be concluded that the proposed algorithm can provide better multiple frequency lines sensing ability
while greatly reducing the amount of calculations and providing potential techniques for feature
sensing and tracking processing of unattended equipment such as sonar buoys and submerged buoys.
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1. Introduction

The underwater acoustic signals in the ocean contain marine environmental noise, radiated noise
from surrounding ships, and signals from various sonars. In order to obtain target information from
the ocean, a convenient way is to deploy sensors such as buoys and submerged buoys in the sea of
interest and analyze the received underwater acoustic signals to achieve observations of nearby sea
areas. Due to the simple structure of the buoy and the submarine system, the resolving power of
different azimuth targets is often lacking. Therefore, sensing and tracking the narrow-band line spectral
components associated with the target in the underwater acoustic signal is one of the primary tasks.
There are several problems when using the unmanned platform such as buoy or submerged buoy to
acquire the target signal. As shown in Figure 1, the hydroacoustic signal components in the ocean are
complex and contain environmental noise, target radiated noise, and target sonar signals. The feature
extraction algorithm needs to have better tolerance to the signal-to-noise ratio and signal form to extract
more signal features; Secondly, because of the size and power consumption limitations of unmanned
platforms, algorithms need to have higher processing efficiency. Therefore, the narrowband signal
sensing and extraction algorithms of the buoy and submerged buoy system should have the following
characteristics: (1) autonomy; (2) wide adaptability; and (3) high efficiency.
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Figure 1. Schematic diagram of buoy and submerged buoy system. 

Traditional approaches for frequency line tracking have been based on alpha-beta or Kalman 
filter-based trackers. When performing frequency line tracking, it is usually based on nearest 
neighbor logic. When using such methods for frequency line tracking, the latter half usually needs 
to filter the most suitable frequency points through nearest neighbor clustering. That is to say, the 
detected frequency line consists of the frequency points with the highest signal-to-noise ratio (SNR) 
close to the real frequency line. For example, the literature [1,2] first performs outlier point 
detection on the data of each time frame in the lofargram, and then clusters the detected outlier 
points from the time dimension. Under certain conditions of SNR, these methods can effectively 
detect and track the frequency line. While the above methods cover the mechanism for state 
estimation in the tracker, they do not describe the data association logic. Frequency line tracking 
can also be performed using methods based on image processing [3]. The method based on image 
processing mainly treats the lofargram as an image and transforms the extraction of the frequency 
lines into the detection of the edge information in the image. Abel et al. [4] proposed a frequency 
line detection method based on image processing and machine vision. Gillespie [5] first smooths the 
spectrogram using a Gaussian filter and then extracts the frequency line information using an edge 
detection algorithm. In the literature [6], lofargram is firstly denoised by nonlinear enhancement 
and convolution denoising algorithms, and then the frequency lines are extracted from lofargram 
using the characteristics of frequency lines. In the case of low SNR, the frequency line information is 
likely to be lost during the image conversion. Therefore, the effect of frequency line extraction of the 
above method based on image processing may be deteriorated when the SNR is low. 

Many other data association methods are available, particularly for dealing with multiple 
targets [7]. These include assignment algorithms, joint probabilistic data association (JPDA) [8], 
multiple hypothesis tracking (MHT) [9] and Viterbi data association [10]. All of these methods 
assume that the state space is continuous and therefore a Kalman filter can be used to provide the 
state estimates. In the case of nonlinear dynamics, various filtering approaches can be applied, such 
as extended Kalman filters and Gaussian mixtures. More modern variants include unscented 
Kalman filters and particle filters. In contrast to frequency line tracking approaches that utilize a 
continuous state space, a different class of approaches is possible for discrete state spaces. In this 
case, the system of ordinary differential equations that models the time evolution of the target’s 
dynamical state is replaced by a description based on hidden Markov model (HMM). Streit and 
Barrett [11] proposed a method for frequency line tracking in the lofargram using HMM, however 
this method is only applicable to the case where a single frequency line trace exists. Barrett and 
Holdsworth [12] combined the amplitude and phase information of the signal spectrum to present a 
more accurate frequency line tracking method. Van and Alinat [13] extended the method based on 
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Traditional approaches for frequency line tracking have been based on alpha-beta or Kalman
filter-based trackers. When performing frequency line tracking, it is usually based on nearest neighbor
logic. When using such methods for frequency line tracking, the latter half usually needs to filter
the most suitable frequency points through nearest neighbor clustering. That is to say, the detected
frequency line consists of the frequency points with the highest signal-to-noise ratio (SNR) close to the
real frequency line. For example, the literature [1,2] first performs outlier point detection on the data of
each time frame in the lofargram, and then clusters the detected outlier points from the time dimension.
Under certain conditions of SNR, these methods can effectively detect and track the frequency line.
While the above methods cover the mechanism for state estimation in the tracker, they do not describe
the data association logic. Frequency line tracking can also be performed using methods based on
image processing [3]. The method based on image processing mainly treats the lofargram as an image
and transforms the extraction of the frequency lines into the detection of the edge information in the
image. Abel et al. [4] proposed a frequency line detection method based on image processing and
machine vision. Gillespie [5] first smooths the spectrogram using a Gaussian filter and then extracts the
frequency line information using an edge detection algorithm. In the literature [6], lofargram is firstly
denoised by nonlinear enhancement and convolution denoising algorithms, and then the frequency
lines are extracted from lofargram using the characteristics of frequency lines. In the case of low SNR,
the frequency line information is likely to be lost during the image conversion. Therefore, the effect of
frequency line extraction of the above method based on image processing may be deteriorated when
the SNR is low.

