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ABSTRACT
Background  Pancreatic cancer (PAC) is one of the 
most malignant cancer types and immunotherapy has 
emerged as a promising treatment option. PAC cells 
undergo metabolic reprogramming, which is thought to 
modulate the tumor microenvironment (TME) and affect 
immunotherapy outcomes. However, the metabolic 
landscape of PAC and its association with the TME remains 
largely unexplored.
Methods  We characterized the metabolic landscape of 
PAC based on 112 metabolic pathways and constructed 
a novel metabolism-related signature (MBS) using data 
from 1,188 patients with PAC. We evaluated the predictive 
performance of MBS for immunotherapy outcomes in 
11 immunotherapy cohorts from both bulk-RNA and 
single-cell perspectives. We validated our results using 
immunohistochemistry, western blotting, colony-formation 
assays, and an in-house cohort.
Results  MBS was found to be negatively associated 
with antitumor immunity, while positively correlated with 
cancer stemness, intratumoral heterogeneity, and immune 
resistant pathways. Notably, MBS outperformed other 
acknowledged signatures for predicting immunotherapy 
response in multiple immunotherapy cohorts. Additionally, 
MBS was a powerful and robust biomarker for predicting 
prognosis compared with 66 published signatures. Further, 
we identified dasatinib and epothilone B as potential 
therapeutic options for MBS-high patients, which were 
validated through experiments.
Conclusions  Our study provides insights into the 
mechanisms of immunotherapy resistance in PAC and 
introduces MBS as a robust metabolism-based indicator 
for predicting response to immunotherapy and prognosis 
in patients with PAC. These findings have significant 
implications for the development of personalized 
treatment strategies in patients with PAC and highlight 
the importance of considering metabolic pathways and 
immune infiltration in TME regulation.

BACKGROUND
Pancreatic cancer (PAC) is one of the most 
aggressive and lethal cancer types worldwide. 
Although most patients have already devel-
oped metastasis at initial diagnosis, surgical 
resection is the primary treatment for PAC.1 

While chemotherapy and radiotherapy 
represent alternative treatment options, 
little progress has been made in improving 
patient outcome in recent decades. Immu-
notherapy has ushered in a novel approach, 
with immune checkpoint inhibition relieving 
tumor-infiltrating lymphocytes (TILs) 
suppression, thus leading to the enhanced 
activation of TILs and subsequent tumor cell 
clearance.2 3 Nevertheless, there are less than 
20% of patients with cancer benefit from 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The existing biomarkers presently do not provide 
sufficient accuracy in predicting the prognosis and 
effectiveness of immunotherapy in pancreatic can-
cer (PAC). Consequently, there is an urgent necessity 
to discover reliable and precise clinical biomarkers 
that can predict the prognosis and responsiveness 
to immunotherapy in patients with PAC through min-
imally invasive methods.

WHAT THIS STUDY ADDS
	⇒ Our study has created a machine learning-based 
platform called the metabolism-related signature 
(MBS), which enables the prediction of prognosis 
and immunotherapy outcomes for patients with 
PAC. Additionally, we have identified alternative 
therapeutic agents for patients with PAC who are 
deemed unsuitable for immunotherapy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The study conducted a systematic investigation on 
the significance of metabolic patterns in the anti-
cancer immune response of PAC. The MBS demon-
strated exceptional performance in predicting the 
response to immunotherapy, surpassing established 
signatures. This signifies the potential of MBS to 
serve as a valuable biomarker for guiding person-
alized immunotherapy strategies for patients with 
PAC. By leveraging MBS, clinicians can make more 
informed decisions regarding immunotherapy treat-
ment and improve patient outcomes.
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immunotherapy as single agents.4 PAC are among the 
immunogenically “cold” tumors that does not respond 
to immunotherapy as single agents because they lack 
of natural infiltration of antitumor effector T cells 
and fibrotic stroma in PAC tumor microenvironment 
(TME).5 6 According to the previously published papers, 
increasing antigenicity, enhancing effector T cells func-
tion, and overcoming immunosuppressive factors in TME 
are crucial strategies to convert PAC into “hot” tumors.7 8

Besides, the analysis of TILs alone is not sufficient to fully 
characterize the complex tumor immune microenviron-
ment. Furthermore, immunotherapy resistance can still 
occur in patients with high levels of TILs. As a result, various 
indicators have been developed for predicting response 
to immunotherapy, including tumor mutational burden 
(TMB), programmed death-ligand 1 (PD-L1) expression, 
and microsatellite instability (MSI).9–11 Therefore, identi-
fying powerful and robust biomarkers, which aid clinicians 
in identifying patients suitable for immunotherapy.

To proliferate rapidly and cope with stress, tumor 
cells undergo metabolic reprogramming, opting for 
aerobic glycolysis and lactic acid production (Warburg 
effect).12 TILs are usually subjected to metabolic stress 
due to tumor cell metabolic dysregulation, resulting 
in an impaired antitumor immune response. Further 
tumor cells suppress TILs function by expressing check-
point molecules.13 Accumulating evidence suggests that 
immune cell metabolisms within the TME greatly influ-
ences immunotherapy response. TME conditions regu-
late immune cell energy consumption and metabolic 
reprogramming, often inducing, which compromises 
cancer cell clearings.14 Using metabolic regulator drugs or 
antibodies against specific immune receptors to enhance 
nutrient usage represents a strategy to promote the ener-
getic rewiring of immune cells, enhancing antitumor 
efficacy.15 Taken together, metabolic changes influence 
immune function and undermine immunotherapy.16 
Targeting cancer cell metabolism shows promise in over-
coming immunotherapy resistance and identifying poten-
tial markers for predicting immunotherapy response. 
Therefore, targeting metabolism holds promise for over-
coming immunotherapy resistance and identifying poten-
tial indicators of immunotherapy response. Systematic 

understanding of anticancer immune response has 
emphasized the importance based on immunometabo-
lism. Herein, we characterized metabolic patterns and 
explored their relationship with the TME in 1,188 patients 
with PAC, constructing a metabolism-related score (MBS) 
based on these metabolic patterns for predicting both 
prognosis and immunotherapy outcomes.

