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Bone disorders are a group of varied acute and chronic traumatic, degenerative, malignant or congenital
conditions affecting the musculoskeletal system. They are prevalent in society and, with an ageing
population, the incidence and impact on the population’s health is growing. Severe persisting pain and
limited mobility are the major symptoms of the disorder that impair the quality of life in affected
patients. Current therapies only partially treat the disorders, offering management of symptoms, or tem-
porary replacement with inert materials. However, during the last few years, the options for the treat-
ment of bone disorders have greatly expanded, thanks to the advent of regenerative medicine. Skeletal
cell-based regeneration medicine offers promising reparative therapies for patients. Mesenchymal stem
(stromal) cells from different tissues have been gradually translated into clinical practice; however, there
are a number of limitations. The introduction of reprogramming methods and the subsequent production
of induced pluripotent stem cells provides a possibility to create human-specific models of bone disor-
ders. Furthermore, human-induced pluripotent stem cell-based autologous transplantation is considered
to be future breakthrough in the field of regenerative medicine. The main goal of the present paper is to
review recent applications of induced pluripotent stem cells in bone disease modeling and to discuss
possible future therapy options. The present article contributes to the dissemination of scientific and
pre-clinical results between physicians, mainly orthopedist and thus supports the translation to clinical
practice.
� 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article
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Introduction

Currently, stem cell-based therapies and research represent a
significant advance in bone regeneration. Recent therapeutic
options for bone disorders have included restricted or modified
activity, immobilization of injured or diseased structures using
splints and casts, non-steroidal anti-inflammatory drugs, corti-
costeroid administration, physical therapy, acupuncture, extra-
corporeal shock wave therapy, and surgical manipulation.
However, attention is increasingly turning to the application of
stem or progenitor cells as the basis for bone tissue regeneration.
Several recently published animal studies show promising results
for bone, tendon and cartilage regeneration. Bone marrow-
derived mesenchymal stem cells (MSCs) were the first stem cell
type investigated and remain the gold standard for many
researchers [1]. However, MSCs must be isolated from various
donors and are usually quite heterogeneous. Furthermore, ther-
apy for skeletal disorders has various limitations, such as the
age of pathologically related impairments regarding cell survival,
proliferation activity and the potential of multilineage differenti-
ation [2].

A major scientific breakthrough in biomedical research is
related to the formation of induced pluripotent stem cells (iPSCs)
by Takahashi and Yamanaka in 2006 [3]. By transferring a mixture
of nuclear transcriptional factors (Oct4, Sox2, Klf4, and c-myc), ter-
minally differentiated adult cells were successfully reprogrammed
into iPSCs and closely resembled human embryonic stem cells
[4,5]. So far, different human somatic cells have been repro-
grammed into iPSCs. As the field grows, improved combinations
of scaffolding biomaterials and bioreactors are creating a more
suitable stem cell microenvironment for new tissue formation.
Nevertheless, safety remains an important issue, especially with
the potential of tumour formation [6].

The main purpose of the present review was to summarise the
current state of IPSC technology and to discuss its prospects for
regeneration and modeling bone disorders.
Fig. 1. Methods involved in the trans
Methods for iPSC generation

The most used method for establishing iPSC lines had been
insertion of a mixture of reprogramming factors (Sox2, Oct4, c-
myc, Klf4 and Lin28) into the genome of somatic cells by using
delivery vectors [7]. Substantial advances have been made in
searching for new strategies to increase the effectiveness of repro-
gramming techniques, as well as new approaches for improving
biosafety by reducing the number of genomic modifications
required to complete the process [8]. Recently, methods used to
transfer genes into target cells can be divided into: (a) integrative
viral vectors (viral delivery system, transfection of linear DNA), (b)
integrative free vectors (piggyBac transposon, plasmid/episomal
plasmid vectors, minicircle vectors), and (c) non-integrating meth-
ods (direct protein/microRNA delivery, small molecules) (Fig. 1,
Table 1) [4,5].

Integration methods apply viral vectors (e.g. retroviral and len-
tiviral) to transfer selected genes into the host genome. Their
advantage is the undeniably high efficiency; however, these meth-
ods possess considerable risk of tumour formation. Because of this,
different approaches have been also employed [9].

