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ABSTRACT

Background Pancreatic cancer (PAC) is one of the

most malignant cancer types and immunotherapy has
emerged as a promising treatment option. PAC cells
undergo metabolic reprogramming, which is thought to
modulate the tumor microenvironment (TME) and affect
immunotherapy outcomes. However, the metabolic
landscape of PAC and its association with the TME remains
largely unexplored.

Methods We characterized the metabolic landscape of
PAC based on 112 metabolic pathways and constructed

a novel metabolism-related signature (MBS) using data
from 1,188 patients with PAC. We evaluated the predictive
performance of MBS for immunotherapy outcomes in

11 immunotherapy cohorts from both bulk-RNA and
single-cell perspectives. We validated our results using
immunohistochemistry, western blotting, colony-formation
assays, and an in-house cohort.

Results MBS was found to be negatively associated

with antitumor immunity, while positively correlated with
cancer stemness, intratumoral heterogeneity, and immune
resistant pathways. Notably, MBS outperformed other
acknowledged signatures for predicting immunotherapy
response in multiple immunotherapy cohorts. Additionally,
MBS was a powerful and robust biomarker for predicting
prognosis compared with 66 published signatures. Further,
we identified dasatinib and epothilone B as potential
therapeutic options for MBS-high patients, which were
validated through experiments.

Conclusions Our study provides insights into the
mechanisms of immunotherapy resistance in PAC and
introduces MBS as a robust metabolism-based indicator
for predicting response to immunotherapy and prognosis
in patients with PAC. These findings have significant
implications for the development of personalized
treatment strategies in patients with PAC and highlight
the importance of considering metabolic pathways and
immune infiltration in TME regulation.

BACKGROUND

Pancreatic cancer (PAC) is one of the most
aggressive and lethal cancer types worldwide.
Although most patients have already devel-
oped metastasis at initial diagnosis, surgical
resection is the primary treatment for PAC.!

WHAT IS ALREADY KNOWN ON THIS TOPIC

= The existing biomarkers presently do not provide
sufficient accuracy in predicting the prognosis and
effectiveness of immunotherapy in pancreatic can-
cer (PAC). Consequently, there is an urgent necessity
to discover reliable and precise clinical biomarkers
that can predict the prognosis and responsiveness
to immunotherapy in patients with PAC through min-
imally invasive methods.

WHAT THIS STUDY ADDS

= Our study has created a machine learning-based
platform called the metabolism-related signature
(MBS), which enables the prediction of prognosis
and immunotherapy outcomes for patients with
PAC. Additionally, we have identified alternative
therapeutic agents for patients with PAC who are
deemed unsuitable for immunotherapy.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= The study conducted a systematic investigation on
the significance of metabolic patterns in the anti-
cancer immune response of PAC. The MBS demon-
strated exceptional performance in predicting the
response to immunotherapy, surpassing established
signatures. This signifies the potential of MBS to
serve as a valuable biomarker for guiding person-
alized immunotherapy strategies for patients with
PAC. By leveraging MBS, clinicians can make more
informed decisions regarding immunotherapy treat-
ment and improve patient outcomes.

While chemotherapy and radiotherapy
represent alternative treatment options,
little progress has been made in improving
patient outcome in recent decades. Immu-
notherapy has ushered in a novel approach,
with immune checkpoint inhibition relieving
tumor-infiltrating ~ lymphocytes (TILs)
suppression, thus leading to the enhanced
activation of TILs and subsequent tumor cell
clearance.?® Nevertheless, there are less than
20% of patients with cancer benefit from
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KEY POINTS

= We characterized the metabolic landscape of pancreatic can-
cer based on 112 metabolic pathways and constructed a nov-
el metabolism-related signature (MBS) using machine learning
methods.

= MBS was a powerful and robust biomarker for predicting prognosis
of pancreatic cancer compared with 66 published signatures.

= MBS outperformed other acknowledged signatures for predicting
immunotherapy response in multiple immunotherapy cohorts and
in-house cohorts.

= We identified dasatinib and epothilone B as potential therapeu-
tic options for MBS-high patients, which were validated through

experiments.

immunotherapy as single agents." PAC are among the
immunogenically “cold” tumors that does not respond
to immunotherapy as single agents because they lack
of natural infiltration of antitumor effector T cells
and fibrotic stroma in PAC tumor microenvironment
(TME).”® According to the previously published papers,
increasing antigenicity, enhancing effector T cells func-
tion, and overcoming immunosuppressive factors in TME
are crucial strategies to convert PAC into “hot” tumors.”®

Besides, the analysis of TILs alone is not sufficient to fully
characterize the complex tumor immune microenviron-
ment. Furthermore, immunotherapy resistance can still
occur in patients with high levels of TILs. As a result, various
indicators have been developed for predicting response
to immunotherapy, including tumor mutational burden
(TMB), programmed death-ligand 1 (PD-L1) expression,
and microsatellite instability (MSI) 51 Therefore, identi-
fying powerful and robust biomarkers, which aid clinicians
in identifying patients suitable for immunotherapy.

