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related hepatocellular carcinoma identifies
macrophage and T-cell subsets associated with
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Abstract
Diverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their
heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and
phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-
cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver
tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the
heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic
switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with
unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell
subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2
macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC
patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells
highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures,
cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also
identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights
novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.

Introduction
Hepatocellular carcinoma (HCC) is the fourth leading

cause of cancer death worldwide, with chronic hepatitis B
(HBV) and C (HCV) virus infection as the leading risk
factors1. Recent immune therapies, including inhibitors
blocking immune checkpoints, have shown encouraging
clinical results in HCC. However, treatment outcomes
vary among patients and achieve only about a 20%
response rate2,3. HCC is known as an inflammation-
driven disease, and it is rational that the quality and
quantity of immune cell infiltrations and dynamic
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interactions may significantly impact on the efficacy of
immunotherapy4.
Tumor microenvironment (TME) is a complex and

heterogeneous ecosystem. Innate immune cells, such as
the classically activated macrophages (M1) can kill and
remove tumor cells, while the M2 macrophages, also
considered as tumor-associated macrophages (TAMs),
promote tumor progression5. Although it is currently
clear that macrophages play a dual role in tumor
immune responses, the heterogeneity, functional char-
acteristics, and relationship between M1 and M2 mac-
rophages still need further characterization. Also,
various subsets of adaptive immune cells in TME display
considerable plasticity in anti-tumor response. For
example, CD8+ cytotoxic T cells play a critical role in
tumor control and contribute to a better prognosis for
HCC6. However, these cells could display an exhausted
state by persistent antigen stimulation and display a
compromised capacity to produce pro-inflammatory
cytokines7. Thus, comprehensive characterization of
diverse immune subsets will bring new clues for devel-
oping tumor immunotherapy.
Single-cell RNA-sequencing (scRNA-seq) has allowed

for comprehensive profiling of the immune system in an
unprecedented way8. Applying scRNA-seq on immune
cell populations has identified novel immune subsets in
many types of tumors, including lung9,10, colorectal11,
liver12,13, and breast cancer14. Here, we conducted a
comprehensive scRNA-seq of immune cells without fil-
tering for cell type markers from seven HBV/HCV-related
HCC patients. We discovered a considerable spatio-
temporal heterogeneity and plasticity of immune subsets.
Importantly, we detected and validated a new subset of
CCL18+ M2 macrophages and a new subset of
XCL1+CD8+ T cells that correlated with disease pro-
gression and anti-tumor responses, respectively. Our
findings provided a valuable resource for deeper under-
standing of HBV/HCV-related HCC immunology, and
may guide future immunotherapeutic strategies.

Results
Single-Cell Profiling of immune cells in HCC
microenvironment
We performed scRNA-seq on immune cells isolated

from seven treatment-naïve HCC (P01~P07) and adjacent
non-tumor liver tissues (Fig. 1a–c; Supplementary Fig.
S1a, b). Patients were all HBV-infected except for one
HCV-infected (P05) with 3 cases at stage I and 4 cases at
stage III (Supplementary Table S1). A total of 41,698 cells
passed quality control, including 21,991 from non-tumor
liver tissues (Fig. 1d, e) and 19,707 cells from HCC (Fig. 1f,
g), with the mean number of 5549 UMIs/cell and 1709
genes/cell (Supplementary Table S2). We used the Single
R algorithm15 to group cells into main immune cell types

and visualized by t-Distributed Stochastic Neighbor
Embedding (t-SNE). We identified eight immune subsets
with the expression of well-known marker genes (Fig. 1h).
Consistent with previous data12, T cells were the most
abundant type of immune cells in tumor (36.20%), fol-
lowed by NK (28.57%) and macrophages (25.04%).
Although the number of dendritic cells (DC) detected was
the least (1.19%), the number of UMIs and genes
sequenced in them was the most (16,438 UMIs/cell and
3187 genes/cell; Supplementary Fig. S1c–f).