The most promising reprogramming approaches seem to be
non-integrating techniques. For instance, the method of protein
transduction can replace the use of transcription factors. The con-
jugation of proteins with short peptides responsible for cell pene-
tration can be used for protein delivery into the cells. The majority
of murine and human iPSCs were produced according to this
method using purified polyarginine-tagged Oct4, Sox2, Klf4, and
c-myc [10]. MicroRNAs (miRNAs) and small molecules have been
also examined for their potential to enhance the reprogramming
efficiency or replace reprogramming genes. miRNAs are an essen-
tial component of the gene network and are regulated by genes
of pluripotency. Therefore, the expression of pluripotent stem
cell-specific miRNAs, reprogramming gene-related miRNAs and
the inhibition of tissue-specific miRNAs may support cell repro-
gramming in iPSCs [11].
fer of genes into the target cells.



Table 1
The overview of the reprogramming methods.

Method Transgene expression Advantages Disadvantages References

Retrovirus/
Lentivirus

Yes Relatively easy to use; medium to high efficacy (0.1%) Integration of foreign DNA into genome;
residual expression of reprogramming
factors; increased tumour formation

[3]

Adenovirus No Non-integrative; infects dividing and non-dividing cells Low efficiency (0.0001%) [52,53]
Episomal plasmid

vector
No Non-integrative; simple to implement to laboratory set-up; less

time consuming
Very low efficiency (3–6 � 10�6); the use
of potent viral oncoprotein SV40LT
antigen

[54,55]

Minicircle
plasmid vector

No More persistent transgene expression; lack bacterial origin Very efficiency (0.005%) [56]

PiggyBac
transposons

Excision of transgene
by transposase

Elimination of insertional mutagenesis; no footprint upon
excision; higher genome integration efficiency

Excision may be inefficient, potential for
genomic toxicity

[57]

Sendai virus No Medium to high efficiency; Non-integrating; robust protein-
expressing property; wide host range

Involve viral transduction [58,59]

Protein No Free of gene materials; direct delivery of reprogramming factor
proteins

Extremely slow kinetics, low efficiency
(0.001%); difficulties in generation and
purification of reprogramming protein

[60]

miRNA No Higher efficiency (1,4–2%) Requires high gene dosages of
reprogramming factors and multiple
transfection

[61]

Small molecules No Easy of handling; no need for reprogramming factors 2 � 10�3; more than one target, toxicity [62]
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Transfection of mature miRNA from the miR-200c, miR302s,
and miR369s families or infection with a lentiviral construct over-
expressing miR-302/367 clusters were reported to reprogram
mouse and human adipose stromal cells or fibroblasts, respec-
tively, into iPSCs [12]. However, for the therapeutic applications
of iPSCs, the genome of reprogrammed cells cannot contain any
genomic insertion of transgene sequences. Small molecule com-
pounds (inhibitors of histone deacetylases; histone demethylases;
DNA methyltransferases, etc.) could be a potential alternative to
resolve this problem because of their ability to target various cel-
lular pathways that control cell features. An inhibitor of transform-
ing growth factor beta (TGF-b) can replace Sox2 and induce Nanog
expression, while a mixture of different small molecules can
replace both Sox2 and c-myc. Moreover, several Oct4-activated
molecules have been studied in this context [13]. Their biological
actions are rapid, reversible, and dose-dependent, allowing strict
control over specific outcomes by affecting their concentrations
and combinations. A recent report showed that iPSCs could be gen-
erated from mouse somatic cells using a cocktail of seven small
molecule compounds [14]. All this evidence suggests that chemical
reprogramming approaches have a potential use in generating
functionally suitable cells for safe applications in human medicine.
Bone disorders treatments

Bone is a highly specialized tissue that undergoes constant
renewal through coordinated destruction and concomitant recon-
struction mediated by osteoclasts and osteoblasts. Recently, the
damage or loss of bone tissue and dysosteogenesis still represents
a serious problem in orthopaedics [15]. A similar situation occurs
in dental medicine because of the increased need for dental
implants and for massive bone substitution in the atrophic alveolar
ridge and the maxillary sinus [16].