METHODS
Collection of PAC data sets and preprocessing
Publicly available gene expression data and clinical anno-
tations of data sets obtained from the Gene Expression 
Omnibus, The Cancer Genome Atlas (TCGA), Interna-
tional Cancer Genome Consortium (ICGC), and ArrayEx-
press were used as previously described.17 Patients without 
survival information were removed from further anal-
ysis. For the TCGA-pancreatic adenocarcinoma (PAAD) 
cohort, RNA sequencing data (fragments per kilobase 
of transcripts per million mapped reads (FPKM) values) 
and clinical information were downloaded via the TCGA-
biolinks18 package of R software. FPKM values were then 
transformed into transcripts per kilobase million values 
similar to microarray results. Batch effects were corrected 
using the ComBat method from the “SVA” package.19 
Further, batch effects were confirmed via principal compo-
nent analysis (PCA). In total, we analyzed GSE28735, 
GSE57495, GSE62452, MTAB-6134, and TCGA-PAAD 
data sets, including 635 patients as the training cohort. 
We included 295 patients from ICGC-AU and ICGC-CA 
data sets as the ICGA-validation cohort. Besides, clinical 
proteomic tumor analysis consortium (CPTAC)-PAAD 
(n=135), GSE131050 (n=44), and GSE85916 (n=79) were 
included in the independent validation cohort. In total, 
1,188 patients with PAC with survival information were 
included in this study (online supplemental figure S1A,B 
and online supplemental table S5).

Statistical analysis
The detailed methods and statistics were described in 
online supplemental methods. All data processing, plot-
ting, and statistical analyses were performed using R V.4.0.4. 
The Kaplan-Meier method was used to analyze the survival 
probability, and the log-rank test was used to calculate the 
significant differences. Continuous variables were assessed 
for normality first. A Student’s t-test was used to analyze 
the difference between the two groups for normally distrib-
uted data, and the Wilcoxon matched-pairs signed-rank test 
was used for non-normally distributed data. Two-sided p 
values<0.05 were considered statistically significant.

RESULTS
Metabolism and the immune microenvironment are heavily 
involved in PAC progression
Metabolic changes in tumor cells can affect TME to 
limit the immune response and current obstacles to 
cancer treatment. Improving our understanding of these 

KEY POINTS
	⇒ We characterized the metabolic landscape of pancreatic can-
cer based on 112 metabolic pathways and constructed a nov-
el metabolism-related signature (MBS) using machine learning 
methods.

	⇒ MBS was a powerful and robust biomarker for predicting prognosis 
of pancreatic cancer compared with 66 published signatures.

	⇒ MBS outperformed other acknowledged signatures for predicting 
immunotherapy response in multiple immunotherapy cohorts and 
in-house cohorts.

	⇒ We identified dasatinib and epothilone B as potential therapeu-
tic options for MBS-high patients, which were validated through 
experiments.
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changes can reveal the opportunity to advance the trans-
lation of metabolic pathway and immunity. Moreover, it 
has been established that there exists a complex interplay 
between these two categories.20 Online supplemental 
figure S1 illustrates the workflow of the present study. 
To investigate the significance of metabolism and TME 
in PAC, the authors analyzed the enrichment score of 
112 metabolism-related pathways in normal and cancer 
tissues using the GSE71729 data set. The results revealed 
differential regulation of most metabolic pathways 
between normal and tumor tissues, and most metabolic 
pathways were closely related to the survival of patients 
with PAC (online supplemental figure S2C,D and online 
supplemental table S22). We also analyzed infiltrating 
immune cells in seven independent cohorts with a total 
of 930 patients with PAC, and found that patients with 
high immune cell infiltration had the longest overall 
survival(OS) (online supplemental figure S3A,B). The 
infiltrating immune cell types were related to the clinical 
characteristics of patients with PAC (online supplemental 
figure 1). These results confirmed the importance of 
both metabolism and the immune microenvironment in 
PAC progression, but the relationship between these two 
therapeutic targets remains largely unknown. Therefore, 
a systematic and global analysis is needed to reveal the 
complex relationship between metabolism and TME in 
PAC.

The metabolic landscape of PAC
First, we constructed metabolic clusters (MB clusters) 
based on the enrichment score of metabolic pathways in 
the combined data set with 930 patients to classify these 
patients into distinct subtypes (online supplemental figure 
S4A–K). A value of k=3 was identified to have optimal 
clustering stability based on the similarity displayed by 
the pathway scores and the proportion of ambiguous 
clustering measures (figure 1A and online supplemental 
figure S4L). Principal coordinates analysis (PCoA) 
revealed a clear distinction among these three cluster 
subgroups (p<0.001, figure 1B). Cluster 3 had better OS 
than the other two clusters (figure 1C). Most metabolic 
pathways were differentially regulated among these three 
subgroups (figure 1D). In particular, fatty acid degrada-
tion, pyruvate metabolism, tyrosine metabolism, and tryp-
tophan metabolism were mostly enriched in cluster 3, 
whereas glycogen degradation and glycogen biosynthesis 
were mostly enriched in cluster 1. Furthermore, cluster 
3 exhibited the highest levels of infiltration by cytotoxic 
cells, CD8 T cells, T cells, and plasmacytoid dendritic 
cells (pDCs) (figure 1E). These cell types play a crucial 
role in tumor cell clearance and are generally associated 
with a more favorable prognosis (online supplemental 
figure 3C). In the present study, CD274, CD276, CTLA4, 
HAVCR2, IDO1, LAG3, PDCD1, and PDCD1LG2 were 
selected as immune checkpoint-related factors, while 
CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, 
TBX2, and TNF CD4, CD8A, CXCL10, GZMB, PRF1, 
PTPRC, STAT1, STAT2, STAT3, STAT4, and STAT5A 

were used as immune activity-related factors.21–23 Cluster 
3 had the lowest CD274, IDO1 and CTLA-4 expression 
but the highest CD8A and LAG3 expression (figure  1F 
and online supplemental figure S5A–F).

As expected, the panfibroblast TGFβ response char-
acteristics (Pan-F-TBRs), cancer-associated fibroblasts 
(CAFs), myeloid-derived suppressor cells (MDSCs), 
tumor-associated macrophages (TAMs), epithelial–
mesenchymal transition (EMT), and immune checkpoint 
blockade (ICB)_resistance signatures, which are the main 
signatures contributing to immune therapy resistance, 
were generally higher in patients from cluster 1 compared 
with cluster 2 and three patients, whereas tertiary 
lymphoid structures (TLSs) were the highest in cluster 3 
(figure 1G). Additionally, cluster 3 had the lowest Tumor 
Immune Dysfunction and Exclusion (TIDE) score, which 
was consistent with the survival data (online supplemental 
figure S5G,H). Furthermore, cluster 3 had the lowest 
level of T-cell dysfunction and the highest level of CD8 
and MSI scores, which contribute to anticancer immu-
nity (online supplemental figure S5I–K). Moreover, the 
study used the cancer immunity cycle to uncover which 
step is most involved in killing tumor cells. The results 
showed that cluster 3 had high levels of dendritic cells 
(DCs), macrophage, and natural killer (NK) cell recruit-
ment (online supplemental figure S6A), in addition to 
the highest interferon (IFN)-gamma expression as well 
as the lowest cell cycle and DNA replication rates (online 
supplemental figure S6B). These results indicated that 
patients in cluster 3 had the best survival, with enhanced 
immune cell infiltration potentially underlying their 
prognosis and indicating immunotherapy sensitivity.