Myeloid cells are functionally diversified in HCC
microenvironment
Myeloid cells consist of various subsets and exhibit

distinct functions in tumor immunity. To further inves-
tigate myeloid populations in HCC, unsupervised clus-
tering 7008 myeloid cells clearly revealed eight distinct
clusters (Fig. 2a, b; Supplementary Fig. S2a–e).
In our data, Mø_c1 represented the most abundant

macrophages (37.10%) with high expression of IL1B, as
well as CXCL10 and CXCL9 (Fig. 2c; Supplementary
Table S3), which might be involved in anti-tumor
responses16. Consistently, these macrophages expressed
higher levels of IFN-γ related genes such as TNFAIP3,
GBP1, APOBEC3A, and GBP5. Mø_c2 and Mø_c3
(13.54% and 13.31%, respectively) were considered as
Kupffer-like cells, owing to their higher expression of
VSIG4, a membrane protein specific to tissue-resident
macrophages17. Remarkably, Mø_c4 (11.16%) was mostly
infiltrated in advanced HCC patients (P04 and P07), and
characterized by higher expression of CCL18, which was
absent in previous scRNA-seq study12. These macro-
phages showed strong activity in lipid transport and
metabolism, and immunosuppressive-related pathways
(Fig. 2d). We confirmed that CCL18 was mainly secreted
by M2 macrophages (Fig. 2e) and HCC patients displayed
a higher proportion of CD68+CD206+CCL18+ macro-
phages in tumor significantly associated with large tumor
size (P= 0.025), advanced TNM stage (P= 0.034; Sup-
plementary Table S4), and poor survival (Fig. 2f, P=
0.001; Supplementary Fig. S2f) in our cohort.
Mø_c5-Mø_c7 showed a strong donor phenotype and

were defined as monocytic myeloid-derived suppressor
cells (M-MDSCs, 8.78%, 8.16%, and 7.95%, respectively),
characterized by the high expression of S100A12, S100A9,
and S100A818 (Supplementary Fig. S2g), as well as CCR2,
which could facilitate their trafficking to tumor site19. In
particular, Mø_c7, mostly derived from P06, a 36 years
male patient with a high load of HBV DNA (127,000 IU/
mL), showed upregulation of IFI44L and IFI6, implicating
a potential role in antiviral responses20,21.
We only recovered one subset of DC (DC_c1) with

enriched expression of CLEC9A and XCR1, markers of
antigen-presenting cDC1 cells, partly due to the sample
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bias or different tissue digestion methods. cDC1 cells play
an important role in activating T cells by presenting
antigens22. As expected, HCC with increased DC_c1
marker gene expression had significantly better survival in
TCGA cohort (P= 0.0036, Fig. 2g). Interestingly,
DC_c1 showed enrichment in pathways related to RNA

and protein metabolism and DNA replication, implying
their upregulated transcription, consistent with the find-
ings that they possessed the highest number of genes.
Furthermore, DC_c1 cells might have functional altera-
tion and enhanced lipid utilization due to the remodeling
of TME as the increased expression of CXCL9, IDO2,

Fig. 1 Single-Cell Profiling of diverse immune cells from HCC tumors and distal peri-tumors. a Overview of the study workflow. b, c t-SNE plot
and proportions of all 41,698 cells annotated by the seven patients. d, e t-SNE plot and proportions of cell types vary across sample origin from peri-
tumor tissues. f, g t-SNE plot and proportions of cell types vary across sample origin from HCC tumor. h Expression of cell-type-specific marker genes
illustrated in t-SNE plots.
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Fig. 2 Identifying distinct myeloid cell clusters in HCC. a t-SNE projection of eight subsets of myeloid cells (each dot corresponds to one single
cell) shown in different colors. b t-SNE plots of different myeloid cell clusters origin. c Expression of marker genes for each cluster illustrated in the t-
SNE plots. d Heatmap of the differences in pathway activities scored per cell by GSVA analysis. e Representative mIHC images to show the
distribution of CD68+CD206+CCL18+ macrophages: CD68 (yellow), CD206 (green), CCL18 (red), and DAPI (bule). White arrows
(CD68+CD206+CCL18+), blue arrow (CD68+CD206+CCL18−). Scale bar, 50 μm. f Kaplan–Meier curve showing poor survival in patients with high
proportion of CD68+CD206+CCL18+ macrophage vs low proportion (log-rank test, P= 0.001) in our cohort. g Kaplan–Meier curves of survival for the
TCGA HCC patients grouped by the average expression (high versus low) of DC_c1_CLEC9A cell marker genes as annotated in Table S3. (log-rank
test, P= 0.0036). h Volcano plot showing differentially expressed genes in DC_c1_CLEC9A cells between peri-tumor and tumor. Each red dot denotes
an individual gene passing our P value and fold change thresholds.
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APOA2, and APOE compared to their non-tumor coun-
terparts (Fig. 2h).