To proliferate rapidly and cope with stress, tumor
cells undergo metabolic reprogramming, opting for
aerobic glycolysis and lactic acid production (Warburg
effect).'” TILs are usually subjected to metabolic stress
due to tumor cell metabolic dysregulation, resulting
in an impaired antitumor immune response. Further
tumor cells suppress TILs function by expressing check-
point molecules.” Accumulating evidence suggests that
immune cell metabolisms within the TME greatly influ-
ences immunotherapy response. TME conditions regu-
late immune cell energy consumption and metabolic
reprogramming, often inducing, which compromises
cancer cell clearings.'* Using metabolic regulator drugs or
antibodies against specific immune receptors to enhance
nutrient usage represents a strategy to promote the ener-
getic rewiring of immune cells, enhancing antitumor
efficacy.”” Taken together, metabolic changes influence
immune function and undermine immunotherapy.'®
Targeting cancer cell metabolism shows promise in over-
coming immunotherapy resistance and identifying poten-
tial markers for predicting immunotherapy response.
Therefore, targeting metabolism holds promise for over-
coming immunotherapy resistance and identifying poten-
tial indicators of immunotherapy response. Systematic

understanding of anticancer immune response has
emphasized the importance based on immunometabo-
lism. Herein, we characterized metabolic patterns and
explored their relationship with the TME in 1,188 patients
with PAC, constructing a metabolism-related score (MBS)
based on these metabolic patterns for predicting both
prognosis and immunotherapy outcomes.

METHODS

Collection of PAC data sets and preprocessing

Publicly available gene expression data and clinical anno-
tations of data sets obtained from the Gene Expression
Omnibus, The Cancer Genome Atlas (TCGA), Interna-
tional Cancer Genome Consortium (ICGC), and ArrayEx-
press were used as previously described. ' Patients without
survival information were removed from further anal-
ysis. For the TCGA-pancreatic adenocarcinoma (PAAD)
cohort, RNA sequencing data (fragments per kilobase
of transcripts per million mapped reads (FPKM) values)
and clinical information were downloaded via the TCGA-
biolinks'® package of R software. FPKM values were then
transformed into transcripts per kilobase million values
similar to microarray results. Batch effects were corrected
using the ComBat method from the “SVA” package.'
Further, batch effects were confirmed via principal compo-
nent analysis (PCA). In total, we analyzed GSE28735,
GSE57495, GSE62452, MTAB-6134, and TCGA-PAAD
data sets, including 635 patients as the training cohort.
We included 295 patients from ICGC-AU and ICGC-CA
data sets as the ICGA-validation cohort. Besides, clinical
proteomic tumor analysis consortium (CPTAC)-PAAD
(n=135), GSE131050 (n=44), and GSE85916 (n=79) were
included in the independent validation cohort. In total,
1,188 patients with PAC with survival information were
included in this study (online supplemental figure S1A,B
and online supplemental table S5).

Statistical analysis

The detailed methods and statistics were described in
online supplemental methods. All data processing, plot-
ting, and statistical analyses were performed using R V.4.0.4.
The Kaplan-Meier method was used to analyze the survival
probability, and the log-rank test was used to calculate the
significant differences. Continuous variables were assessed
for normality first. A Student’s t-test was used to analyze
the difference between the two groups for normally distrib-
uted data, and the Wilcoxon matched-pairs signed-rank test
was used for non-normally distributed data. Two-sided p
values<0.05 were considered statistically significant.

RESULTS

Metabolism and the immune microenvironment are heavily
involved in PAC progression

Metabolic changes in tumor cells can affect TME to
limit the immune response and current obstacles to
cancer treatment. Improving our understanding of these
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changes can reveal the opportunity to advance the trans-
lation of metabolic pathway and immunity. Moreover, it
has been established that there exists a complex interplay
between these two categories.” Online supplemental
figure S1 illustrates the workflow of the present study.
To investigate the significance of metabolism and TME
in PAC, the authors analyzed the enrichment score of
112 metabolism-related pathways in normal and cancer
tissues using the GSE71729 data set. The results revealed
differential regulation of most metabolic pathways
between normal and tumor tissues, and most metabolic
pathways were closely related to the survival of patients
with PAC (online supplemental figure S2C,D and online
supplemental table S22). We also analyzed infiltrating
immune cells in seven independent cohorts with a total
of 930 patients with PAC, and found that patients with
high immune cell infiltration had the longest overall
survival(OS) (online supplemental figure S3A,B). The
infiltrating immune cell types were related to the clinical
characteristics of patients with PAC (online supplemental
figure 1). These results confirmed the importance of
both metabolism and the immune microenvironment in
PAC progression, but the relationship between these two
therapeutic targets remains largely unknown. Therefore,
a systematic and global analysis is needed to reveal the
complex relationship between metabolism and TME in
PAC.

The metabolic landscape of PAC

First, we constructed metabolic clusters (MB clusters)
based on the enrichment score of metabolic pathways in
the combined data set with 930 patients to classify these
patients into distinct subtypes (online supplemental figure
S4A-K). A value of k=3 was identified to have optimal
clustering stability based on the similarity displayed by
the pathway scores and the proportion of ambiguous
clustering measures (figure 1A and online supplemental
figure S4L). Principal coordinates analysis (PCoA)
revealed a clear distinction among these three cluster
subgroups (p<0.001, figure 1B). Cluster 3 had better OS
than the other two clusters (figure 1C). Most metabolic
pathways were differentially regulated among these three
subgroups (figure 1D). In particular, fatty acid degrada-
tion, pyruvate metabolism, tyrosine metabolism, and tryp-
tophan metabolism were mostly enriched in cluster 3,
whereas glycogen degradation and glycogen biosynthesis
were mostly enriched in cluster 1. Furthermore, cluster
3 exhibited the highest levels of infiltration by cytotoxic
cells, CD8 T cells, T cells, and plasmacytoid dendritic
cells (pDGCs) (figure 1E). These cell types play a crucial
role in tumor cell clearance and are generally associated
with a more favorable prognosis (online supplemental
figure 3C). In the present study, CD274, CD276, CTLA4,
HAVCR2, IDO1, LAG3, PDCDI1, and PDCD1LG2 were
selected as immune checkpointrelated factors, while
CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1,
TBX2, and TNF CD4, CD8A, CXCL10, GZMB, PRFI,
PTPRC, STATI1, STAT2, STAT3, STAT4, and STATHA

were used as immune activity-related factors.* ™ Cluster
3 had the lowest CD274, IDO1 and CTLA-4 expression
but the highest CD8A and LAG3 expression (figure 1F
and online supplemental figure S5A-F).