Many other data association methods are available, particularly for dealing with multiple
targets [7]. These include assignment algorithms, joint probabilistic data association (JPDA) [8],
multiple hypothesis tracking (MHT) [9] and Viterbi data association [10]. All of these methods assume
that the state space is continuous and therefore a Kalman filter can be used to provide the state
estimates. In the case of nonlinear dynamics, various filtering approaches can be applied, such as
extended Kalman filters and Gaussian mixtures. More modern variants include unscented Kalman
filters and particle filters. In contrast to frequency line tracking approaches that utilize a continuous
state space, a different class of approaches is possible for discrete state spaces. In this case, the system
of ordinary differential equations that models the time evolution of the target’s dynamical state is
replaced by a description based on hidden Markov model (HMM). Streit and Barrett [11] proposed
a method for frequency line tracking in the lofargram using HMM, however this method is only
applicable to the case where a single frequency line trace exists. Barrett and Holdsworth [12] combined
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the amplitude and phase information of the signal spectrum to present a more accurate frequency
line tracking method. Van and Alinat [13] extended the method based on the research of Streit and
Barrett [11], and presented a multi-frequency line detection model based on multi-model detection
method. Paris and Jauffret [14,15] elaborated on the method of multi-frequency line tracking using
forward-backward (FB) algorithm and Viterbi algorithm, and gave the mathematical model of the
known and unknown SNR. Based on the work of the predecessors, Pulford and Tyson [16] proposed
a HMM tracking method based on one-dimensional data, which greatly improves the efficiency of
frequency line extraction. Although in the actual products of radar, sonar and video processing systems,
the approaches that utilise a continuous state space are widely used. However, HMM-based frequency
line tracking method has better performance under low SNR conditions and is suitable for tracking
at very low detection thresholds or even on unthresholded data. This advantage of the HMM-based
approach is of great significance for frequency line tracking in passive sonar signals.

The proposed method for detecting multiple frequency lines in lofargram is mainly based on
HMM. Although the literature [13–16] can effectively track frequency lines, the calculation of these
methods is still huge, and it is difficult to adapt to the analysis of data with a large number of frequency
lines. The sensing and tracking algorithm for multiple frequency line components in underwater
acoustic signals proposed in this paper is divided into four steps: (1) data preprocessing, (2) lofargram
segmentation and sub-lofargram screening, (3) HMM-based frequency line tracking, and (4) merging
overlapping frequency lines in different sub-lofargrams. In step 1, the lofargram of the signal is
obtained by time-frequency analysis and background equalization. In step 2, the whole lofargram
is segmented into several sub-lofargrams and the sub-lofargrams with frequency lines are screened
out by statistical analysis of each sub-lofargram. This step can reduce the number of frequency states
at each iteration while ensuring the continuity of frequency states between different sub-lofargrams,
thus greatly reducing the complexity of HMM-based frequency line detection methods. In step 3,
the parameters in HMM are set according to prior information and data in sub-lofargram. Then the
frequency lines in each sub-lofargram are extracted sequentially using HMM-based method. In step 4,
the accurate frequency lines are obtained by merging and screening of the detected frequency lines in
each sub-lofargram based image stitching theory [17] and statistical model method [2]. The tracking
results of simulation data and sea trial data prove that the proposed method can effectively reduce
the amount of calculation and enhance the adaptability to time-varying signals while ensuring the
performance under low SNR conditions.

2. Frequency Line Detection Using HMM

2.1. Elements of Hidden Markov Model

A Hidden Markov Model (HMM) is a probabilistic model for sequential data with an underlying
hidden structure [18]. HMM can usually be characterized by the following five-dimensional set:
{Q, V, A, B, Π}, Q = {q1, q2, . . . , qN} is a collection of all finite states, where N is the number of states;
V = {v1, v2, . . . , vM} is the finite measurement set, where M is the total number of measurements;
A =

[
ai j

]
N×N

is its transition probability matrix, where ai j = Pr(q j at t + 1|qi at t) means the probability
that the chain transitions from state qi at time t to State q j at time t + 1. Note that the transition
probabilities ai j are independent of time t ; B =

[
b j(k)

]
N×M

denote the measurement probability matrix,
where b j(k) = Pr(vk at t|q j at t) ; Π = [π(i)]N is the initial state probability vector of the Markov
chain. Simulation of an HMM measurement sequence of length T, given Π, A, and B, is straight
forward. I = {i1, i2, . . . , iT}, it ∈ Q denotes an arbitrary Markov chain state sequence of length T.
O = {o1, o2, . . . , oT}, ot ∈ V is the measurement sequence, which is the only output from an HMM
simulator. One of the main tasks of this paper is to estimate the sequence of frequency line states.

In the HMM theory, under the condition of the given observation state sequence O and the
corresponding HMM parameters {A, B, Π}, the hidden state sequence I can be efficiently estimated
by using the Viterbi algorithm [18] or the FB algorithm [19]. The former finds the optimal sequence
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for all state sequences, and the estimation result is Î = argmax
I
{P(I|O)}, which has the meaning of the

global optimal solution; The latter finds the maximum likelihood state ît, ît = argmax
n∈N
{P(it = qn|O)}

at each moment by forward-backward joint recursion, and then combines the estimated value ît of
each moment into a sequence of state estimation results I = {î1, î2, . . . , îT}, which has the meaning of a
local optimal solution. When using HMM for frequency line tracking, the whole frequency range is
divided into N frequency cells, the i -th frequency cell is represented as [ fi, fi+1], i = 1, . . . , N, and its
center frequency is recorded as f̃i =

fi+ fi+1
2 . When the spectral frequency f is located in this frequency

interval, the state of the frequency line at this time is regarded as being in state i ; And the power
spectrum data zk = (zk,0, zk,1, . . . , zk,N−1) calculated at different times k is regarded as measurement
information at different times, where zk,i = P(k, f̃i). In the above formula, P(k, f̃i) represents the power
spectral density corresponding to the frequency point f̃i at time k. Under the above conditions, the
frequency line tracking problem in the lofargram is transformed into an estimation problem of the
state in the HMM.

2.2. The Setting of HMM Parameters

In the calculation of the state transition probability matrix A, we assume that the state transition
probability satisfies the Gaussian distribution N

(
x; 0, σ2

x

)
, where σ2

x represents the Gaussian process
noise. According to the above assumption, the probability that the frequency line is shifted from the
frequency state i to j is:

gi j =
1

√
2πσx

∫ f j+1

f j

e
−

( f− f̃i)
2

2σ2
x d f , i, j > 0,

∣∣∣i− j
∣∣∣ ≤ R (1)

where R refers to the maximum offset range of state i, and the probability of exceeding this range
is uniformly set to zero. After normalization, the formula for calculating the elements in matrix A
is obtained:

ãi j =
gi j∑N

k=1 gik
, i, j = 1, . . . , N (2)

As for the measurement probability matrix B, according to the literature [4], when the SNR
is known,

bi(zk) =

I0

(√
4ρkMzk,i

σ2
ε

)
∑N

l=1 I0

(√
4ρkMzk,l

σ2
ε

) (3)

otherwise,

bi(zk) =
z(k, i)∑N

j=1 z(k, j)
(4)

In the above formula, I0 represents a zero-order Bessel function.
In the traditional HMM-based frequency line detection process, since the a priori information of

the frequency line parameters is usually lacking, the initial probability Π is set to be uniform, that is,

π(i) =
1
N

After the above parameters settings, the frequency line can be tracked using the Viterbi algorithm
or the FB algorithm. Although this processing method is suitable for the detection of single frequency
line and the tracking of time-varying frequency line, there are problems such as large calculation
amount and difficulty in detecting multiple frequency lines in global processing. Therefore, we have
improved this method and proposed a set of new processing methods.