Construction of metabolic gene clusters and association with 
the tumor immune microenvironment
To further characterize distinct MB clusters, we iden-
tified DEGs between normal and PAC tumor tissues 
from gene expression profiling interactive analysis data-
base (GEPIA). Then, we obtained 3,876 differentially 
expressed genes among the three MB clusters by using 
limma packages in R. Lastly, we took intersections from 
DEGs and 3,876 genes, and we harvested 2,831 differ-
entially expressed metabolism-related genes (DEMBGs, 
online supplemental figure S7A). We performed unsu-
pervised clustering of DEMBGs in the training cohort and 
divided the latter into gene clusters A, B, and C (online 
supplemental figure S7B–L). The 305 genes positively 
correlated with the gene cluster were named as MB gene 
signature A, while the remaining DEMBGs were termed 
gene signature B (online supplemental figure S7M), 
(online supplemental table S2). We performed func-
tional enrichment analysis of gene signatures A and B 
using over representation analysis (online supplemental 
figure S7M). In order to reduce the noise or redundant 
genes, we used the Boruta algorithm to perform dimen-
sion reduction in the gene signatures A and B. Online 
supplemental figure S8A presents the expression of the 
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Figure 1  Construction of MB clusters and the landscape of metabolism and immune-cell infiltration in PAC. (A) Consensus 
clustering matrix of all 930 patients with PAC for k=3. (B) The principle coordinate analysis confirmed the three MB clusters. 
The circles and error bars indicate the mean and SEs of the mean. (PERM-analysis of variance test with 10,000 permutations). 
(C) Kaplan-Meier survival analysis of patients with PAC by metabolic subgroup. (D) Metabolic pathways dysregulated among 
three cluster subgroups. (E) The comparison of the fraction of tumor-infiltrating immune cells in three MB clusters. (F) Immune-
activation-relevant genes expression in three MB subgroups. (G) TME-related pathways among three MB cluster subtypes. 
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001, ns represents p>0.05. CAFs, cancer-associated fibroblasts; DC, dendritic cell; ICB, 
immune checkpoint blockade; MB, metabolic clusters; MDSCs, myeloid-derived suppressor cells; mRNA, messenger RNA; NK, 
natural killer; PAC, pancreatic cancer; PCoA, principal coordinate analysis; pDCs, plasmacytoid dendritic cells; TAMs, tumor-
associated macrophages; TLSs, tertiary lymphoid structures; EMT, epithelial mesenchymal transition; TReg, regulatory T cell.
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308 most abundant DEMBGs identified across gene clus-
ters A, B, and C (online supplemental table S3).

PCoA confirmed these three gene clusters (p<0.001, 
online supplemental figure S8B), and survival analysis 
indicated that patients in gene cluster C had the best OS, 
whereas those in A and B had worse prognosis (p<0.001, 
online supplemental figure S8C). We then explored 
the relationship between gene clusters and infiltrating 
immune cells. Gene clusters B and C had higher levels 
of B cells, DC cells, T cells, and Th17 cells, which play an 
antitumor role (online supplemental figure S8D). More-
over, gene cluster C had the lowest expression of immu-
noinhibitory factors IDO1, CD274, HAVCR2 and CTLA-4 
(online supplemental figure S8E). The cancer immunity 
cycle results implied that gene cluster C had the highest 
level of basophil recruitment and the lowest level of 
MDSC recruitment (online supplemental figure S8f), in 
addition to the lowest TIDE score (online supplemental 
figure S9A). Immunotherapy-related pathways in gene 
clusters were also analyzed and consistent with above-
presented results (online supplemental figure S9B). The 
consistency among prognostic performance, immune 
profile, and immunotherapeutic prediction in the three 
MB-related gene clusters validated our classification.

Development of MBS and performance in prognostic 
prediction
To quantify the MB landscape, we used a PCA method 
to construct MBS based on MB gene signatures A and 
B (figure  2A). We found that MBS was lowest in gene 
cluster C (online supplemental figure S10A). Using the 
surv_cutpoint function in the survminer package in 
R, we stratified patients in the training cohort into two 
subgroups, MBS-high and MBS-low, and this was further 
confirmed via PCoA (figure 2B, p<0.001). In the training 
cohort, the MBS-low group, which greatly overlaps with 
MB cluster 3, had better overall survival than the MBS-
high group (figure 2C, p<0.001), as well as in the CPTAC-
PAAD cohort (figure  2D, p<0.01), GSE131050 cohort 
(figure 2E, p<0.01), SE85916 cohort (figure 2F, p<0.05), 
and the other two validation cohorts (online supple-
mental figure S10B,C, p<0.05).

In addition, we investigated the relationship between 
MBS and molecular subtypes of PAC. Previous studies have 
shown that basal-like subtype patients have worse outcomes 
and are molecularly similar to basal tumors in bladder 
and breast cancer.24 Quasi-mesenchymal subtype patients 
exhibit high expression of mesenchymal-associated genes 
and also have poor prognosis.25 Interestingly, consistent 
with previous findings, MBS was significantly upregulated 
in basal-like and quasi-mesenchymal subtypes of patients 
with PAC (figure 2G, S10D, p<0.01).

To compare the performance of MBS with other 
signatures, we comprehensively collected 66 published 
signatures, including long noncoding RNA (lncRNA) 
and messenger RNA, associated with various biolog-
ical processes such as immunotherapy response, auto-
phagy, hypoxia, epigenetic modification, RNA-binding, 

stemness, immune cell phenotypes, KRAS and TP53 
mutated signatures, glycolysis, and drug resistance. These 
signatures have been reported to be promising prog-
nostic biomarkers for PAC. In this study, we compared 
the C-index of MBS with these published signatures in 
TCGA-PAAD, ICGC-AU, and combined cohorts. Notably, 
MBS exhibited outstanding performance in all three 
cohorts, which demonstrated its stability and robustness 
(figure 2H–J). Some models showed weak performance 
across data sets, possibly due to overfitting during model 
development. However, our MBS model was dimension-
ally reduced by multiple algorithms and therefore had 
better extrapolation potential.