As expected, the panfibroblast TGFP response char-
acteristics (Pan-F-TBRs), cancer-associated fibroblasts
(CAFs), myeloid-derived suppressor cells (MDSCs),
tumor-associated macrophages (TAMs), epithelial-
mesenchymal transition (EMT), and immune checkpoint
blockade (ICB)_resistance signatures, which are the main
signatures contributing to immune therapy resistance,
were generally higher in patients from cluster 1 compared
with cluster 2 and three patients, whereas tertiary
lymphoid structures (TLSs) were the highest in cluster 3
(figure 1G). Additionally, cluster 3 had the lowest Tumor
Immune Dysfunction and Exclusion (TIDE) score, which
was consistent with the survival data (online supplemental
figure S5G,H). Furthermore, cluster 3 had the lowest
level of T-cell dysfunction and the highest level of CD8
and MSI scores, which contribute to anticancer immu-
nity (online supplemental figure S5I-K). Moreover, the
study used the cancer immunity cycle to uncover which
step is most involved in killing tumor cells. The results
showed that cluster 3 had high levels of dendritic cells
(DCs), macrophage, and natural killer (NK) cell recruit-
ment (online supplemental figure S6A), in addition to
the highest interferon (IFN)-gamma expression as well
as the lowest cell cycle and DNA replication rates (online
supplemental figure S6B). These results indicated that
patients in cluster 3 had the best survival, with enhanced
immune cell infiltration potentially underlying their
prognosis and indicating immunotherapy sensitivity.

Construction of metabolic gene clusters and association with
the tumor immune microenvironment

To further characterize distinct MB clusters, we iden-
tified DEGs between normal and PAC tumor tissues
from gene expression profiling interactive analysis data-
base (GEPIA). Then, we obtained 3,876 differentially
expressed genes among the three MB clusters by using
limma packages in R. Lastly, we took intersections from
DEGs and 3,876 genes, and we harvested 2,831 differ-
entially expressed metabolism-related genes (DEMBGs,
online supplemental figure S7A). We performed unsu-
pervised clustering of DEMBGs in the training cohort and
divided the latter into gene clusters A, B, and C (online
supplemental figure S7B-L). The 305 genes positively
correlated with the gene cluster were named as MB gene
signature A, while the remaining DEMBGs were termed
gene signature B (online supplemental figure S7M),
(online supplemental table S2). We performed func-
tional enrichment analysis of gene signatures A and B
using over representation analysis (online supplemental
figure S7TM). In order to reduce the noise or redundant
genes, we used the Boruta algorithm to perform dimen-
sion reduction in the gene signatures A and B. Online
supplemental figure S8A presents the expression of the
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Figure 1 Construction of MB clusters and the landscape of metabolism and immune-cell infiltration in PAC. (A) Consensus
clustering matrix of all 930 patients with PAC for k=3. (B) The principle coordinate analysis confirmed the three MB clusters.
The circles and error bars indicate the mean and SEs of the mean. (PERM-analysis of variance test with 10,000 permutations).
(C) Kaplan-Meier survival analysis of patients with PAC by metabolic subgroup. (D) Metabolic pathways dysregulated among
three cluster subgroups. (E) The comparison of the fraction of tumor-infiltrating immune cells in three MB clusters. (F) Immune-
activation-relevant genes expression in three MB subgroups. (G) TME-related pathways among three MB cluster subtypes.
*p<0.05; *p<0.01; **p<0.001; ***p<0.0001, ns represents p>0.05. CAFs, cancer-associated fibroblasts; DC, dendritic cell; ICB,
immune checkpoint blockade; MB, metabolic clusters; MDSCs, myeloid-derived suppressor cells; mRNA, messenger RNA; NK,
natural killer; PAC, pancreatic cancer; PCoA, principal coordinate analysis; pDCs, plasmacytoid dendritic cells; TAMs, tumor-
associated macrophages; TLSs, tertiary lymphoid structures; EMT, epithelial mesenchymal transition; TReg, regulatory T cell.
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308 most abundant DEMBGs identified across gene clus-
ters A, B, and C (online supplemental table S3).

PCoA confirmed these three gene clusters (p<0.001,
online supplemental figure S8B), and survival analysis
indicated that patients in gene cluster C had the best OS,
whereas those in A and B had worse prognosis (p<0.001,
online supplemental figure S8C). We then explored
the relationship between gene clusters and infiltrating
immune cells. Gene clusters B and C had higher levels
of B cells, DC cells, T cells, and Th17 cells, which play an
antitumor role (online supplemental figure S8D). More-
over, gene cluster C had the lowest expression of immu-
noinhibitory factors IDO1, CD274, HAVCR2 and CTLA-4
(online supplemental figure S8E). The cancer immunity
cycle results implied that gene cluster C had the highest
level of basophil recruitment and the lowest level of
MDSC recruitment (online supplemental figure S8f), in
addition to the lowest TIDE score (online supplemental
figure S9A). Immunotherapy-related pathways in gene
clusters were also analyzed and consistent with above-
presented results (online supplemental figure S9B). The
consistency among prognostic performance, immune
profile, and immunotherapeutic prediction in the three
MB-related gene clusters validated our classification.