Transcriptome heterogeneity of different subsets of
macrophages
Macrophages are phenotypically and functionally

plastic, but the model of macrophage polarization
remains controversial. We assessed the expression of M1
and M2 signature genes14 (Supplementary Table S5) in
Mø_c1-Mø_c4 to define their phenotypes and performed
Monocle 2 algorithm23 to reveal their potential transition
(Supplementary Fig. S3a). Results showed that Mø_c1
and Mø_c4 were phenotypically more like M1 and M2
macrophages respectively, while Mø_c2 and Mø_c3
appeared at intermediate stages (Fig. 3a). Along the
transition from M1 to M2 state, macrophages acquired
features that promote tumor invasion, metastasis, and
immunosuppression with upregulated genes like
MMP14, VEGFA, and MRC1 (Fig. 3b; Supplementary Fig.
S3b). However, although macrophages gradually obtained
the characteristics of M2 phenotype, they did not
obviously down-regulate M1 signature. This finding
indicated that M2 like macrophages still maintained
some anti-tumor properties, supporting the view that
macrophage activation in TME did not follow the clas-
sical polarization pattern14,24.
Macrophage may alter the metabolic gene expression to

accommodate energy requirements, such as increased
fatty acid oxidation providing a crucial energy source for
M2 polarization25. We found that M2 macrophages
showed progressively enhanced lipid metabolism com-
pared with M1 macrophages (Fig. 3c), as exemplified by
highly expressed TREM2 in Mø_c2-Mø_c4, which is a
marker gene of M2 macrophages26. Moreover, M2 mac-
rophages in tumors exhibit stronger lipid metabolism
characteristics than those in non-tumors, indicating that
TME might enhance lipid metabolism in M2 macro-
phages. Lipid metabolism-related genes FABP5, ABCA1,
SCD, and PLTTP were heterogeneously expressed in M2
macrophage subsets, indicating metabolic heterogeneity
among different M2 subsets.
Focusing on the M2 closest macrophages in Mø_c4,

we found the transcription factor CREM was expressed
more strongly in this cluster, and its target genes were
also highly upregulated in Mø_c2-Mø_c4 macrophages
by Single-Cell Regulatory Network Inference and
Clustering (SCENIC)27 analysis (Fig. 3d; Supplementary
Fig. S3c, d). CREM is capable of binding to IL2 pro-
moter to decrease its production in T cells28, however,
whether CREM is expressed in macrophages remains
unclear. We further confirmed that CREM significantly
upregulated in M2 macrophages in HCC by flow cyto-
metry (Fig. 3e), whose exact role needs functional
investigation.

Immunomodulatory and cytotoxic effects of diverse status
of NK cells
NK cells are phenotypically defined as CD56bright and

CD56dim, which play different roles in TME. Recently,
several new subsets of NK cells have been identified by
scRNA-seq in blood and spleen from non-neoplastic
patients29–31, implying the tissue-related diversity of
NK cells.
We identified six subsets of NK cells (14,934 cells) by

unsupervised clustering (Fig. 4a, b; Supplementary Fig.
S4a–d). Immune subsets of NK cells were highly donor
specific, which may reflect differences in genetic origin or
adaptability to different TMEs among individuals. NK_c3
and NK_c5 were mainly derived from non-tumor liver
tissues (23.57% and 5.97%, respectively) and characterized
by high expression of transcription factors such as FOS,
FOSB, FOXP1, and ATF4, and two genes involved in the
NF-κB pathway, NFKBIA and NFKBIZ (Fig. 4c; Supple-
mentary Fig. S4e). Moreover, NK_c5, mostly derived from
P06 with high load of HBV DNA as mentioned before,
may exert additional antiviral effect because of their
specific expression of antiviral related genes like IFI44,
IFI44L, and MX1 (Supplementary Table S3), which has
not been revealed by non-HBV populations29. Con-
sistently, NK_c5 highly expressed STAT2, IRF9, and IRF7
(Supplementary Fig. S4f), which contribute to the tran-
scriptional activation of multiple virus-inducible genes32.
Additionally, we also recovered one terminal NK subset
(NK_c1, marker genes: LAIR2, IGFBP7, and CD55,
27.66%), one exhausted NK subset (NK_c4, marker genes:
LAG3, PTMS, and S100A6, 13.55%), and two undefined
NK subsets (NK_c2, marker genes: TOX2, CXCR6, and
XCL1, 23.81%, and NK_c6, marker genes: MYOM2,
CX3CR1, and PRF1, 5.60%).
We found NK cells mainly formed two distinct sub-