Immune significance and validation in a clinical in-house 
cohort
Immune cells and immune-related genes play a critical 
role in cancer immunotherapy, with numerous immune 
agonists and antagonists being evaluated in clinical 
oncology. Consistent with this, a low MBS was associ-
ated with greater infiltration of B cells, eosinophils, NK 
cells, T cells, and Th17 cells, and lower regulatory T cell 
(Treg) infiltration (online supplemental figure S10E). To 
further advance this research, it is important to under-
stand the expression of immune-related genes and modes 
of control in different states of the TME. Therefore, we 
examined the expression of these genes, as well as somatic 
copy-number alterations (SCNAs) and epigenetic mech-
anisms. Our results showed that the expression of most 
immune-related genes varied across MBS subtypes, poten-
tially indicating their role in shaping the TME based on 
the TCGA-PAAD cohort (figure 3A). To further confirm 
the clinical applicability of MBS, we employed IPS, ESTI-
MATE, MCPcounter, xCell, and TIMER algorithms to 
quantify the immune cell infiltration landscape in our 
internal cohort. Consistent with the previous results, the 
low MBS group exhibited higher levels of CD4+T cells, 
CD8+T cells, B cells, and immunophenotype score (IPS) 
scores (figure  3B). Notably, the protein expression of 
PD-1, CD8A, and CD4 were significantly higher in the low-
MBS group than in the high-MBS group (figure 3C,D). 
Furthermore, we found that there was a strong correla-
tion between cytotoxic cells and T cells in both MBS-high 
and MBS-low subtypes (online supplemental figure S10F). 
Most metabolic pathways were differentially regulated 
between the two MBS subgroups (online supplemental 
figure S10H). Fatty acid degradation, pyruvate metabo-
lism, tyrosine metabolism, and tryptophan metabolism 
were mostly enriched in the MBS-low group, whereas 
glycogen degradation and glycogen biosynthesis were 
most enriched in the MBS-high group.

Next, we analyzed the correlation between the MBS 
and anticancer-related signatures. As expected, Pan-F-
TBRs, CAFs, MDSCs, EMT, ICB_resistance, T-cell exclu-
sion, and TIDE score were obviously higher in MBS-high 
patients than MBS-low patients, whereas the opposite was 
noted for TLSs, MSI_expr_Sig, and IPS, which contribute 
to anticancer immunity (figure  4A–J). MBS most 
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Figure 2  Construction and validation of MBS. (A) The association landscape among MBS and molecular characteristics (MB 
clusters, gene clusters, immune infiltration subtypes, survival status, and cohorts). Columns showed PAC samples sorted by 
MBS from low to high. (B) The principal coordinate analysis confirmed the high and low MBS groups. The circles and error 
bars indicate the mean and SEs of the mean. (PERM-analysis of variance test with 10,000 permutations). (C–F) Kaplan-Meier 
curves of OS for patients with PAC based on the MBS in the training cohort, CPTAC-mRNA cohort, GSE131050_Yeh cohort, 
and GSE85916 cohorts. (G) Differences of MBS between two Moffitt subtypes in the GSE131050 data set. (H–J) Comparison 
of C-index among MBS and 66 published signatures in TCGA-PAAD, ICGC-AU, and meta-cohorts. ICGC, International Cancer 
Genome Consortium; MB, metabolic clusters; MBS, metabolism-related score; mRNA, messenger RNA; PAC, pancreatic 
cancer; PCoA, principal coordinates analysis; TCGA, The Cancer Genome Atlas; CPTAC, Clinical Proteomic Tumor Analysis 
Consortium; OS, overall survival.
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Figure 3  The landscape of tumor microenvironment analysis between high and low MBS groups. (A) mRNA expression of IM 
genes (median normalized expression levels); expression versus methylation (gene expression correlation with DNA-methylation 
beta-value); amplification frequency (the difference between the fraction of samples in which an IM is amplified in a particular 
subtype and the amplification fraction in all samples); and the deletion frequency (as amplifications) for 59 IM genes by MBS 
subtypes in The Cancer Genome Atlas-PAAD cohort. (B) Heatmap for immune landscape in Tangdu in-house cohort based on 
IPS, ESTIMATE, MCPcounter, xCell, and TIMER algorithms between high and low MBS group. (C) Boxplot displays the IHC 
scores of PD-1, CD8A, and CD4 between two MBS groups based on internal data from Tangdu cohort (n=49) according to 
staining results. *p<0.05. (D) Representative IHC staining images of PD-1, CD8A, and CD4 between two MBS groups (n=49). 
Scale bars=100 µm. DC, dendritic cell; IPS, immunophenotype score; MB, metabolic clusters; MBS, metabolism-related score; 
mRNA, messenger RNA; NK, natural killer; PD-1, programmed cell death-1.
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Figure 4  The association between MBS and tumor microenvironment. (A–J) Differences of immunotherapy-related score, 
including Pan_F_TBRs, MDSCs, ICB_resistance, CAFs, EMT, exclusion, TIDE, MSI_Expr, TLS, and IPS signature scores, 
respectively, in two MBS groups. (L) Correlation between MBS and the steps of the cancer immunity cycle. (K) Correlation 
between MBS and the enrichment score of immunotherapy-predicted pathways. (M) Raincloud plots depicted the differences 
of MBS in non-responders (NR) and treatment-naive patients (TN) groups in the SKCM-GSE115978 immunotherapy cohort. 
(N) Raincloud plots depicted the differences of MBS in NR and responders (R) groups in the BCC-GSE123813 immunotherapy 
cohort. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. BCC, basal cell carcinoma; CAFs, cancer-associated fibroblasts; ICB, 
immune checkpoint blockade, IFN, intrerferon; IPS, immunophenotype score; MB, metabolic clusters; MBS, metabolism-related 
score; MDSCs, myeloid-derived suppressor cells; MSI, microsatellite instability; TAMs, tumor-associated macrophages; TIDE, 
Tumor Immune Dysfunction and Exclusion; TLSs, tertiary lymphoid structures; EMT, epithelial–mesenchymal transition; SKCM, 
Skin Cutaneous Melanoma.
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significantly correlated with the cancer immunity cycle 
and immunotherapy-related pathways (figure 4K,L). The 
alluvial diagram indicated that MBS-low patients over-
lapped with those in MB cluster 3, whereas MBS-high over-
lapped with those in MB cluster 1 (online supplemental 
figure S10E). The findings described above demonstrate 
the consistent prognostic performance and immune 
profiles in MB clusters and MBS subgroups, suggesting 
that MBS may serve as a robust indicator for predicting 
immunotherapy response in PAC. Moreover, these results 
suggest that patients with low MBS may have more alter-
native resources for immune checkpoint inhibitors (ICI) 
treatment.

Immunotherapy outcome prediction by MBS
We sought to evaluate the predictive performance of 
MBS for immunotherapy outcome in 15 cohorts from 
bulk-RNA and scRNA-seq aspects. First, we analyzed 
the two scRNA-seq ICI cohorts, including melanoma 
(SKCM-GSE115978) and basal cell carcinoma (BCC-
GSE123813). As the previous paper described,26 we used 
24 patients from the melanoma cohort, including 11 
non-responders (NR) and 13 treatment-naive patients 
(TN), a total of 2,142 malignant cells were obtained after 
removal of non-malignant cells. Ideally, it would be better 
to compare the MBS between responders (R) and NR. 
However, data on R were not available in this cohort, and 
since untreated patients may include both potential R 
and NR, MBS comparisons were made between NR and 
TN. As the results showed that MBS in the NR group was 
significantly higher than that in the TN group (p<0.001, 
figure 4M). In the BCC cohort, a total of four NR and six 
R were included, and 1,826 malignant cells were obtained 
after removing non-malignant cells. We also found that 
MBS in the NR group was significantly higher than that in 
the R subgroup in the BCC cohort (p<0.001, figure 4N). 
These results further indicated that MBS was robust in 
predicting the immunotherapy responsiveness of patients 
with tumor.