Development of MBS and performance in prognostic
prediction

To quantify the MB landscape, we used a PCA method
to construct MBS based on MB gene signatures A and
B (figure 2A). We found that MBS was lowest in gene
cluster C (online supplemental figure S10A). Using the
surv_cutpoint function in the survminer package in
R, we stratified patients in the training cohort into two
subgroups, MBS-high and MBS-low, and this was further
confirmed via PCoA (figure 2B, p<0.001). In the training
cohort, the MBS-low group, which greatly overlaps with
MB cluster 3, had better overall survival than the MBS-
high group (figure 2C, p<0.001), as well as in the CPTAC-
PAAD cohort (figure 2D, p<0.01), GSE131050 cohort
(figure 2E, p<0.01), SE85916 cohort (figure 2F, p<0.05),
and the other two validation cohorts (online supple-
mental figure S10B,C, p<0.05).

In addition, we investigated the relationship between
MBS and molecular subtypes of PAC. Previous studies have
shown thatbasal-like subtype patients have worse outcomes
and are molecularly similar to basal tumors in bladder
and breast cancer.”* Quasi-mesenchymal subtype patients
exhibit high expression of mesenchymal-associated genes
and also have poor prognosis.” Interestingly, consistent
with previous findings, MBS was significantly upregulated
in basal-like and quasi-mesenchymal subtypes of patients
with PAC (figure 2G, S10D, p<0.01).

To compare the performance of MBS with other
signatures, we comprehensively collected 66 published
signatures, including long noncoding RNA (IncRNA)
and messenger RNA, associated with various biolog-
ical processes such as immunotherapy response, auto-
phagy, hypoxia, epigenetic modification, RNA-binding,

stemness, immune cell phenotypes, KRAS and TP53
mutated signatures, glycolysis, and drug resistance. These
signatures have been reported to be promising prog-
nostic biomarkers for PAC. In this study, we compared
the C-index of MBS with these published signatures in
TCGA-PAAD, ICGC-AU, and combined cohorts. Notably,
MBS exhibited outstanding performance in all three
cohorts, which demonstrated its stability and robustness
(figure 2H-]). Some models showed weak performance
across data sets, possibly due to overfitting during model
development. However, our MBS model was dimension-
ally reduced by multiple algorithms and therefore had
better extrapolation potential.

Immune significance and validation in a clinical in-house
cohort

Immune cells and immune-related genes play a critical
role in cancer immunotherapy, with numerous immune
agonists and antagonists being evaluated in clinical
oncology. Consistent with this, a low MBS was associ-
ated with greater infiltration of B cells, eosinophils, NK
cells, T cells, and Th17 cells, and lower regulatory T cell
(Treg) infiltration (online supplemental figure S10E). To
further advance this research, it is important to under-
stand the expression of immune-related genes and modes
of control in different states of the TME. Therefore, we
examined the expression of these genes, as well as somatic
copy-number alterations (SCNAs) and epigenetic mech-
anisms. Our results showed that the expression of most
immune-related genes varied across MBS subtypes, poten-
tially indicating their role in shaping the TME based on
the TCGA-PAAD cohort (figure 3A). To further confirm
the clinical applicability of MBS, we employed IPS, ESTI-
MATE, MCPcounter, xCell, and TIMER algorithms to
quantify the immune cell infiltration landscape in our
internal cohort. Consistent with the previous results, the
low MBS group exhibited higher levels of CD4+T cells,
CD8+T cells, B cells, and immunophenotype score (IPS)
scores (figure 3B). Notably, the protein expression of
PD-1, CD8A, and CD4 were significantly higher in the low-
MBS group than in the high-MBS group (figure 3C,D).
Furthermore, we found that there was a strong correla-
tion between cytotoxic cells and T cells in both MBS-high
and MBS-low subtypes (online supplemental figure S10F).
Most metabolic pathways were differentially regulated
between the two MBS subgroups (online supplemental
figure S1I0H). Fatty acid degradation, pyruvate metabo-
lism, tyrosine metabolism, and tryptophan metabolism
were mostly enriched in the MBS-low group, whereas
glycogen degradation and glycogen biosynthesis were
most enriched in the MBS-high group.

Next, we analyzed the correlation between the MBS
and anticancerrelated signatures. As expected, Pan-F-
TBRs, CAFs, MDSCs, EMT, ICB_resistance, T-cell exclu-
sion, and TIDE score were obviously higher in MBS-high
patients than MBS-low patients, whereas the opposite was
noted for TLSs, MSI_expr_Sig, and IPS, which contribute
to anticancer immunity (figure 4A-J). MBS most
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Figure 2 Construction and validation of MBS. (A) The association landscape among MBS and molecular characteristics (MB
clusters, gene clusters, immune infiltration subtypes, survival status, and cohorts). Columns showed PAC samples sorted by
MBS from low to high. (B) The principal coordinate analysis confirmed the high and low MBS groups. The circles and error
bars indicate the mean and SEs of the mean. (PERM-analysis of variance test with 10,000 permutations). (C-F) Kaplan-Meier
curves of OS for patients with PAC based on the MBS in the training cohort, CPTAC-mRNA cohort, GSE131050_Yeh cohort,
and GSE85916 cohorts. (G) Differences of MBS between two Moffitt subtypes in the GSE131050 data set. (H-J) Comparison
of C-index among MBS and 66 published signatures in TCGA-PAAD, ICGC-AU, and meta-cohorts. ICGC, International Cancer
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significantly correlated with the cancer immunity cycle
and immunotherapy-related pathways (figure 4K,L). The
alluvial diagram indicated that MBS-low patients over-
lapped with those in MB cluster 3, whereas MBS-high over-
lapped with those in MB cluster 1 (online supplemental
figure SIOE). The findings described above demonstrate
the consistent prognostic performance and immune
profiles in MB clusters and MBS subgroups, suggesting
that MBS may serve as a robust indicator for predicting
immunotherapy response in PAC. Moreover, these results
suggest that patients with low MBS may have more alter-
native resources for immune checkpoint inhibitors (ICI)
treatment.