Sensors 2019, 19, 4866 5 of 22

3. Improved Multiple Frequency Line Tracking Algorithm Based on HMM

The algorithm consists of four steps, including (1) data preprocessing, (2) lofargram segmentation
and sub-lofargram screening, (3) HMM-based frequency line tracking, and (4) merging overlapping
frequency lines in different sub-lofargrams. The framework of the algorithm is shown in Figure 2.
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In step 1, the lofargram is obtained by Short-time Fourier transform (STFT) on the received signal
of passive sonar [20]. Then background equalization is performed to reduce the effect of background
noise of marine environment. In step 2, the lofargram is segmented into several sub-lofargrams
according to the preset sub-lofargram size and overlapping manner. Next, the number of frequency
points in each sub-lofargram whose amplitude satisfies the threshold condition is counted and the
HMM-based frequency line detection operation is performed only on the sub-lofargrams in which the
number of frequency points is greater than the preset threshold. In step 3, the HMM-based viterbi
algorithm is used to detect multiple frequency lines one by one in the sub-lofargrams screened out in
the previous step, and then store the frequency line detection result of each sub-lofargram. In the last
step, the frequency lines with overlapping parts detected by different sub-lofargrams are merged to
obtain the final multiple frequency line detection results according to image stitching and statistical
model method.

3.1. Data Preprocessing

The first step of data preprocessing is to perform STFT on the received signal using the method
in [20] to obtain lofargram. The signal obtained by the passive sonar contains the target multiple
frequency line components and the background noise of the marine environment. In order to accurately
and reliably acquire multiple frequency lines, it is necessary to perform background equalization
on the signal power spectrum set

{
Tk( f )

}K
k=1 in the lofargram to reduce the interference of noise

on the line spectrum point tracking, where K is the number of power spectrums calculated in time
series and Tk( f ) is the power spectrum at time k. In the case of background equalization, this paper
first estimates the continuously changing noise background

{
Bk( f )

}K
k=1. The estimation methods of

noise background include post-sampling difference fitting, fitting method based on Empirical mode
decomposition (EMD) [21] and fitting method based on regression parameters [22], etc. In this paper,
the noise background estimation of the received signal is performed by the method described in [22].
Then subtract the background noise

{
Bk( f )

}K
k=1 in the power spectrum P(k, f ) to obtain the difference

spectrum
{
Pk( f )

}K
k=1. The specific operation is

Pk( f ) = Tk( f ) − Bk( f ) (5)
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3.2. Lofargram Segmentation and Sub-Lofargram Screening

The process of lofargram segmentation is shown in Figure 3. The whole lofargram is segmented
into several sub-lofargrams. There is a certain degree of overlap between adjacent sub-lofargrams in
the horizontal direction (frequency direction) and the vertical direction (time direction). The size of the
overlapping area of adjacent sub-lofargram is determined by actual needs. After processing, the whole
lofargram is segmented into multiple small sub-lofargrams.
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Figure 3. The segmentation of lofargram.

In order to reduce the amount of calculation during frequency line tracking, sub-lofargram
screening is required before HMM-based frequency line tracking, and sub-lofargrams containing only
noise signal will not be processed by further frequency line detection. The specific sub-lofargram
screening operation is as follows.

A high false alarm decision is made on the difference spectrum
{
Pk( f )

}K
k=1 using a preset threshold

{Dk}
K
k=1. Here Pk( f ) is the power difference spectrum at time k in each sub-lofargram. Then count the

number of frequency points in each sub-lofargram that satisfy the decision condition. If the number
is greater than a preset threshold spotnummin, it is determined that there is a frequency line in the
sub-lofargram, and the sub-lofargram is marked as a sub-lofargram to be processed; Otherwise, the
sub-lofargram will be culled and no frequency line extraction will be performed on it. Figure 4 shows
the flow of lofargram segmentation and sub-lofargram screening.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 22 

 

3.2. Lofargram Segmentation and Sub-Lofargram Screening 

The process of lofargram segmentation is shown in Figure 3. The whole lofargram is 

segmented into several sub-lofargrams. There is a certain degree of overlap between adjacent 

sub-lofargrams in the horizontal direction (frequency direction) and the vertical direction (time 

direction). The size of the overlapping area of adjacent sub-lofargram is determined by actual needs. 

After processing, the whole lofargram is segmented into multiple small sub-lofargrams. 

Frequency(Hz)

T
im

e(
s)

T
im

e(
s)

Frequency(Hz) Frequency(Hz)

Frequency(Hz) Frequency(Hz)

T
im

e(
s)

T
im

e(
s)

T
im

e(
s)

Segmentation

The whole lofargram Four Sub-lofargrams

Sub-lofargram

 (1,1)

Sub-lofargram

 (1,2)

Sub-lofargram

 (2,1)

Sub-lofargram

 (2,2)

Lofargram

Overlapping area

O
v
er

la
p
p
in

g
 a

re
a

 

Figure 3. The segmentation of lofargram. 

In order to reduce the amount of calculation during frequency line tracking, sub-lofargram 

screening is required before HMM-based frequency line tracking, and sub-lofargrams containing 

only noise signal will not be processed by further frequency line detection. The specific 

sub-lofargram screening operation is as follows. 

A high false alarm decision is made on the difference spectrum {𝑃𝑘(𝑓)}𝑘=1
𝐾  using a preset 

threshold {𝐷𝑘}𝑘=1
𝐾 . Here 𝑃𝑘(𝑓) is the power difference spectrum at time 𝑘 in each sub-lofargram. 

Then count the number of frequency points in each sub-lofargram that satisfy the decision condition. 