Recently, the gold standard to enhance bone regeneration, is
bone grafting. However, bone grafts available from bone tissue
are very limited, and harvesting can be often associated with donor
morbidity and several complications, such as pain, infection, frac-
tures, and host immune reactions [15,17]. The alternative method
is cell replacement therapy. Stem cells with osteogenic potential
are important in the bone tissue engineering approach, thus the
key to make a success is to obtain the ideal cell source [18]. The
present approach involves the use of autologous cells to replace
damaged tissue. Recent stem cell research has provided new possi-
bilities for bone regeneration.

iPSCs represent a novel cell type exhibiting advantages of MSCs
and ESCs. Recent discoveries have demonstrated the ability of
iPSCs to differentiate into osteoblasts or osteoclasts, suggesting
that iPSCs could have a substantial role to enhance the bone regen-
eration (Fig. 2). Moreover, they should be considered as patient-
specific, thus overcoming ethical and immunological issues. They
are mainly produced by using different genetic manipulations from
various somatic cells. Recently, more attractive cell types over
iPSCs are iPSC-derived mesenchymal stem cells (iPSCs-MSCs).
The possibility to use iPSCs/iPSCs-MSCs for autologous cell replace-
ment in impaired bone tissue makes them a promising candidate
for cell-based therapies of bone defects and injuries [19–21].
Recently, de Peppo et al. [18] demonstrated the successful genera-
tion of mature, phenotypically stable bone substitutes engineered
from human iPSCs.

Osteogenic differentiation of iPSCs

MSCs have been gradually translated into the regeneration of
bones. They possess the potential for intense regeneration and
plasticity. However, there are still some important issues related
to their applications, such as limited availability of autologous
MSCs, low proliferation rate that rapidly decreases with donor
age, immunogenic concerns, an invasive harvesting procedure in
case of bone marrow MSCs, etc. Thus, iPSCs may represent a new
and more suitable alternative to MSCs (Table 2).

Recently, it was shown that iPSCs can be differentiated into
osteoblasts and are therefore expected to be useful for bone regen-
eration. According to several studies, the differentiation protocols
for osteogenic lineages developed for ESCs are similar to those
for iPSCs [22–24]. Foetal bovine serum, ascorbic acid, b-
glycerophosphate, and dexamethasone are basic components,
which are commonly used in osteogenic medium formulas [25].
Bone morphogenetic proteins (BMPs) and calcium regulating hor-
mone vitamin D3 are used to enhance osteogenic differentiation
[23]. Other enhancers of osteogenic differentiation contain mem-
bers of the TGF-b family [26]. Bilousova et al. [27] used retinoic
acid to differentiate murine iPSCs into cells to form calcified struc-
tures, both in vitro and in vivo. Tashiro et al. [28] reported an
enhanced osteogenic differentiation of mouse iPSCs by exogenous
overexpression of the key osteogenic transcription factor Runx2.



Fig. 2. Overview of iPSCs-based therapeutic approaches for the treatment of bone disease.
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Runx2-transduced iPSCs displayed more than 50% higher alkaline
phosphatase activity in comparison with non-transduced cells.
Another approach based on intercellular interactions and the
secretion of different soluble bioactive molecules is the differenti-
ation in co-cultures with primary bone cells [29,30].

On the basis of differentiation protocols for ESCs, the production
of bone matrix-forming osteoblasts has been reported from mouse
to human iPSCs [31]. The first study describing the osteogenic
potential of iPSCs was published by Kao et al. [32]. Researchers
obtained osteocyte-like cells after culturing iPSCs in osteogenic
medium and found that resveratrol, a natural polyphenol antioxi-
dant, has a supporting effect on the osteogenic differentiation of
iPSCs. Apoptosis induced by dexamethasone in osteocyte-like cells
was effectively suppressed by pre-treatment with resveratrol.
Recently, Ji et al. [33] investigated the osteogenic differentiation
of human iPSCs from gingival fibroblasts regulated by nanohydrox
yapatite/chitosan/gelatine 3D scaffolds with nanohydroxyapatite
(nHA) in different ratios. Osteogenic differentiation was notably
increased when composite HCG-311 (3 wt/vol% nHA) scaffolds
were used both in vivo and in vitro. This finding suggests the signif-
icant role of different nHA ratios in the osteogenic differentiation of
human iPSCs.