Immunotherapy outcome prediction by MBS

We sought to evaluate the predictive performance of
MBS for immunotherapy outcome in 15 cohorts from
bulk-RNA and scRNA-seq aspects. First, we analyzed
the two scRNA-seq ICI cohorts, including melanoma
(SKCM-GSE115978) and basal cell carcinoma (BCC-
GSE123818). As the previous paper described,” we used
24 patients from the melanoma cohort, including 11
non-responders (NR) and 13 treatmentnaive patients
(TN), a total of 2,142 malignant cells were obtained after
removal of non-malignant cells. Ideally, it would be better
to compare the MBS between responders (R) and NR.
However, data on R were not available in this cohort, and
since untreated patients may include both potential R
and NR, MBS comparisons were made between NR and
TN. As the results showed that MBS in the NR group was
significantly higher than that in the TN group (p<0.001,
figure 4M). In the BCC cohort, a total of four NR and six
R were included, and 1,826 malignant cells were obtained
after removing non-malignant cells. We also found that
MBS in the NR group was significantly higher than that in
the R subgroup in the BCC cohort (p<0.001, figure 4N).
These results further indicated that MBS was robust in
predicting the immunotherapy responsiveness of patients
with tumor.

Next, we systematically analyzed thirteen bulk-RNA
immunotherapy cohorts. MBS-low group patients had
a better prognosis and immunotherapy response in the
IMvigor210 cohort (figure 5A-C). Moreover, the MBS was
negatively related to FMOne mutation and neoantigen
burden (figure 5D,E). Patients with nivolumab-treated
advanced melanoma cohort were divided based on MBS,
and it was found that MBS was significantly higher in the
stable disease (SD)/progressive disease (PD) group than
in the complete response (CR)/partial response (PR)
groups (figure 5G,H). Additionally, MBS-low patients
had a greater overall survival than MBS-high patients
(figure 5I). In the GSE78220 cohort of patients with anti-
PD-1-treated melanoma, MBS was negatively correlated
with the cytolytic score and was significantly higher in
the PD group than in the PR/CR groups, with MBS-low
patients achieving better overall survival (figure 5F and
figure 5],L.). The predictive role of MBS was validated
in other cohorts, such as mice receiving anti-CTLA-4

and anti-PD-L1 (GSE117358, online supplemental
figure S11A,B), patients with immunotherapy-treated
chronic lymphocytic leukemia (GSE148476, online
supplemental figure S11C,D), and anti-CTLA-4-treated
mices (GSE63557, online supplemental figure S11E-
G), as well as GSE173839, GSE165252, and GSE168204
(online supplemental figure S11H-]). Besides, we veri-
fied the performance of MBS in four immunotherapy
PAC cohorts. There was significant difference of MBS
between NR compared with R in both CRC and PDAC
patients, and higher MBS indicated worse OS and PFS
(online supplemental figure S12A-F) in Parikh cohort.
In terms of PDAC, NR had higher MBS compared with R,
however, there was no statistical difference between NR
and R (online supplemental figure S12G,H). The main
reason for this problem, we suspect, is that the sample size
of patients is too small. Our result showed that short-term
survivors of PDAC has higher MBS compared with those
long-term survivors of PDAC in Balachandran cohort
(online supplemental figure S12L,J). Vaccinated patients
showed lower MBS compared with non-vaccinated
patients (online supplemental figure S12K,L) in Lutz
cohortand CD11b cells had highest MBS, and CD4+T cell
and CD8+Tcell had lower MBS in Li cohort (online
supplemental figure S12M,N). Additionally, we further
predicted the immunotherapeutic responsiveness using
the TIDE algorithm in nine PAC data sets. A lower TIDE
score indicates a better response to immunotherapy.
Consistent with previous research findings, we observed
a significant positive correlation between MBS and TIDE
scores. Furthermore, the MBS in the R group was signifi-
cantly lower than that in the NR group (online supple-
mental figure S13A-E).

Finally, we compared the performance of MBS with
other previously recognized signatures for predicting
immunotherapy outcomes in four different data sets.
The results demonstrated that MBS outperformed other
signatures for predicting immunotherapy response in all
four cohorts, indicating its stable and robust predictive
performance (figure 5M,N). These findings suggest that
MBS has the potential to serve as a valuable biomarker
for guiding personalized immunotherapy strategies for
patients with PAC.