Next, we systematically analyzed thirteen bulk-RNA 
immunotherapy cohorts. MBS-low group patients had 
a better prognosis and immunotherapy response in the 
IMvigor210 cohort (figure 5A–C). Moreover, the MBS was 
negatively related to FMOne mutation and neoantigen 
burden (figure  5D,E). Patients with nivolumab-treated 
advanced melanoma cohort were divided based on MBS, 
and it was found that MBS was significantly higher in the 
stable disease (SD)/progressive disease (PD) group than 
in the complete response (CR)/partial response (PR) 
groups (figure  5G,H). Additionally, MBS-low patients 
had a greater overall survival than MBS-high patients 
(figure 5I). In the GSE78220 cohort of patients with anti-
PD-1-treated melanoma, MBS was negatively correlated 
with the cytolytic score and was significantly higher in 
the PD group than in the PR/CR groups, with MBS-low 
patients achieving better overall survival (figure 5F and 
figure  5J,L). The predictive role of MBS was validated 
in other cohorts, such as mice receiving anti-CTLA-4 

and anti-PD-L1 (GSE117358, online supplemental 
figure S11A,B), patients with immunotherapy-treated 
chronic lymphocytic leukemia (GSE148476, online 
supplemental figure S11C,D), and anti-CTLA-4-treated 
mices (GSE63557, online supplemental figure S11E–
G), as well as GSE173839, GSE165252, and GSE168204 
(online supplemental figure S11H–J). Besides, we veri-
fied the performance of MBS in four immunotherapy 
PAC cohorts. There was significant difference of MBS 
between NR compared with R in both CRC and PDAC 
patients, and higher MBS indicated worse OS and PFS 
(online supplemental figure S12A–F) in Parikh cohort. 
In terms of PDAC, NR had higher MBS compared with R, 
however, there was no statistical difference between NR 
and R (online supplemental figure S12G,H). The main 
reason for this problem, we suspect, is that the sample size 
of patients is too small. Our result showed that short-term 
survivors of PDAC has higher MBS compared with those 
long-term survivors of PDAC in Balachandran cohort 
(online supplemental figure S12I,J). Vaccinated patients 
showed lower MBS compared with non-vaccinated 
patients (online supplemental figure S12K,L) in Lutz 
cohort and CD11b cells had highest MBS, and CD4+T cell 
and CD8+T cell had lower MBS in Li cohort (online 
supplemental figure S12M,N). Additionally, we further 
predicted the immunotherapeutic responsiveness using 
the TIDE algorithm in nine PAC data sets. A lower TIDE 
score indicates a better response to immunotherapy. 
Consistent with previous research findings, we observed 
a significant positive correlation between MBS and TIDE 
scores. Furthermore, the MBS in the R group was signifi-
cantly lower than that in the NR group (online supple-
mental figure S13A–E).

Finally, we compared the performance of MBS with 
other previously recognized signatures for predicting 
immunotherapy outcomes in four different data sets. 
The results demonstrated that MBS outperformed other 
signatures for predicting immunotherapy response in all 
four cohorts, indicating its stable and robust predictive 
performance (figure 5M,N). These findings suggest that 
MBS has the potential to serve as a valuable biomarker 
for guiding personalized immunotherapy strategies for 
patients with PAC.

Potential therapeutics for MBS-high patients
As mentioned above, patients with low MBS are highly 
sensitive to immunotherapy and have a better prognosis. 
However, we also need to identify alternative therapeutic 
targets for patients with high MBS. To address this, we 
applied three different approaches—Cancer Therapeu-
tics Response Portal (CTRP), profiling relative inhibition 
simultaneously in mixtures (PRISM), and Genomics of 
Drug Sensitivity in Cancer (GDSC) to identify candidate 
drugs for patients with PAC with high MBS. Differential 
compound sensitivity analysis between MBS-high (top 
decile) and MBS-low (bottom decile) groups was first 
performed to identify drugs with lower estimated AUC 
values in the former (log2 FC>0.1). Then we performed 
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Figure 5  The performance of MBS in the prediction of immunotherapeutic benefits. (A) Violin plots depicted the differences of 
MBS in CR, PR, SD, and PD groups in the IMvigor210 cohort with metastatic urothelial cancer. (B) Rate of clinical response (CR/
PR and SD/PD) to anti-programmed death-ligand 1 immunotherapy in high and low MBS subgroups in the IMvigor210 cohort. 
(C) Kaplan-Meier curves for patients with high and low MBS in the IMvigor210 cohort. (D–E) The correlation between MBS and 
FMOne/neoantigen TMB in the IMvigor210 cohort. (F) The correlation between MBS and cytolytic score in the GSE91061 cohort 
with melanoma. (G) Violin plots depicted the differences of MBS in CR/PR and SD/PD groups in the GSE91061 cohort. (H) Rate 
of clinical response (CR/PR and SD/PD) to anti-PD-1 immunotherapy in high and low MBS subgroups in the GSE91061 cohort. 
(I) Kaplan-Meier curves for patients with high and low MBS in the GSE91061 cohort. (J) Violin plots depicted the differences 
of MBS in CR/PR and PD groups in the GSE78220 cohort with melanoma. (K) Rate of clinical response (CR/PR and PD) to 
anti-PD-1 immunotherapy in high and low MBS subgroups in the GSE78220 cohort. (L) Kaplan-Meier curves for patients with 
high and low MBS in the GSE78220 cohort. (M) Circus plot depicting the performance of MBS in predicting immunotherapy 
outcome in four data sets compared with already acknowledged signatures. The vertical axis indicated AUC values. (N) The 
heatmap depicts the performance of MBS in predicting immunotherapy outcome with already acknowledged signatures in 
four data sets. CR, complete response; GEP, T-cell-inflamed gene expression profile; IMPRES, immune-predictive score; MB, 
metabolic clusters; MBS, metabolism-related signature; MIAS, MHC 1 association immunoscore; PD, progressive disease; PR, 
partial response; SD, stable disease; PD-1, programmed cell death-1; AUC, area under curve; CTLA-4, cytotoxic T lymphocyte-
associated antigen-4; IDO1, indoleamine2,3-dioxygenase1.
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Spearman’s correlation analysis between MBS and 
AUC value to identify drugs with negative correlation 
coefficient (r<−0.2 for CTRP and PRISM, p<0.05). We 
identified six drugs via CTRP (dasatinib, PD318088, selu-
metinib, paclitaxel, SB-743921, and triazolothiadiazine) 
and five via PRISM (LY2606368, cobimetinib, epothilone 
B, dasatinib, and trametinib), with estimated AUC values 
negatively correlated with MBS (figure  6A,B). Further-
more, we analyzed the maximal inhibitory concentration 
(IC50) of these compounds based on the GDSC data-
base. Three drugs (dasatinib, paclitaxel, and epothilone 
B) had a lower estimated IC50 in the MBS-high group 
(figure  6C–E), suggesting that they may hold promise 
for the treatment of patients with PAC with high MBS. 
Based on our analysis of the combat data set derived 
from GSE14701 and GSE45757, we observed that the 
MIAPaCa-2 cell line exhibited the highest MBS compared 
with PATu-8988S and PATu-8988T (online supplemental 
figure S4A–C), therefore, we generated colony formation 
using these three PAC cell lines to validate the effect of 
dasatinib and epothilone B with five different concen-
trations. Our results demonstrated the rationality of our 
findings (figure 6G–I).