Kang et al. [34] reprogrammed iPSCs to functional osteoblasts
by simply using only the small molecule exogenous adenosine.
The iPSCs treated with adenosine expressed the molecular signa-
ture of osteoblasts. Subsequently, the osteoblasts were used to
repair large cranial defects through the formation of new bone tis-
sue. This approach offers a simple and cost-effective strategy to dif-
ferentiate iPSCs into cells of osteogenic lineages.
The adjustment of protocols from tissue culture plastic dishes to
2D or 3D scaffolds also plays an important role in the differentia-
tion of iPSCs to osteogenic cells. The extracellular matrix (ECM)
affects the structure and biological properties of cells. It has been
shown that the best biocompatible nanofibrous scaffolds should
mimic the function of native ECM. Many scaffolds have incorpo-
rated nanostructures into their formulations in order to enhance
mechanical properties. Xin et al. [35] reported that nanoscale inter-
actions with the ECM components of bone tissue can influence the
behaviour of stem cells. Jin et al. [36] cultured iPSCs in a
macrochanneled poly (caprolactone) biopolymer 3D scaffold under
osteogenic conditions. Subsequently, the scaffolds colonized by
iPSCs were transplanted into the subcutaneous site of arrhythmic
mice. These findings indicated the formation of distinct levels of
ECM and their mineral deposition within the structure of scaffolds.
Several studies published a positive effect of scaffolds with phos-
phate minerals on osteogenic differentiation of MSCs and on osteo-
genic differentiation in vivo [37,38]. With respect to this
knowledge, Kang et al. [39] used biomaterials containing calcium
phosphate minerals to promote the osteogenic differentiation of
iPSCs. The iPSCs were cultured in both 2D and 3D cultures using
mineralized gelatin methacrylate-based scaffolds without any
osteoinductive factors. After 28 days of cultivation, the majority
of cells expressed an osteocalcin, suggesting effective osteogenic
differentiation of iPSCs in a mineralized environment.

Significant progress in the osteogenesis of iPSCs was made by
Levi et al. [40], who studied the influence of a skeletal defect envi-
ronment combined with an osteogenic scaffold micro-niche on
survival and osteogenesis of implanted iPSCs. Scaffolds contained



Table 2
The comparison of MSCs and iPSCs characteristics.

Advantages Disadvantages References

MSCs
Very little ethical issue Limited availability of autologous MSCs [63]
Resistant to malignant transformation Several complications related with autologous MSCs harvesting

(invasive method)
[64]

Successful differentiation into osteogenic lineages (multilineage potential) Impaired self-renewal ability [65]
Potent paracrine and anti-inflammatory properties Age-related decreasing of proliferative potential [64,66]
Effective in orthopedic application (preclinical and clinical studies) Allogenic MSCs present a risk of host immune reactions [67]
Anti-apoptotic properties Donor-dependent ability of expansion and differentiation [68]

Need for differentiation protocols optimization [64]

iPSCs
No ethical and immunological issues Necessary induction into high-quality progenitor cells after

transplantation
[53,69]

Differentiation into 3 germ layers – pluripotency (similar to ESCs) Risk of spontaneous teratoma formation [4,9]
Generation from any cell source Need for reprogramming protocols optimization [24]
Patient-specificity (sufficient for in vitro bone repair) [29,70]
Osteodegenerative disease modeling (in vitro disease recapitulation) [15,42]
Unlimited self-renewal capacity [4,5]
Effective autologous cell replacement in impaired bone tissue [28,31]
Osteogenic capability equal or higher than MSCs [66,70]
iPSC-MSCs have much higher capacity of cell proliferation than bone marrow-

derived MSCs
[67]
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hydroxyapatite, poly-L-lactic acid and BMP-2. A high survival rate
and differentiated osteogenic cells were detected. Moreover, inte-
grated cells displayed very low teratoma formation. These results
suggest the direct effect of the surrounding environment on
implanted iPSCs followed cell engraftment and bone formation.

Ardeshirylajimi and Soleimani [41] investigated the effect of
prolonged pulses in an extremely low frequency electromagnetic
field on iPSCs under in vitro conditions. Results showed increased
proliferation activity and osteogenic differentiation, which was
proved by presence of calcium mineral deposition, expression of
alkaline phosphatase and different bone-related genes. Authors
suggested that the combination of osteogenic medium and electro-
magnetic field can be another promising approach suitable for pro-
moting osteogenic differentiation in stem cells.
iPSC-based therapy and modeling of skeletal diseases

There is a high demand for bone tissue in regenerative therapy.
Osteodegenerative diseases, such as osteoporosis and osteoarthri-
tis, still represent significant public health problems affecting a
broad spectrum of the elderly population. A number of different
factors may promote bone disorders related to loss of bone mass
and decreased bone density. The primary drugs in clinical practice
are anti-osteoporosis agents that inhibit bone resorption, such as
bisphosphonates. However, these drugs are associated with
numerous adverse effects. Thus, iPSCs-based therapy represents a
promising new approach for bone repair and regeneration [42].