If the number is greater than a preset threshold 𝑠𝑝𝑜𝑡𝑛𝑢𝑚𝑚𝑖𝑛 , it is determined that there is a 

frequency line in the sub-lofargram, and the sub-lofargram is marked as a sub-lofargram to be 

processed; Otherwise, the sub-lofargram will be culled and no frequency line extraction will be 

performed on it. Figure 4 shows the flow of lofargram segmentation and sub-lofargram screening. 

Frequency(Hz)

T
im

e(
s)

Lofargram

Frequency line

Frequency(Hz)

T
im

e(
s)

Frequency(Hz)

Frequency(Hz) Frequency(Hz)

T
im

e(
s)

T
im

e(
s)

T
im

e(
s)

Segmentation

Frequency(Hz)

Frequency(Hz) Frequency(Hz)

T
im

e(
s)

T
im

e(
s)

T
im

e(
s)

The excluded sub-lofargram
 

Figure 4. The segmentation of lofargram and sub-lofargram screening. 

3.3. HMM-Based Frequency Line Tracking 

After the lofargram is segmented and sub-lofargrams are screened, HMM-based frequency line 

tracking is then performed. In order to improve the efficiency of multi-frequency line detection, 

according to the difference of power spectrum amplitude between different frequency lines in each 

sub-lofargram, the Viterbi algorithm is used to sequentially extract a single frequency line until all 

existing frequency lines are extracted and stored. 

Figure 4. The segmentation of lofargram and sub-lofargram screening.

3.3. HMM-Based Frequency Line Tracking

After the lofargram is segmented and sub-lofargrams are screened, HMM-based frequency line
tracking is then performed. In order to improve the efficiency of multi-frequency line detection,
according to the difference of power spectrum amplitude between different frequency lines in each
sub-lofargram, the Viterbi algorithm is used to sequentially extract a single frequency line until all
existing frequency lines are extracted and stored.
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Before performing frequency line extraction, it is necessary to preset the maximum number of
frequency lines L in the sub-lofargram to be detected according to the prior information. When
performing frequency line tracking, it is assumed that there is only one frequency line in the
sub-lofargram. Only one most likely frequency line is taken from the sub-lofargram at this time as the
current frequency line tracking result. When tracking the next frequency line, the detected frequency
line needs to be deleted from the sub-lofargram, and then the frequency lines is tracked in the generated
new sub-lofargram until all possible L frequency lines are detected. The HMM-based frequency line
tracking process is shown in Figure 5.
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In the figure, p, q represents the sub-lofargram number, p = 1, 2, . . . , P means the pth sub-lofargram
in time direction, q = 1, 2, . . . , H means the qth sub-lofargram in frequency direction. l = 1, 2, . . . , L
is the frequency line number in each sub-lofargram.

The processing method of each step will be described in detail below.

3.3.1. Frequency Line Extracting

Using the Viterbi algorithm to perform frequency line extracting on the processed sub-lofargram
first needs to initialize the initial state distribution probability of the sub-lofargram. Since the temporally
adjacent sub-lofargrams are related to each other, the processing result of the previous sub-lofargrams
can be used as a priori information to set the initial probability of the unprocessed sub-lofargrams. If
the sub-lofargrams to be processed has adjacent processed sub-lofargrams in the vertical direction

(time direction), π(i) = P(xp,q−1
K = i

∣∣∣∣zp,q−1
1 , . . . , zp,q−1

K ), otherwise π(i) = 1
N .

For sub-lofargram with number (p, q), in order to obtain the most likely sequence of states, first
import two variables δ and θ. Defining the maximum probability of all single paths with state i at time
k is

δk(i) = δk
(
xp,q

k = i
)
= maxP

(
xp,q

k = i, xp,q
k−1, . . . , xp,q

1 , zp,q
k , . . . , zp,q

1

∣∣∣λ)i = 1, 2, . . . , N (6)
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In order to generate the final state sequence, the (k− 1)th node defining the path with the highest
probability among all the single paths with the state i at time k is

θk(i) = argmax
[
δk−1( j)a ji

]
, i = 1, 2, . . . , N (7)

Next, the optimal frequency line trajectory is obtained by iterating through the Viterbi algorithm
as follows.

1. Calculate the HMM parameters {A, B, Π} according to the parameter setting method described in
the first section. Initialize the variables δ and θ corresponding to all states in the state space.

δ1(i) = π(i)P
(
zp,q

1

∣∣∣xp,q
1 = i

)
= π(i)bi

(
zp,q

1

)
, i = 1, 2, . . . , N (8)

θ1(i) = 0, i = 1, 2, . . . , N (9)

2. Recursive backward, for each state j at time k = 2, 3, · · · , K, δk( j) is calculated and its previous
state is stored.

δk( j) = max
1≤i≤N

[
δk−1(i)ai j

]
P
(
zp,q

k

∣∣∣xp,q
k = j

)
= max

1≤i≤N

[
δk−1(i)ai j

]
b j
(
zp,q

k

)
, j = 1, 2, . . . , N (10) (10)

θk( j) = argmax
1≤i≤N

[
δk−1(i)ai j

]
, j = 1, 2, . . . , N (11)

3. After the recursion is completed, the state estimate at time K is found by maximizing δK( j), and
the path of the final state is traced back to the initial time by the backward pointer stored in θK.

P∗ = max
1≤ j≤N

δK
(
xp,q

K = j
)

(12)

x̂p,q
K = argmax

1≤ j≤N
[δK( j)] (13)

4. Backtracking to get the optimal path. For k = K − 1, K − 2, . . . , 1,

x̂p,q
k = θk+1

(
x̂p,q

k+1

)
(14) (14)

The current detection frequency line of the sub-lofargram with number (p, q) is

Xp,q =
(
x̂p,q

1 , x̂p,q
2 , . . . , x̂p,q

K

)
5. The amplitude-based decision method is used to determine the start, end time and trajectory

rationality of the detected trajectory.

According to the Viterbi algorithm, an optimal frequency line from time frame 1 to time frame K
can be obtained after step 1~4. However, the frequency points on the detected frequency lines are not
necessarily generated by the actual narrowband signals. Therefore, it is necessary to make a second
decision point by point on all frequency points on the frequency line. Assuming that the frequency of
the point to be determined is f̂m, the neighborhood of the M point is expressed as

[
f̂m −M, f̂m + M

]
,

and the power spectral density corresponding to the frequency point in the neighborhood is denoted
as Pl. According to the local 3σ criterion, the frequency line point rationality and the trajectory start
and end time are determined as follows.