To explore the underlying mechanisms, we performed 
high-throughput sequencing on the MIAPaCa-2 cell 
line, MIAPaCa-2 cells treated with dasatinib, and cells 
treated with epothilone B. Through high-throughput 
sequencing, we discovered that dasatinib primarily acts 
through inhibiting signaling pathways such as tumor 
necrosis factor (TNF)-α, hypoxia, DNA repair, and E2F_
target signaling pathways in PAC cell lines. On the other 
hand, we found that epothilone B mainly affects signaling 
pathways including MTORC1, TNF-α, and unfolded_
protein_response (online supplemental figure S15E,F). 
These findings are consistent with the activation of these 
signaling pathways observed in patients with PAC with 
high MBS (online supplemental figure S19A–I). Further-
more, dasatinib is an oral, once-daily SRC kinase inhib-
itor commonly used in the treatment of chronic myeloid 
leukemia and Philadelphia chromosome-positive acute 
lymphoblastic leukemia. Our analysis revealed that SRC 
family genes, including SRC, HCK, FGR, and FYN are 
significantly upregulated in patients with PAC with high 
MBS (online supplemental figure S15A–D). This further 
explains why dasatinib is better efficient in patients with 
PAC with high MBS. In conclusion, our study suggests 
that dasatinib and epothilone B may be promising candi-
dates for treating patients with PAC with high MBS, and 
we provide potential mechanistic explanations for the 
actions of these drugs. However, further research and 
clinical trials are needed to validate these results and eval-
uate the efficacy and safety of these drugs in patients with 
PAC.

Clinical performances of the MBS
We sought to further validate the clinical performance 
of MBS in the TCGA-PAAD cohort, which had the most 
extensive clinical data. Lower MBS was related to better 

OS, disease-free interval, disease-specific survival, and 
progression-free interval (figure  7A–D). In patients 
undergoing their first course of treatment, a low MBS was 
associated with better clinical responses (figure  7E,F). 
Next, we analyzed the correlation between the MBS and 
clinical characteristics of patients with PAC. A low MBS 
was significantly related to age, survival status, MSI status, 
TP53 mutation, and KRAS mutation status (figure  7G 
and online supplemental figure S16A–C). Further-
more, we also analyzed the relationship between MBS 
and response to radiation therapy and chemotherapy. 
TCGA samples were classified into radiation-sensitive and 
radiation-resistant classes based on their reported sensi-
tivity to radiation therapy using the response evaluation 
criteria in solid tumours (RECIST) classification method 
and data obtained from published papers.27 The results 
showed that patients with PAC who were sensitive to both 
chemotherapy and radiotherapy had lower MBS values 
compared with those who were insensitive to both ther-
apies (online supplemental figure S16D–F). This finding 
further emphasizes the importance of MBS as a predictor 
of treatment response in PAC and suggests that incorpo-
rating MBS into personalized treatment strategies may be 
beneficial.

MBS-associated mechanisms in pancreatic cancer
To further explore the mechanisms underlying MBS, the 
study compared PAC-specific cancer driver gene expres-
sion, genetic alterations, and epigenetically driven tran-
scriptional networks between MBS-high and MBS-low 
subgroups. Differentially regulated cancer driver genes 
were observed, such as ACVR2A, BAP1, BRCA2, and TP53 
(online supplemental figure S17A). Strong correlations 
were observed between CD8A and GZMA expression, 
as well as CXCL9 and IDO1 expression (online supple-
mental figure S17B). Additionally, somatic mutations 
were analyzed in the TCGA-PAAD data set, and it was 
found that more somatic mutations occurred in the MBS-
high group, including synonymous and non-synonymous 
mutations (figure 8A–C and online supplemental figure 
18A,B). Fourteen genes were more frequently mutated 
in MBS-high patients, including KRAS, TP53, and ATOB 
(figure  8D). Significant co-occurrences were observed 
between KRAS and TP53 mutations, as well as FBN3 and 
FLG mutations (figure  8F,G and online supplemental 
figure S18C,D). Finally, we analyzed the prognosis of 
patients with PAC with and without mutations in these 
four genes using the cBioPortal database and found that 
those with mutations in these genes had a poor prognosis 
(online supplemental figure S18E–G). We also explored 
the regulon activity of 20 regulator profiles between high 
and low MBS groups,28 as well as the correlation between 
MBS and the expression of 28 known epigenetic regu-
lators29 in patients with PAC. Our results suggested that 
epigenetically driven transcriptional networks might be 
important factors for MBS subtypes (figure  8H,I). This 
further supports the idea that alterations in gene regula-
tion and epigenetic modifications may contribute to the 
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Figure 6  Identification of potential therapeutic drugs for patients with PAC with high MBS. (A) The results of Spearman’s 
correlation and differential drugs response analysis of six CTRP-obtained drugs. (B) The results of Spearman’s correlation 
and differential drugs response analysis of five PRISM-obtained drugs. (C) Comparison of estimated IC50 levels of dasatinib 
between high and low MBS groups. (D) Comparison of estimated IC50 levels of paclitaxel between high and low MBS 
groups. (E) Comparison of estimated IC50 levels of epothilone B between high and low MBS groups. (F) Colony-formation 
assays were conducted based on two PAC cell lines (MIAPaCa-2 and PATu-8988T) treated with dasatinib using gradient 
concentrations (0 nM, 6.25 nM, 12.5 nM, 25 nM, and 50 nM). (G) Colony-formation assays were conducted based on two PAC 
cell lines (MIAPaCa-2 and PATu-8988T) treated with epothilone B using gradient concentrations (0 nM, 0.1 nM, 0.2 nM, 0.4 nM, 
and 0.8 nM). Note: Lower estimated AUC and IC50 values indicate greater drug sensitivity. *p<0.05; **p<0.01; ***p<0.001. 
(H) Relative colony-formation rate of three PAC cell lines treated with dasatinib using gradient concentrations (0 nM, 6.25 nM, 
12.5 nM, 25 nM, and 50 nM). (I) Relative colony-formation rate of three PAC cell lines treated with epothilone B using gradient 
concentrations (0 nM, 0.1 nM, 0.2 nM, 0.4 nM, and 0.8 nM). CTRP, Cancer Therapeutics Response Portal; PAC, pancreatic 
cancer; MBS, metabolism-related score; AUC, area under curve.
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differences in clinical outcomes observed between MBS-
high and MBS-low subtypes.