groups as NK_c1, NK_c4, and NK_c6 strongly expressed
cytotoxicity related genes like GZMB, GNLY, FGFBP2,
and FCGR3A (CD16), while NK_c2, NK_c3, and NK_c5
expressed higher levels of GZMK, CXCR6, and CD69,
marker genes of CD56bright tissue-resident NK cells
(Supplementary Fig. S4g). We then compared the
expression profiles of these NK subsets with CD56bright

and CD56dim gene expression programs to clarify their
properties defined by Hanna et al.33 (Fig. 4d). Results
showed that NK_c1, NK_c4, and NK_c6 were more like
CD56dim NK cells (Fig. 4e), and FCM confirmed the
higher expression of Granulysin, Granzyme B, KIR2DL1,
and CX3CR1 in these NK cells (Supplementary Fig. S4h),
suggesting their strong cytotoxic functions. Interestingly,
NK_c1 and NK_c4 also scored higher points in CD56bright

signature like NK_c3 and NK_c5, implying the immu-
noregulation effects of NK cells was not limited to
CD56bright cells and conventional classification of NK cells
was not suitable for all NK subsets.
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We also identified the continuous process of CD56dim

NK cells transformed from CD56bright NK cells (Fig. 4f),
supporting the notion that CD56bright NK cells are the
precursors of CD56dim NK cells30. CD56bright NK cells
expressed higher levels of membrane receptors such as
CXCR6, CD160, and KLRC1, as well as chemokines like
XCL1 and XCL2, indicating their immuno-regulatory
effects in TME. Expression of membrane receptors such
as FCGR3A and CX3CR1, and cytotoxic genes like GZMB,
FGFBP2, PRF1, and GNLY increased gradually during this

transition, implying a gradually acquired tumor-killing
ability in CD56dim NK cells (Fig. 4g).

Infiltration of XCL1+CD8+ T cells indicates a better
prognosis for HCC patients
We detected 8487 CD8+ T cells and re-clustered to five

subsets (Fig. 5a–d; Supplementary Fig. S5a–c), including
effector CD8+ T cells (CD8_c1, marker genes: FGFBP2,
GZMB, and GNLY, 48.17%), MAIT cells (CD8_c2, marker
genes: SLC4A10, KLRB1, and ZBTB16, 31.91%),

Fig. 3 Transcriptome heterogeneity of four subsets of macrophages. a Module scores of M1 and M2 expression signatures defined by Azizi
et al.14 (Genes list in Supplementary Table S5) for each macrophage subset at single-cell level. *P < 0.01. b t-SNE plots of M1 (top) and M2 (bottom)
expression signatures. c The expression of lipid metabolism-related genes plotted via boxplots. *P < 0.01. d t-SNE plots for the expression of CREM
and regulation of its target genes. e Representative flow cytometry plots (top) and statistics (bottom) of CREM expression in CD14+CD11b+

macrophages from HCC tumor or peri-tumor, and CD14+CD11b+CD206− or CD14+CD11b+CD206+ macrophages. Data analyzed by wilcoxon
matched-pairs signed rank test. *P < 0.05, **P < 0.01.
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Fig. 4 Different NK subpopulations in HCC tumor and peri-tumor. a t-SNE plot of all NK cells revealed six distinct NK clusters. b t-SNE plots of
different NK cell clusters origin. c Expression of canonical marker genes in six NK cell populations. d Module scores of CD56bright and CD56dim

expression programs defined by Hanna et al.33 for each NK cell. e Violin plots representing the distribution module score for CD56dim (left) and
CD56bright (right) for each NK cluster. Error bars indicated the means ± SD. f Trajectory of all clusters of NK cell from tumor sites along pseudotime in a
two-dimensional state-space defined by Monocle2. Each point corresponds to a single cell, and each color represents a NK cell cluster. g Differentially
expressed genes (rows) along the pseudotime (left) and boxplots showing the expression of CXCR6, XCL1, CX3CR1, and FGFBP2 (right).
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exhausted CD8+ T cells (CD8_c3, marker genes: CTLA4,
HAVCR2, and PDCD1, 7.51%), activated XCL1+CD8+