Pk
(

f̂m
)
=

 Frequency line point, Pk
(

f̂m
)
≥ Pl + 3σS

False alarm, Pk
(

f̂m
)
≤ Pl + 3σS

(15)

where Pl is the average of the power spectral density corresponding to the 2M frequency points
contained in the f̂m neighborhood

[
f̂m −M, f̂m + M

]
.
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3.3.2. Frequency Line Storage

According to the position of the frequency line in the sub-lofargram, the frequency point
that satisfies the condition is stored in the set Wp,q =

{
Wp,q

l

}
, where l = 1, . . . L ; Wp,q

l ={
Wp,q

total, Wp,q
local, Wp,q

right, Wp,q
down

}
. The storage of line points in Wp,q

l is related to the way the sub-lofargrams

overlap. When the horizontal overlapping length is NH frequency points and the vertical direction
overlaps KV time frames, the components of Wp,q

l are defined as follows.
Wp,q

local stores the frequency points in the middle of the sub-lofargram among these frequency points,

Wp,q
local =

{[
k, spotl

p,q(k)
]
, s.t. spotl

p,q(k) = x̂p,q
k

}
(16)

In the above formula,

x̂p,q
k ∈ Xp,q, NH/2 < x̂p,q

k ≤ N −NH/2&KV/2 < k ≤ K −KV/2

Wp,q
down stores the frequency points on the underside of the sub-lofargram among these frequency

points,
Wp,q

right =
{[

k, spotl
p,q(k)

]
, s.t. spotl

p,q(k) = x̂p,q
k

}
(17)

In the above formula,

x̂p,q
k ∈ Xp,q, x̂p,q

k > N −NH/2&KV/2 < k ≤ K −KV/2

Wp,q
down stores the frequency points on the underside of the sub-lofargram among these

frequency points,
Wp,q

down =
{[

k, spotl
p,q(k)

]
, s.t. spotl

p,q(k) = x̂p,q
k

}
(18)

In the above formula,

x̂p,q
k ∈ Xp,q, NH/2 < x̂p,q

k ≤ N −NH/2&k > K −KV/2

Wp,q
total stores all the frequency points in the trajectory detection that meet the conditions,

Wp,q
total =

{
Wp,q

local, Wp,q
right, Wp,q

down

}
(19)

In
[
k, spotl

p,q(k)
]
, k is the time frame number of the trajectory line point; spotl

p,q(k) represents the
detected frequency position of the lth frequency line of the sub-lofargram whose position number is
(p, q) when the time is k. That is to say, spotl

p,q(k) is numerically equal to x̂p,q
k .

The position of the above-mentioned frequency point set in a sub-lofargram is as shown in
Figure 6.

3.4. Merging Overlapping Frequency Lines in Different Sub-Lofargrams

Finally, the frequency lines detected by all sub-lofargrams are combined by image stitching [17] and
statistical model method [2]. Since there is a certain degree of overlap in the frequency domain direction
and the time domain direction when the lofargram is segmented, the Wp,q

total in the frequency point set
Wp,q

l of all the sub-lofargrams is merged together to form a complete frequency line detection result.
The main difficulty in frequency line merging is to determine the correspondence between different

frequency lines of adjacent sub-lofargrams. In this paper, each sub-lofargrams is treated as a sub-image,
and the final frequency line merge result is the result of image mosaic of different sub-images.

The process of merging overlapping frequency lines in different sub-lofargram is shown in
Figure 7.
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Figure 7. Merging overlapping frequency lines in different sub-lofargram.

It can be seen from the above figure that in the process of merging overlapping frequency lines,
the overlapping frequency lines in adjacent sub-lofargrams in the horizontal direction (frequency
direction) are first merged. Then we merge the overlapping frequency lines in adjacent sub-lofargrams
in the vertical direction (time direction). The specific operations of sub-lofargram alignment and
sub-lofargram fusion are described in detail below.

3.4.1. Sub-Lofargram Alignment

In the image alignment process, image alignment is performed on adjacent sub-lofargram by
using the spatial domain-based template matching method. In the process of registration of adjacent
sub-lofargrams, it is necessary to extract feature points of overlapping portions of adjacent images
and form feature point pairs. Here, the frequency point of the overlapping portion of adjacent
sub-lofargrams detected previously is taken as the feature point. The distance matrix between the
different frequency lines of the adjacent sub-lofargrams is calculated to perform image feature point
matching, that is, frequency line matching. The definition of the frequency line distance matrix is
as follows:
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Ji−1,i =


∆11 ∆12 · · · ∆1Li

∆21 ∆22 · · · ∆2Li
...

...
. . .

...
∆Li−11 ∆Li−12 · · · ∆Li−1Li

 (20)

where Li represents the number of frequency lines detected by the i -th sub-lofargram, and ∆ ji−1ri

represents the distance between the j -th frequency line of the (i− 1) -th sub-lofargram and the r -th
frequency line of the i -th sub-lofargram. The calculation method of ∆ ji−1ri is related to the way the
frequency lines is merged.

When the frequency lines are horizontally merged, that is, combined in the frequency direction,
the two sub-lofargrams to be feature point matching are left and right adjacent in the whole lofargram.

The calculation of ∆ ji−1ri is related to Wp,q
local of the r -th frequency line of the (i− 1) -th sub-lofargram

and Wp,q−1
right of the j -th frequency line of the i -th sub-lofargram. Its value is the average of the frequency

differences of frequency points of the same time frames in the two frequency point sets.

∆ ji−1ri =

∑spotnum
s=1

∣∣∣∣spot j
i−1(ks) − spotr

i (ks)
∣∣∣∣

spotnum
(21)

[
ks, spot j

i−1(ks)
]
∈Wp−1,q

down ; Wp−1,q
down ∈Wp−1,q

j ;
[
ks, spotr

i (ks)
]
∈Wp,q

local; Wp,q
local ∈Wp,q

r (22)

In the above formula, spotnum is the number of frequency points with the same time frame among
the two frequency lines; spotr

i (ks) is the frequency position of the s -th frequency of the r -th track of the
i -th sub-lofargram with the same time frame. The range of s is 1 ≤ s ≤ spotnum. ks is the time frame
number of the frequency point on the frequency line.