Potential therapeutics for MBS-high patients

As mentioned above, patients with low MBS are highly
sensitive to immunotherapy and have a better prognosis.
However, we also need to identify alternative therapeutic
targets for patients with high MBS. To address this, we
applied three different approaches—Cancer Therapeu-
tics Response Portal (CTRP), profiling relative inhibition
simultaneously in mixtures (PRISM), and Genomics of
Drug Sensitivity in Cancer (GDSC) to identify candidate
drugs for patients with PAC with high MBS. Differential
compound sensitivity analysis between MBS-high (top
decile) and MBS-low (bottom decile) groups was first
performed to identify drugs with lower estimated AUC
values in the former (log2 FC>0.1). Then we performed
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Spearman’s correlation analysis between MBS and
AUC value to identify drugs with negative correlation
coefficient (1<-0.2 for CTRP and PRISM, p<0.05). We
identified six drugs via CTRP (dasatinib, PD318088, selu-
metinib, paclitaxel, SB-743921, and triazolothiadiazine)
and five via PRISM (LY2606368, cobimetinib, epothilone
B, dasatinib, and trametinib), with estimated AUC values
negatively correlated with MBS (figure 6A,B). Further-
more, we analyzed the maximal inhibitory concentration
(IC50) of these compounds based on the GDSC data-
base. Three drugs (dasatinib, paclitaxel, and epothilone
B) had a lower estimated IC50 in the MBS-high group
(figure 6C-E), suggesting that they may hold promise
for the treatment of patients with PAC with high MBS.
Based on our analysis of the combat data set derived
from GSE14701 and GSE45757, we observed that the
MIAPaCa-2 cell line exhibited the highest MBS compared
with PATu-8988S and PATu-8988T (online supplemental
figure S4A—-C), therefore, we generated colony formation
using these three PAC cell lines to validate the effect of
dasatinib and epothilone B with five different concen-
trations. Our results demonstrated the rationality of our
findings (figure 6G-I).

To explore the underlying mechanisms, we performed
high-throughput sequencing on the MIAPaCa-2 cell
line, MIAPaCa-2 cells treated with dasatinib, and cells
treated with epothilone B. Through high-throughput
sequencing, we discovered that dasatinib primarily acts
through inhibiting signaling pathways such as tumor
necrosis factor (TNF)-o, hypoxia, DNA repair, and E2F_
target signaling pathways in PAC cell lines. On the other
hand, we found that epothilone B mainly affects signaling
pathways including MTORCI, TNF-o0, and unfolded_
protein_response (online supplemental figure S15E,F).
These findings are consistent with the activation of these
signaling pathways observed in patients with PAC with
high MBS (online supplemental figure S19A-I). Further-
more, dasatinib is an oral, once-daily SRC kinase inhib-
itor commonly used in the treatment of chronic myeloid
leukemia and Philadelphia chromosome-positive acute
lymphoblastic leukemia. Our analysis revealed that SRC
family genes, including SRC, HCK, FGR, and FYN are
significantly upregulated in patients with PAC with high
MBS (online supplemental figure S15A-D). This further
explains why dasatinib is better efficient in patients with
PAC with high MBS. In conclusion, our study suggests
that dasatinib and epothilone B may be promising candi-
dates for treating patients with PAC with high MBS, and
we provide potential mechanistic explanations for the
actions of these drugs. However, further research and
clinical trials are needed to validate these results and eval-
uate the efficacy and safety of these drugs in patients with
PAC.

Clinical performances of the MBS

We sought to further validate the clinical performance
of MBS in the TCGA-PAAD cohort, which had the most
extensive clinical data. Lower MBS was related to better

OS, disease-free interval, disease-specific survival, and
progression-free interval (figure 7A-D). In patients
undergoing their first course of treatment, a low MBS was
associated with better clinical responses (figure 7EF).
Next, we analyzed the correlation between the MBS and
clinical characteristics of patients with PAC. A low MBS
was significantly related to age, survival status, MSI status,
TP53 mutation, and KRAS mutation status (figure 7G
and online supplemental figure S16A-C). Further-
more, we also analyzed the relationship between MBS
and response to radiation therapy and chemotherapy.
TCGA samples were classified into radiation-sensitive and
radiation-resistant classes based on their reported sensi-
tivity to radiation therapy using the response evaluation
criteria in solid tumours (RECIST) classification method
and data obtained from published papers.”” The results
showed that patients with PAC who were sensitive to both
chemotherapy and radiotherapy had lower MBS values
compared with those who were insensitive to both ther-
apies (online supplemental figure S16D-F). This finding
further emphasizes the importance of MBS as a predictor
of treatment response in PAC and suggests that incorpo-
rating MBS into personalized treatment strategies may be
beneficial.

MBS-associated mechanisms in pancreatic cancer

To further explore the mechanisms underlying MBS, the
study compared PAC-specific cancer driver gene expres-
sion, genetic alterations, and epigenetically driven tran-
scriptional networks between MBS-high and MBS-low
subgroups. Differentially regulated cancer driver genes
were observed, such as ACVR2A, BAP1, BRCA2, and TP53
(online supplemental figure S17A). Strong correlations
were observed between CD8A and GZMA expression,
as well as CXCL9 and IDOI expression (online supple-
mental figure S17B). Additionally, somatic mutations
were analyzed in the TCGA-PAAD data set, and it was
found that more somatic mutations occurred in the MBS-
high group, including synonymous and non-synonymous
mutations (figure 8A—C and online supplemental figure
18A,B). Fourteen genes were more frequently mutated
in MBS-high patients, including KRAS, TP53, and ATOB
(figure 8D). Significant co-occurrences were observed
between KRAS and TP53 mutations, as well as FBN3 and
FLG mutations (figure 8F,G and online supplemental
figure S18C,D). Finally, we analyzed the prognosis of
patients with PAC with and without mutations in these
four genes using the cBioPortal database and found that
those with mutations in these genes had a poor prognosis
(online supplemental figure SISE-G). We also explored
the regulon activity of 20 regulator profiles between high
and low MBS groups,” as well as the correlation between
MBS and the expression of 28 known epigenetic regu-
lators® in patients with PAC. Our results suggested that
epigenetically driven transcriptional networks might be
important factors for MBS subtypes (figure 8H,I). This
further supports the idea that alterations in gene regula-
tion and epigenetic modifications may contribute to the
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pancreatic adenocarcinoma.

differences in clinical outcomes observed between MBS-
high and MBS-low subtypes.