The study also revealed that several pathways, including 
TGF-β, TNF-α, hypoxia, inflammatory response, 
interleukin-6-JAK-STAT3, the unfolded protein response 

(UPR), and EMT pathways, were significantly activated in 
the MBS-high group, while the pancreas β cell pathway 
was activated in the MBS-low group (online supple-
mental figure S19A–H). Additionally, the expression 
of UPR and EMT regulators was upregulated in PAC 

Figure 7  The clinical performance of MBS for patients with PAC. (A–D) Kaplan-Meier curves of OS, DFI, DSS, and PFI for 
patients with PAAD based on the MBS groups in the TCGA-PAAD cohort. (E) Rate of high and low MBS subgroups in the 
clinical response (complete response (CR)/partial response (PR) and stable disease (SD)/progressive disease (PD) according to 
treatment outcome after first course treatment in the TCGA-PAAD cohort). (F) The MBS difference in the two groups according 
to the treatment outcome after first course treatment. (G) Correlation between MBS and clinical characteristics of patients with 
PAAD. DFI, disease-free interval; DSS, disease-specific survival; MBS, metabolism-related score; MSI, microsatellite instability; 
PFI, progression-free interval; TCGA, The Cancer Genome Atlas; OS, overall survival; MSI, microsatellite instability; PAAD, 
pancreatic adenocarcinoma.
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Figure 8  The epigenetically driven transcriptional networks and tumor mutation status in high and low MBS subgroups. 
(A–C) The correlation between MBS and the synonymous mutations, non-synonymous mutations, and all mutations counts and 
their distribution in high and low MBS subtypes. (D) Forest plot of differences in gene mutations between low MBS and high 
MBS groups. (E) Interaction of differentially mutated genes in patients with low and high MBS groups. (F–G) Lollipop diagram 
showing mutation sites of TP53 and KRAS proteins, respectively. (H) Regulon activity of 20 regulators profiles between high and 
low MBS groups. (I) The correlation between MBS and the expression of 28-known epigenetic regulators *p<0.05; **p<0.01; 
***p<0.001. MBS, metabolism-related score.
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samples (online supplemental figure S19I). To deter-
mine the relative importance of the 308 MBS genes, the 
researchers used the randomForestSRC and randomSur-
vivalForest algorithms for feature selection and ranked 
their importance. The results were verified, as shown 
in online supplemental figure S20A–D. These findings 
suggest that dysregulation of multiple signaling pathways 
and immune evasion may contribute to the differences in 
clinical outcomes observed between MBS-high and MBS-
low groups. Furthermore, these pathways may represent 
potential targets for personalized treatment strategies.

Potential links between MBS and immune resistance using 
pan-cancer cohort
The study also investigated the relationship between 
MBS and immunosuppression using TCGA pan-cancer 
data sets. First, the researchers analyzed the correlation 
between MBS and the expression level of immunosuppres-
sive genes. As expected, there was a significantly positive 
association across multiple cancer types (online supple-
mental figure S21A). Second, we explored the associa-
tion between MBS and hallmark pathway enrichment to 
determine whether immunosuppressive biological func-
tions were enriched in the high MBS group. The results 
showed that TGF-β, EMT, and Notch signaling pathways, 
which have been reported to contribute to immunosup-
pression, were significantly upregulated in the high MBS 
group (online supplemental figure S21B). Additionally, 
cancer stemness and intratumoral heterogeneity have 
also been reported to confer immunosuppressive proper-
ties. The study found a positive association between MBS 
and Intra-tumor heterogeneity (ITH) and five stemness 
signatures across 30 cancers (online supplemental figure 
S21C,D), suggesting that these factors may contribute to 
the observed associations between MBS and immuno-
suppression.30 In conclusion, the study found that MBS 
is negatively correlated with anticancer immunity. The 
researchers also conducted a systematic exploration of 
potential therapeutic targets in synergy with MBS using 
17-CRISPR data sets. We ranked 22,505 genes according 
to their average Z-score in the 17-CRISPR data sets and 
found that 23 MBS genes were among the top 10% ranked 
genes across multiple different CRISPR data sets (online 
supplemental figure S21E). The top-ranked genes (with 
negative Z-scores) are immune resistance genes that may 
promote antitumor immunity when knocked out, while 
immunosensitive genes are located at the bottom of the 
list. These findings suggest that targeting these MBS-
related genes may represent potential therapeutic strate-
gies for enhancing anticancer immunity in PAC.

DISCUSSION
Clinical trials of immunotherapy for PAC confirmed its 
critical role in eradicating tumors and improving quality 
of life of patients.31 However, only a minority of patients 
are sensitive to immunotherapy owing to mechanisms of 
immune evasion and suppression as well as competition 

for basic nutrients and the suppression of immune cell 
metabolisms.32 Increasing antigenicity, enhance effector 
T cells function, and overcome immunosuppressive 
factors in TME are crucial strategies to convert PAC into 
“hot” tumors. To satisfy the enormous energy demands, 
cancer cells preferentially use glycolysis rather than oxida-
tive phosphorylation.33 34 The former metabolic pathways 
provide energy in a rapid manner, although glucose is not 
fully used. Lactate is one of the main products of glycol-
ysis, and the lactate concentration in tumors is 20−30 times 
greater than that in normal tissues. This acidic micro-
environment suppresses infiltrating immune cells, thus 
compromising the efficacy of immunotherapy.35 Cancer 
cells and infiltrating immune cells reprogram their 
metabolism to adapt to the specific TME, with amino acid 
metabolism in latter having a similar suppressive effect 
on immune cell function. Altogether, metabolic path-
ways modulate the tumor immune microenvironment, 
suggesting the potential for improving immunotherapy 
outcomes by targeting metabolic pathways or specific 
metabolites.3 36 Glycolysis–cholesterol synthesis axis was 
reported to be related to PAC prognosis and prognostic 
subtype classifier gene expressions.37 However, a compre-
hensive characterization of the metabolic landscape in 
relation to immunotherapy response in PAC is lacking.