After the frequency line distance matrix is calculated, the sub-lofargram feature points can be
matched by using the elements in the matrix, that is, the frequency lines in adjacent sub-lofargrams are
matched. The matching process is as follows:

Extract the j -th line of the distance matrix Ji−1,i and record it as

V j = Ji−1,i( j, :) =
(
∆ j1, ∆ j2, ∆ j3, . . . , ∆ jLi

)
, 1 ≤ j ≤ Li−1 (23)

Find the minimum value in V j and determine if this value is still the minimum value in the
corresponding column of the frequency line distance matrix. If this condition is met, the j-th frequency
line in (i− 1) -th sub-lofargram and the r -th frequency line in i -th sub-lofargram are the best matching
frequency lines in the two sub-lofargrams. If the minimum value is less than the preset frequency
fluctuation threshold, it indicates that the two frequency lines are successfully matched and can form a
feature point pair. After the feature point pair is successfully matched, all elements of the j -th row
corresponding to the frequency line distance matrix and all elements of the r -th column are set to a
large value. Then iteratively recalculates the next pair of feature points until all matching frequency
lines are found.

3.4.2. Sub-Lofargram Fusion

After the matching of the feature points of the adjacent sub-lofargrams, the image alignment work
is completed. Next, sub-lofargram fusion is performed, mainly to fuse the frequency point set Wp,q of
two adjacent sub-lofargrams. Figure 8 shows the process of frequency line fusion.

In the process of horizontal sub-lofargram fusion, that is, when Wp,q−1 and Wp,q are merged, the
successfully matched frequency lines Wp,q−1

j and Wp,q
r are first merged.

When merging matched Wp,q−1
j and Wp,q

r , the Wtotal, Wlocal, Wdown parts of the two frequency lines
are merged by the direct averaging method. After the combination, the W j corresponding position line
spectral point data is re-assigned and stored. That is
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[
k, s̃pot

j
i−1(k)

]
=


[
k, spot j

i−1(k)
]
, &spot j

i−1(k) ∈Wp,q−1
symbol[

k,
[
spot j

i−1(k) + spotr
i (k)

]
/2

]
, spot j

i−1(k), spotr
i (k) ∈Wp,q−1

symbol ∩Wp,q
symbol[

k, spotr
i (k)

]
, &spotr

i (s, k) ∈Wp,q
symbol

(24)

Wp,q−1
symbol =

{[
k, s̃pot

j
i−1(k)

]}
(25)

where, symbol ∈ {total, local, down}.
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𝑝−1,𝑞
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𝑝−1,𝑞
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Then replace the Wp,q−1
right part of Wp,q−1

j with Wp,q
right of Wp,q

r .

Finally, the unmatched frequency points in Wp,q are added to Wp,q−1, and the fusion of the
matching frequency lines is completed. That is

Wp,q−1
Lp,q−1+lnum = Wp,q

lnum, 1 ≤ lnum ≤ Lnum (26)

where, lnum is the unmatched frequency line number in sub-lofargram (p,q), and Lnum is the number of

unmatched frequency lines. After updating Lp,q−1 to Lp,q−1 + Lnum, the resulting Wp,q−1 =
{
Wp,q−1

lp,q−1

}
, 1 ≤

lp,q−1 ≤ Lp,q−1 is the result of combining the frequency line sets. PHWp,q obtain P horizontally merged
track sets W1 =

{
Wp,1

}
, 0 < p ≤ P after the horizontal track sub-image stitching is completed.

The alignment and fusion of sub-lofargram in the vertical direction is basically the same as the
process in horizontal direction.

The difference is that in the frequency line matching process, the frequency line distance matrix is
generated by using the Wp,1

local part of Wp,1
r and the Wp−1,1

down part of Wp−1,1
j ; When the frequency lines

are combined, the Wtotal, Wlocal, Wright portions of the two frequency line sets are matched and stored

in the corresponding position of Wp−1,1
j . Then, the Wp−1,1

down part of Wp−1,1
j is replaced by Wp,1

down of Wp,1
r

to complete the fusion of the vertical matching frequency lines. Finally, the unmatched frequency
lines in Wp,1 are added to Wp−1,1, and Wp−1,1 is the result of the frequency line merging of adjacent
sub-lofargram in horizontal direction. The W1,1 obtained after iterative merging is the final result of
frequency line merging.

Then, the final frequency line merging result is judged again to eliminate the fusion frequency line
whose frequency line length does not satisfy the condition. The retained track is the result of tracking
multiple frequency lines.

4. Performance Evaluation

4.1. Calculation Analysis

In the above frequency line detection process, the main calculation amount is distributed in the
process of extracting the frequency line by using the Viterbi algorithm. If the conventional Viterbi
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algorithm is used for extraction one frequency line in an lofargram of N×K dimension, the total number
of multiplications is (5K − 4)N2 + (K + 1)N, the total addition numberis (3K − 2)N2 + (2− 3K)N, and
the total number of assignments is 3KN. The N ×K dimension indicates that there are K time frames in
the time direction of lofargram and N frequency points in the frequency direction of lofargram.

(1) The following is a calculation amount analysis when extracting multiple frequency lines in a
lofargram with N × K dimension by using the method proposed in this paper. Assume that
the number of preset frequency lines in the lofargram is L. Let each sub-lofargram contain KM

time frames and ND frequency points. The overlap mode is set to overlap 1/2 sub-lofargram in
both the time direction and the frequency direction. At this time, the number of sub-lofargrams
divided in the frequency direction is D = 2N/ND − 1 ; the number of sub-lofargrams divided in
the time direction is M = 2K/KM − 1. The preset number of frequency lines for frequency line
extracting in a sub-lofargram grid is LND/N. When performing frequency line extraction operation
in one sub-lofargram, the number of multiplications is LND

N

(
(5KM − 4)ND

2 + (KM + 1)ND
)
, the

number of additions is LND
N

(
(3KM − 2)ND

2 + (2− 3KM)ND
)

and the number of assignments is
LND

N (3KMND). Since there are a total of D×M sub-lofargrams, when using the method proposed
in this paper for frequency line extracting in sub-lofargrams, the total number of multiplications is

CalMul =
(2N −ND)(2K −KM)L

NKM

[
(5KM − 4)ND

2 + (KM + 1)ND
]

(27)

the total number of additions is

CalAdd =
(2N −ND)(2K −KM)L

NKM

[
(3KM − 2)ND

2 + (2− 3KM)ND
]

(28)

the total number of assignments is

CalAssign =
(2N −ND)(2K −KM)L

N
(3ND) (29)

According to the above formula, when KM � K and ND � N, the algorithm complexity in
frequency line tracking is o

(
KLND

2
)
. The computational complexity in merging overlapping

frequency lines in different sub-lofargrams is mainly concentrated in the calculation of the distance
divergence matrix, and the algorithm complexity of this part is o

(
L2

)
. Therefore, the algorithm

complexity of the proposed method is about o
(
KLND

2 + L2
)
.