The study also revealed that several pathways, including
TGF-8, TNF-0, hypoxia, inflammatory response,
interleukin-6-JAK-STAT?3, the unfolded protein response

(UPR), and EMT pathways, were significantly activated in
the MBS-high group, while the pancreas 3 cell pathway
was activated in the MBS-low group (online supple-
mental figure S19A-H). Additionally, the expression
of UPR and EMT regulators was upregulated in PAC
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samples (online supplemental figure SI19I). To deter-
mine the relative importance of the 308 MBS genes, the
researchers used the randomForestSRC and randomSur-
vivalForest algorithms for feature selection and ranked
their importance. The results were verified, as shown
in online supplemental figure S20A-D. These findings
suggest that dysregulation of multiple signaling pathways
and immune evasion may contribute to the differences in
clinical outcomes observed between MBS-high and MBS-
low groups. Furthermore, these pathways may represent
potential targets for personalized treatment strategies.

Potential links between MBS and immune resistance using
pan-cancer cohort

The study also investigated the relationship between
MBS and immunosuppression using TCGA pan-cancer
data sets. First, the researchers analyzed the correlation
between MBS and the expression level of immunosuppres-
sive genes. As expected, there was a significantly positive
association across multiple cancer types (online supple-
mental figure S21A). Second, we explored the associa-
tion between MBS and hallmark pathway enrichment to
determine whether immunosuppressive biological func-
tions were enriched in the high MBS group. The results
showed that TGF-B, EMT, and Notch signaling pathways,
which have been reported to contribute to immunosup-
pression, were significantly upregulated in the high MBS
group (online supplemental figure S21B). Additionally,
cancer stemness and intratumoral heterogeneity have
also been reported to confer immunosuppressive proper-
ties. The study found a positive association between MBS
and Intra-tumor heterogeneity (ITH) and five stemness
signatures across 30 cancers (online supplemental figure
S21C,D), suggesting that these factors may contribute to
the observed associations between MBS and immuno-
suppression.” In conclusion, the study found that MBS
is negatively correlated with anticancer immunity. The
researchers also conducted a systematic exploration of
potential therapeutic targets in synergy with MBS using
17-CRISPR data sets. We ranked 22,505 genes according
to their average Z-score in the 17-CRISPR data sets and
found that 23 MBS genes were among the top 10% ranked
genes across multiple different CRISPR data sets (online
supplemental figure S21E). The top-ranked genes (with
negative Z-scores) are immune resistance genes that may
promote antitumor immunity when knocked out, while
immunosensitive genes are located at the bottom of the
list. These findings suggest that targeting these MBS-
related genes may represent potential therapeutic strate-
gies for enhancing anticancer immunity in PAC.

DISCUSSION

Clinical trials of immunotherapy for PAC confirmed its
critical role in eradicating tumors and improving quality
of life of patients.31 However, only a minority of patients
are sensitive to immunotherapy owing to mechanisms of
immune evasion and suppression as well as competition

for basic nutrients and the suppression of immune cell
metabolisms.” Increasing antigenicity, enhance effector
T cells function, and overcome immunosuppressive
factors in TME are crucial strategies to convert PAC into
“hot” tumors. To satisfy the enormous energy demands,
cancer cells preferentially use glycolysis rather than oxida-
tive phosphorylation.” * The former metabolic pathways
provide energy in a rapid manner, although glucose is not
fully used. Lactate is one of the main products of glycol-
ysis, and the lactate concentration in tumors is 20-30 times
greater than that in normal tissues. This acidic micro-
environment suppresses infiltrating immune cells, thus
compromising the efficacy of immunotherapy.”™ Cancer
cells and infiltrating immune cells reprogram their
metabolism to adapt to the specific TME, with amino acid
metabolism in latter having a similar suppressive effect
on immune cell function. Altogether, metabolic path-
ways modulate the tumor immune microenvironment,
suggesting the potential for improving immunotherapy
outcomes by targeting metabolic pathways or specific
metabolites.” ** Glycolysis—cholesterol synthesis axis was
reported to be related to PAC prognosis and prognostic
subtype classifier gene expressions.”” However, a compre-
hensive characterization of the metabolic landscape in
relation to immunotherapy response in PAC is lacking.
In this study, we analyzed 112 metabolism-related
pathways to characterize the metabolic landscape of
PAC. We classified patients into three metabolic cluster
subtypes, with cluster 3 exhibiting the best overall
survival and enriched metabolic pathways, including
fatty acid degradation, pyruvate metabolism, tyrosine
metabolism, and tryptophan metabolism. It is currently
believed that different immune cell subsets play distinct
roles in antitumor immunity.”® Importantly, cluster 3
also had the highest infiltration levels of cytotoxic cells,
CD8+T cells, and T cells, indicating a potent antitumor
immune response and potential sensitivity to immuno-
therapy. In contrast, cluster 1 had the highest expression
of PD-L1 and lowest CD8 T cells, suggesting a potential
for immune escape and resistance to immunotherapy.
The Pan-F-TBRs signature is positively correlated with
poor immunotherapy responses and unfavorable prog-
nosis.” Immunosuppressive cell types, including CAFs,
MDSCs, and TAMs, suppress T cells in tumors and
promote immune escape.40 In contrast, TLSs improve
antigen presentation and are correlated with immuno-
therapy response.41 42 Pan-F-TBRs, CAFs, MDSCs, TAMs,
EMT, TIDE, T-cell dysfunction, and ICB_resistance were
mostly lower in cluster 3 than clusters 2 and 1, whereas
TLSs were the highest in cluster 3. The TIDE score, which
integrates T-cell dysfunction and elimination characteris-
tics, is a poor indicator when predicting immunotherapy
responses and prognosis. PD-L1 played the structural
carcinogenic roles in “cold tumors”, known as innate
immune drug-resistant tumors, including those that are
PD-L1 positive in the absence of CD8+T cells.* Patients
with this type of tumor emphasize the importance of
considering the presence of TILs in TME in conjunction
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with the state of PD-L1 in order to predict the immuno-
therapy response. While recently clinical trials of anti-
PD-L1 antibodies as monotherapy have not shown clinical
benefit in the majority of PAC.** As supported by previous
literature, metabolic activity has been shown to signifi-
cantly impact the differentiation and fate of effector T
cells.'® Therefore, it is crucial to identify strategies that
can modulate metabolic patterns in order to enhance the
immune response against tumors.