Another important advantage of iPSCs is the possibility to create
particular models of diseases affecting bones. Many genetic bone
disorders have limited treatment possibilities due to the absence
of appropriate animal models and inaccessibility of native bones.
IPSCs-derived disease models from patients with genetic muta-
tions enable us to understand the origins and pathologies of dis-
eases. iPSCs have been used to model infrequent genetically
influenced disorders (e.g. Fibrodysplasia ossificans progressiva
(FOP) and metatropic dysplasia) [43,44].

FOP, an inherited disease which is manifested by progressive
ossification of soft tissue (muscles, ligaments and tendons), is
caused by gene mutations in the Activine A Receptor type 1
(ACVR1), which is part of bone morphogenic protein (BMP) sig-
nalling. Matsumoto et al. [45,46] developed a ‘‘disease in a dish”
model of FOP to investigate differences in individual steps of endo-
chondral bone ossification between FOP iPSCs and control iPSCs.
Results showed increased mineralization and chondrogenesis of
FOP iPSCs in vitro. Researchers found that mineralization can be
suppressed by a small molecule inhibitor of BMP signalling. In a
subsequent study using a model of FOP derived from iPSCs-MSCs,
the authors demonstrated that MMP1 and PAI1 have a pivotal
effect on enhancing the chondrogenic features of FOP cells [47].
Recently, Barruet et al. [48] used an FOP model derived from
human iPSCs to investigate if mutation of ACVR1 R206H elevates
the production of osteoprogenitors in the endothelial cell lineage.
Results showed that endothelial cells expressing the ACVR1 recep-
tor produced elevated levels of collagen proteins, which can con-
tribute to the formation of fibrotic tissue.

Chen’s group [21] has been studying craniometaphyseal dys-
plasia (CMD), an uncommon genetic bone disorder, characterized
by progressive thickening of bones in the craniofacial region and
a widening of metaphysis in long bones. Mutation for the autoso-
mal dominant CMD is in the ankylosis gene and in Connexin 43
for the recessive form [49]. Researchers used patient specific iPSCs
to identify osteoclast defects and found out altered osteoclasts in a
laboratory mouse model with a Phe377del mutation. Additionally,
they established a simple and efficient method to produce human
iPSCs from the peripheral blood of donors suffering from CMD.

Quarto et al. [50] prepared human iPSCs from patients with
Marfan syndrome (MF) to study the pathology of skeletogenesis
in vitro. Another research group reported molecular and pheno-
typic profiles of skeletogenesis from iPSCs-differentiated tissues
carrying a heritable mutation in FBN1. Human MF – iPSCs repre-
sent impaired osteogenic differentiation as a consequence of an
alteration in TGF-b signalling [51].
Conclusion and future perspectives

Bone tissue exhibits regenerative capacity, however, ageing,
disease or injury frequently result in progressive bone loss, which
prevent the natural replacement of bone tissue. The accessibility
and therapeutic effect of patient-specific iPSCs provides a unique
approach for regenerative medicine, including bone reconstruction
and orthopaedics. Still, engineered grafts derived from iPSCs are far
from being standard in human medicine. In the near future, the
major issue to be resolved is the safety of the method because of
tumorgenesis and teratoma formation associated with the
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incorporation of vectors into the host genome. Other challenges
include time-consuming methods of osteogenic differentiation,
poor reproducibility, low efficiency and low survival of trans-
planted cells. Strategies to increase cell survival in iPSC-patient
specific cells after transplantation could include local immune
modulation to decrease the inflammation and thereby reduce
apoptosis. Different soluble bioactive factors, extracellular matrix
components, and cells can also effectively influence the survival
and optimal functions of transfected cells.

If treating a disease involves correcting a genetic mutation, then
gene-editing technologies (CRISPR/Cas9, ZFN, TALENs, etc.) can be
used as an additional step before differentiating the iPSCs into
the desired cell type.

The present application of iPSCs involves laboratory scale pro-
duction and testing assays. Despite the significant scientific and
therapeutic prospects of iPSCs, further research focusing on an
optimization of reprogramming methods will be essential to accel-
erate the process of iPSC translation into human medicine.
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