(2) If the traditional HMM-based method is used to extract the frequency lines in lofargram under
the same conditions. As L frequency lines are to be extracted in the entire lofargram, the total
number of multiplications is

CaltrMul = L
[
(5K − 4)N2 + (K + 1)N

]
(30)

the total number of additions is

CaltrAdd = L
[
(3K − 2)N2 + (2− 3K)N

]
(31)

the total number of assignments is

CaltrAssign = 3LKN (32)

Therefore, the algorithm complexity of the traditional method in frequency line tracking is about
o
(
KLN2

)
.
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According to the analysis of (1) and (2), the algorithm complexity of the proposed method is about
o
(
KLND

2 + L2
)

and the algorithm complexity of the traditional method in frequency line tracking is

about o
(
KLN2

)
. Since L� N and ND are in multiple relationship with N, The method proposed in this

paper obviously has lower algorithm complexity.
Replace ND and KM in the case of (1) with 2N/D + 1 and 2K/M + 1, and the formula (27) to (29)

is converted to

CalMul = 16L
DM

(D + 1)(M + 1)

(5K − 2(M + 1))
N2

(D + 1)2 +
(
K +

M + 1
2

)N
2

 (33)

CalAdd = 16L
DM

(D + 1)(M + 1)

(3K − 2(M + 1))
N2

(D + 1)2 + (M + 1− 3K)
N
2

 (34)

CalAssign =
8DM ∗ 3LKN

(D + 1)2(M + 1)
(35)

When M � 1, D � 1 and M � K, DM
(D+1)(M+1) ≈ 1. In this case, the approximate calculation

amount of the frequency line extraction process using two algorithms is as shown in Table 1.

Table 1. Comparison of the approximate calculation amount of the frequency line extraction process
using the method proposed in this paper and traditional HMM-based method.

Operation Method Proposed in This Paper Traditional HMM-Based Method

Multiplication 16L
(

5KN2

(D+1)2 +
KN
2

)
L
(
5KN2 + KN

)
Addition 16L

(
3KN2

(D+1)2 −
3KN

2

)
L
(
3KN2

− 3KN
)

Assignment 8∗3LKN
(D+1) 3LKN

As can be seen from the above table, under ideal conditions, the calculation amount of the
traditional HMM-based method is about D2/16 times that of the method proposed in this paper.

However, in the whole frequency line tracking process, the proposed method also includes the
processes of sub-lofargram alignment and sub-lofargram fusion etc. These steps also increase the
amount of calculation when the algorithm is executed. Next, the actual execution time of the two
different algorithms was measured on the MATLAB simulation platform.

During the simulation, a set of simulation signals with a sampling rate of 10 kHz are generated,
and the background noise is colored noise. The lofargram to be detected contains a total number
of time frames of 100 (time span of 80 s), a total frequency state number of 2816 (frequency span of
1719 Hz), and a preset number of existing frequency lines of 20. When using the method of this paper,
each sub-lofargram is 40 × 512 dimensions, that is, there are 40 time frames in the time direction (time
span is 32 s), and there are 512 frequency points in the frequency direction (frequency span is 312 Hz).
The overlap time frame length between adjacent sub-lofargram is 20, and the overlap frequency point
length is 256. Under this condition, the total execution time of the algorithm is approximately 11.4 s.
The time taken to perform frequency line tracking using the traditional HMM-based method is about
44.0 s. According to the above time-consuming comparison, we can conclude that the frequency line
tracking method proposed in this paper is much more computationally efficient than the traditional
HMM-based method.

4.2. Detection Performance Comparison

A set of simulated signals is generated whose background noise is colored noise. The sampling
rate of the signal is 10 kHz. The number of frequency line signals included in the simulation signal is
L = 4. The frequency lines near the frequency of 300 Hz are continuous frequency lines with fluctuations,
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and the frequency lines around the frequencies of 100 Hz, 200 Hz, and 400 Hz are pulsed time-varying
frequency lines. Each sub-lofargram has a size of 40 time frames (time span of 32 s) and 512 frequency
points (frequency span of 312 Hz). The overlap time frame length between adjacent sub-lofargram is 20,
and the overlap frequency point length is 256. The SNR after background equalization is taken as −20 dB.

Figure 9 shows the original power spectrum of a certain frame of data and the difference spectrum
obtained after background equalization.Sensors 2019, 19, x FOR PEER REVIEW 15 of 22 
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Figure 9. Comparison of power spectrum data: (a) Before background equalization; (b) After
background equalization.

Since the simulated frequency line signals only exist in the low frequency part, in order to display
the frequency line extraction result more intuitively, the analysis of the lofargram is mainly concentrated
in the rectangular lofargram with the frequency range of 0~782 Hz and the time range of 0~65 s.
The lofargram obtained after background equalization is shown in Figure 10.
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Figure 10. Lofargram after background equalization.

The lofargram is segmented as shown in Figure 11.
A high false alarm decision is made for each frequency point in the lofargram above, and the

binarized lofargram obtained after the decision and the screening result are shown in Figure 12.
In the above figure, each white point indicates the frequency point that satisfies the initial detection

condition. The number of white points in each sub-lofargram in the graph is then compared to a preset
threshold to screen out the sub-lofargram for which frequency line detection is required. The area
selected by the blue wire is the area where the selected sub-lofargrams exist.
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In the original lofargram, the location of the sub-lofargram that requires frequency tracking is
shown in Figure 13.
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In the above figure, the blue line selection area is the area of the sub-lofargram to be processed
in the original lofargram. When the frequency line in the sub-lofargram is tracked using the Viterbi
algorithm, the model parameters are set as described in Section 2.2. The elements in the state transition
matrix A satisfy a Gaussian distribution with a mean of 0 and a variance of 1.