To evaluate quantitative indicators of PAC meta-
bolic landscape, we developed the MBS using machine
learning methods. Patients in the MBS-low subgroup,
which highly overlapped with those of metabolic cluster
3, had favorable prognosis. To demonstrate the prog-
nostic prediction performance of MBS, we conducted a
comparison with other published signatures using the
C-index as a measure of performance. The results showed
that MBS had the most robust potency to predict prog-
nosis, outperforming the other signatures. This suggests
that MBS may be a valuable tool for predicting prognosis
in the future. With regard to the TME, lower MBS was
related to greater infiltration of antitumor immune cells,
while immunosuppressive indicators were significantly
decreased. Further, dysregulated metabolism, TIDE
and IPS have good performance in predicting immuno-
therapy response.” ** Liu et al reported® demethylase fat
mass and obesity-associated protein (FTO) as an essential
regulator used by tumors to escape immune surveillance
through regulation of glycolytic metabolism. Motivated
by above results, we hypothesized that MBS is a promising
predictor of immunotherapy response, with a lower MBS
indicating greater sensitivity. Therefore, we validated
the predictive performance of MBS for immunotherapy
outcome in 15 cohorts from bulk-RNA and single-cell
aspects. The results confirmed its value in the clinical
decision-making process and low MBS was correlated
with a better immunotherapy response. We compared the
performance of MBS and other already acknowledged
scores for predicting immunotherapy response in kinds
of cancer data sets using receiver operating characteristic
(ROC) curves. And the results showed that MBS displayed
outstanding performance for predicting immunotherapy
response in multiple immunotherapy-cohorts, which
further demonstrated the stability of predictive perfor-
mance of MBS. However, despite the robust predictive
ability of MBS for immunotherapy response that has been
evaluated in 15 immunotherapy cohorts, including four
PAC immunotherapy cohorts, the limited sample size in
PAC immunotherapy cohorts necessitates further valida-
tion of the immunotherapeutic predictive value and prog-
nostic significance of MBS in larger cohorts of patients
with PAC who receive immunotherapy. Moreover, it is
important to consider the combination or comparison of
MBS with other potential biomarkers, such as TMB and
tumor-infiltrating immune cells, to enhance its predic-
tive capabilities and explore their complementary roles
in PAC immunotherapy. Promising biomarkers would
improve therapeutic selection for patients. Therefore, we

identified dasatinib and epothilone B were identified as
promising therapeutic compounds in these patients and
we further validated using experiments.

In addition to glucose and glutamine, solid tumors often
consume tryptophan. This amino acid is metabolized to
kynurenine by the IDO. Kynurenine promotes the survival
ability of tumor cells and supports the generation of Treg
cells, which inhibit the antitumor response. Therefore,
the increased expression of IDO is associated with tumor
progression and poor prognosis.” Conversely, blocking
IDOI can inhibit the generation of Treg cells or convert
these cells into non-inhibitory Th17 cells, thus weakening
the immunosuppressive TME.* * In the present study,
IDO1 expression was significantly upregulated in patients
from cluster 1 and the MBS-high subgroup, who also had
higher Treg cell infiltration. Chang et aP’ reported that
excessive glucose consumption by tumor cells can restrict
the anticancer capacity of T cells, which is related to a
decrease in mammalian target of rapamycin (mTOR)
activity, glycolysis, and the production of IFN-y. Anti-
bodies against immune checkpointrelevant molecules
can restore glucose level in TME and enhance TIL glycol-
ysis and IFN-y production. Further, Treg cells, which are
affected by glucose availability, are associated with unfa-
vorable prognosis in multiple cancer types, with their
depletion enhancing effective anticancer immunity.”! >

We further explored the potential links between MBS
and immune resistance in patients with PAC. We found
that TGF-B, EMT, and Notch signaling pathways, which
pathways contributed to the immunosuppression, were
significantly upregulated in high MBS tumors. EMT
could promote cancer progression and metastasis by
modulating the immune escape in the local TME.”
Besides, cancer stemness and intratumoral heterogeneity
were reported to confer immunosuppressive properties.*
Remarkably, positive association between MBS and ITH
and stemness signatures were found across 30 cancers.
Taken together, all these data indicated that MBS was
negatively correlated with anticancer immunity, which
corroborates the predictive value of MBS.

In summary, our study offers novel insights for the
stratification of patients with PAC for immunotherapy
based on a metabolism-related indicator. The limitation
of the current study was that the selected immunotherapy
cohort included melanoma, patients with bladder cancer,
and only in a small group of patients with PAC. In the
follow-up study, we will further validate the MBS in a
larger series of patients with PAC treated by immuno-
therapy and will explore associated mechanisms through
in vivo and in vitro experiments.
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