In this study, we analyzed 112 metabolism-related 
pathways to characterize the metabolic landscape of 
PAC. We classified patients into three metabolic cluster 
subtypes, with cluster 3 exhibiting the best overall 
survival and enriched metabolic pathways, including 
fatty acid degradation, pyruvate metabolism, tyrosine 
metabolism, and tryptophan metabolism. It is currently 
believed that different immune cell subsets play distinct 
roles in antitumor immunity.38 Importantly, cluster 3 
also had the highest infiltration levels of cytotoxic cells, 
CD8+T cells, and T cells, indicating a potent antitumor 
immune response and potential sensitivity to immuno-
therapy. In contrast, cluster 1 had the highest expression 
of PD-L1 and lowest CD8 T cells, suggesting a potential 
for immune escape and resistance to immunotherapy. 
The Pan-F-TBRs signature is positively correlated with 
poor immunotherapy responses and unfavorable prog-
nosis.39 Immunosuppressive cell types, including CAFs, 
MDSCs, and TAMs, suppress T cells in tumors and 
promote immune escape.40 In contrast, TLSs improve 
antigen presentation and are correlated with immuno-
therapy response.41 42 Pan-F-TBRs, CAFs, MDSCs, TAMs, 
EMT, TIDE, T-cell dysfunction, and ICB_resistance were 
mostly lower in cluster 3 than clusters 2 and 1, whereas 
TLSs were the highest in cluster 3. The TIDE score, which 
integrates T-cell dysfunction and elimination characteris-
tics, is a poor indicator when predicting immunotherapy 
responses and prognosis. PD-L1 played the structural 
carcinogenic roles in “cold tumors”, known as innate 
immune drug-resistant tumors, including those that are 
PD-L1 positive in the absence of CD8+T cells.43 Patients 
with this type of tumor emphasize the importance of 
considering the presence of TILs in TME in conjunction 
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with the state of PD-L1 in order to predict the immuno-
therapy response. While recently clinical trials of anti-
PD-L1 antibodies as monotherapy have not shown clinical 
benefit in the majority of PAC.44 As supported by previous 
literature, metabolic activity has been shown to signifi-
cantly impact the differentiation and fate of effector T 
cells.16 Therefore, it is crucial to identify strategies that 
can modulate metabolic patterns in order to enhance the 
immune response against tumors.

To evaluate quantitative indicators of PAC meta-
bolic landscape, we developed the MBS using machine 
learning methods. Patients in the MBS-low subgroup, 
which highly overlapped with those of metabolic cluster 
3, had favorable prognosis. To demonstrate the prog-
nostic prediction performance of MBS, we conducted a 
comparison with other published signatures using the 
C-index as a measure of performance. The results showed 
that MBS had the most robust potency to predict prog-
nosis, outperforming the other signatures. This suggests 
that MBS may be a valuable tool for predicting prognosis 
in the future. With regard to the TME, lower MBS was 
related to greater infiltration of antitumor immune cells, 
while immunosuppressive indicators were significantly 
decreased. Further, dysregulated metabolism, TIDE 
and IPS have good performance in predicting immuno-
therapy response.45 46 Liu et al reported29 demethylase fat 
mass and obesity-associated protein (FTO) as an essential 
regulator used by tumors to escape immune surveillance 
through regulation of glycolytic metabolism. Motivated 
by above results, we hypothesized that MBS is a promising 
predictor of immunotherapy response, with a lower MBS 
indicating greater sensitivity. Therefore, we validated 
the predictive performance of MBS for immunotherapy 
outcome in 15 cohorts from bulk-RNA and single-cell 
aspects. The results confirmed its value in the clinical 
decision-making process and low MBS was correlated 
with a better immunotherapy response. We compared the 
performance of MBS and other already acknowledged 
scores for predicting immunotherapy response in kinds 
of cancer data sets using receiver operating characteristic 
(ROC) curves. And the results showed that MBS displayed 
outstanding performance for predicting immunotherapy 
response in multiple immunotherapy-cohorts, which 
further demonstrated the stability of predictive perfor-
mance of MBS. However, despite the robust predictive 
ability of MBS for immunotherapy response that has been 
evaluated in 15 immunotherapy cohorts, including four 
PAC immunotherapy cohorts, the limited sample size in 
PAC immunotherapy cohorts necessitates further valida-
tion of the immunotherapeutic predictive value and prog-
nostic significance of MBS in larger cohorts of patients 
with PAC who receive immunotherapy. Moreover, it is 
important to consider the combination or comparison of 
MBS with other potential biomarkers, such as TMB and 
tumor-infiltrating immune cells, to enhance its predic-
tive capabilities and explore their complementary roles 
in PAC immunotherapy. Promising biomarkers would 
improve therapeutic selection for patients. Therefore, we 

identified dasatinib and epothilone B were identified as 
promising therapeutic compounds in these patients and 
we further validated using experiments.

In addition to glucose and glutamine, solid tumors often 
consume tryptophan. This amino acid is metabolized to 
kynurenine by the IDO. Kynurenine promotes the survival 
ability of tumor cells and supports the generation of Treg 
cells, which inhibit the antitumor response. Therefore, 
the increased expression of IDO is associated with tumor 
progression and poor prognosis.47 Conversely, blocking 
IDO1 can inhibit the generation of Treg cells or convert 
these cells into non-inhibitory Th17 cells, thus weakening 
the immunosuppressive TME.48 49 In the present study, 
IDO1 expression was significantly upregulated in patients 
from cluster 1 and the MBS-high subgroup, who also had 
higher Treg cell infiltration. Chang et al50 reported that 
excessive glucose consumption by tumor cells can restrict 
the anticancer capacity of T cells, which is related to a 
decrease in mammalian target of rapamycin (mTOR) 
activity, glycolysis, and the production of IFN-γ. Anti-
bodies against immune checkpoint-relevant molecules 
can restore glucose level in TME and enhance TIL glycol-
ysis and IFN-γ production. Further, Treg cells, which are 
affected by glucose availability, are associated with unfa-
vorable prognosis in multiple cancer types, with their 
depletion enhancing effective anticancer immunity.51 52

We further explored the potential links between MBS 
and immune resistance in patients with PAC. We found 
that TGF-β, EMT, and Notch signaling pathways, which 
pathways contributed to the immunosuppression, were 
significantly upregulated in high MBS tumors. EMT 
could promote cancer progression and metastasis by 
modulating the immune escape in the local TME.53 
Besides, cancer stemness and intratumoral heterogeneity 
were reported to confer immunosuppressive properties.30 
Remarkably, positive association between MBS and ITH 
and stemness signatures were found across 30 cancers. 
Taken together, all these data indicated that MBS was 
negatively correlated with anticancer immunity, which 
corroborates the predictive value of MBS.

In summary, our study offers novel insights for the 
stratification of patients with PAC for immunotherapy 
based on a metabolism-related indicator. The limitation 
of the current study was that the selected immunotherapy 
cohort included melanoma, patients with bladder cancer, 
and only in a small group of patients with PAC. In the 
follow-up study, we will further validate the MBS in a 
larger series of patients with PAC treated by immuno-
therapy and will explore associated mechanisms through 
in vivo and in vitro experiments.
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