Figure 14 shows the frequency line extraction results of six adjacent sub-lofargrams.Sensors 2019, 19, x FOR PEER REVIEW 17 of 22 
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Figure 14. Line tracking results from sub-lofargram (1,1) to sub-lofargram (2,3): (a) Sub-lofargram 
(1,1); (b) Sub-lofargram (1,2); (c) Sub-lofargram (1,3); (d) Sub-lofargram (2,1); (e) Sub-lofargram (2,2); 
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Figure 14. Line tracking results from sub-lofargram (1,1) to sub-lofargram (2,3): (a) Sub-lofargram
(1,1); (b) Sub-lofargram (1,2); (c) Sub-lofargram (1,3); (d) Sub-lofargram (2,1); (e) Sub-lofargram (2,2);
(f) Sub-lofargram (2,3).
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Finally, the frequency line detection result of the rectangular simulated lofargram with the
frequency range of 0~782 Hz and the time range of 0~65 s is shown in Figure 15.Sensors 2019, 19, x FOR PEER REVIEW 18 of 22 
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The blue curve in the above figure is the detected frequency line. It can be seen that the method
proposed in this paper has good detection performance for different types of frequency line signals.
When the SNR after background equalization is −24dB, the comparison of the frequency line detection
result between traditional HMM-based method and the method proposed in this paper is shown in
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Figure 16. Line detection result of different method: (a) Traditional HMM-based method; (b) The
method proposed in this paper.

It can be seen from the above comparison figure that the proposed method can not only effectively
reduce the amount of calculation, but also has better adaptability to the pulse signal that may exist.

Figure 17 shows the results of the detection of the cross-frequency line components contained
in the signal using the proposed methods in this paper under a SNR of −20 dB after background
equalization. The test results show that this method still has good detection performance for signals
containing complex frequency line components.
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Figure 17. Detection result of the cross-signal: (a) Lofargram after background equalization; (b) The
detection result.

In order to more intuitively compare the performance of different types of algorithms, define the
probability of detection and the probability of false alarms as follows

PD =
Number of detected frequency points

Number of real frequency points
× 100% (36)

PF =
Number of error detections

Total number of detected points
× 100% (37)

Algorithmic performance evaluation was performed using four frequency lines around 100, 200,
300, and 500 Hz in the simulated lofargram above. When the line-spectrum SNR is −36~−20dB,
the performance curve corresponding to the proposed method in this paper and the conventional
pre-detection clustering method [1,2] is shown in Figure 18.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 22 

 

 
(a) 

 
(b) 

  

Figure 17. Detection result of the cross-signal: (a) Lofargram after background equalization; (b) The 
detection result. 

In order to more intuitively compare the performance of different types of algorithms, define 
the probability of detection and the probability of false alarms as follows 𝑃஽ = Number of detected frequency pointsNumber of real frequency points × 100%  (36) 

𝑃ி = Number of error detectionsTotal number of detected points × 100%  (37) 

Algorithmic performance evaluation was performed using four frequency lines around 100, 
200, 300, and 500 Hz in the simulated lofargram above. When the line-spectrum SNR is −36~−20dB, 
the performance curve corresponding to the proposed method in this paper and the conventional 
pre-detection clustering method [1,2] is shown in Figure 18. 

 
(a) 

 
(b) 

  

Figure 18. Performance comparison between the proposed method in this paper and pre-detection 
clustering method: (a) The detection probability curve; (b) The false alarm probability curve. 

As can be seen from the above performance comparison, the proposed method has better 
tracking frequency line capability under low SNR conditions than the conventional clustering 
method. 

Th
e 

pr
ob

ab
ilit

y 
of

 d
et

ec
tio

n

Th
e 

pr
ob

ab
ilit

y 
of

 fa
ls

e 
al

ar
m

s

Figure 18. Performance comparison between the proposed method in this paper and pre-detection
clustering method: (a) The detection probability curve; (b) The false alarm probability curve.

As can be seen from the above performance comparison, the proposed method has better tracking
frequency line capability under low SNR conditions than the conventional clustering method.

When the SNR is −36~−20dB, the detection probability curve and the false alarm probability
curve of the proposed method and traditional HMM-based method are as shown in Figure 19.
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Figure 19. Performance Comparison of the proposed method in this paper and traditional
HMM-based method between different method: (a) The detection probability curve; (b) The false alarm
probability curve.

It can be seen from Figure 19 that under the condition of weak time-varying signals, the false alarm
probabilities of the two meshing methods are basically the same. The proposed method enhances
the connection between adjacent sub-lofargrams, effectively increases the detection probability and
improves the spectral line detection performance. However, the amount of calculation by this method
has also increased. In the actual frequency line detection process, the amount of overlap needs to be
determined according to the specific situation.

Figure 20 shows the detection results of multiple frequency lines of sea trial data. It can be seen
from the figure that the method has extracted a total of 23 frequency lines in the lofargram generated by
the sea trial data, and the maximum number of frequency lines extracted at the same time frame is 10.
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Figure 20. Frequency line tracking results of sea trial data: (a) Initial lofargram; (b) Tracking results.

Figure 21 shows the frequency line detection results of the hydrophone monitoring signal when a
motorboat passes over the water. Since the frequency line components contained in such signals are
more complex, we can extract more frequency lines in this figure than in Figure 20. In this figure, we
extracted a total of 36 frequency lines, and the maximum number of frequency lines extracted at the
same time frame is 13. According to the figure, in addition to extracting the frequency line containing
the information of the motorboat, the proposed method has extracted the intermittent pulse signal (the
frequency line in the red circle in the figure) existing at the time of signal acquisition.

It can be seen from the processing results of Figures 20 and 21 that the proposed method has good
detection performance for the frequency line components in the complex actual signal.
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Figure 21. Line extraction in the actual signal containing the pulse signal component: (a) Initial
lofargram; (b) Tracking results.

5. Conclusions

Combining image stitching and a statistical model method, a sensing and tracking algorithm
of multiple frequency lines in lofargram based on HMM is proposed in this paper. Compared with
traditional frequency line detection and tracking methods, the algorithm achieves good detection
performance for multiple weak and time-varying frequency lines while ensuring computational
efficiency. The processing results of simulation and sea trial data verify the effectiveness of the
proposed method. Therefore, it can be concluded that the proposed algorithm can be used for detecting
multiple frequency line components in water acoustic signals under low SNR conditions, which
provides theoretical and technical support for frequency line sensing and tracking of underwater
acoustic unmanned platforms.
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