T cells (CD8_c4, marker genes: XCL1, XCL2, and ITGAX,
6.19%) and central memory CD8+ T cells (Tcm, CD8_c5,
marker genes: CCR7, SELL, and GPR183, 5.34%).
We focused our analysis on the CD8_c4, XCL1+CD8+

T cells, as this cluster has not been characterized by
previous scRNA-seq studies in HCC12,13. It had been
reported that CD8+ T cells could secret XCL1 when they
were activated, and then recruited XCR1+ DC cells for
antigen presentation34. Data showed that CD8_c4 T cells
expressed high levels of memory markers like ITGA1 and
CD7, and genes for the recognition of MHC class I
molecules such as KLRC2, KIR2DL3, and KIR3DL2
(Supplementary Table S3), implying their important roles
in antigen recognition and immune activation. Recently,
XCL1 showed upregulation in subset of tissue-resident
memory CD8+ T cells (C5_CD8-GZMK) and exhibited a
possible “pre-exhaustion” state by previous scRNA-seq
study in HCC13. However, in our data, XCL1+CD8+

T cells formed a subset that different from CD8+GZMK+

T cells because of their more specific XCL1 expression
and relatively low GZMK expression (Supplementary Fig.
S5d). We examined the expression of XCL1 in this subset
by multiplex IHC (mIHC), excluding NK cells as they
could also secrete XCL1 (Supplementary Fig. S5e). In our
cohort, we confirmed the presence of one subset of
CD3+CD8+ T cells which abundantly secreted XCL1 (Fig.
5e), and patients with a higher density of these cells,
rather than NK cells, had a better prognosis (Fig. 5f, P=
0.031; Supplementary Fig. S5f).
We next evaluated the developmental course of CD8+

T cells (Supplementary Fig. S6a, CD8_c2, MAIT cells
were removed as their different origins). Cells of CD8_c1
(effector CD8+ T cells) and CD8_c3 (exhausted CD8+

T cells) located at the opposite ends of the trajectory,
whereas cells of activated and Tcm CD8+ T cells of
CD8_c4 and CD8_c5 located in the middle part. More-
over, effector CD8+ T cells demonstrated more branches
than other three types, suggesting their greater hetero-
geneity in anti-tumor responses. We investigated genes
whose expression levels gradually increased with
exhaustion. In addition to the known exhaustion markers
such as CTLA4, PDCD1, TIGIT, HAVCR2, and LAG3,
several target genes that could potentially promote
exhaustion of CD8+ T cells, such as FABP5, TRPS1,
CREM, and CEBPD were also discovered in our study
(Supplementary Fig. S6b, c).

Functional impairment of effector CD8+ T cells in
advanced HCC
Overall, patients in early-stage HCC (P02, P03, and P05)

had a higher proportion of effector CD8+ T cells
(CD8_c1), while patients in late-stage HCC (P01, P04,

P06, and P07) contained a higher proportion of exhausted
CD8+ T cells (CD8_c3) (Supplementary Fig. S7a). So, we
speculated that the effector CD8+ T cells of patients in
early-stage may transcriptionally differ from those in
advanced HCC due to the long-term remodeling of the
TME. A pseudotime map of effector CD8+ T cells in
tumors was constructed to reflect the transcriptomic
changes among different patients. Cells from early-stage
HCC were mainly distributed at one side of the trajectory,
while cells from advanced HCC mainly located at the
other side (Fig. 5g; Supplementary Fig. S7b), suggesting
distinct expression profiles between early-stage and
advanced HCC. Then, genes that changed dramatically
along the trajectory were analyzed. Interestingly, genes
involved in CD8+ T-cell cytotoxicity such as CX3CR1,
FGFBP2, GNLY, and NKG7 were down-regulated in
advanced HCC, indicating their damaged cytotoxicity (P
< 2.2 × 10–16). In contrast, CXCR4, which has been shown
to be inversely related to the expression of perforin and its
blockage was shown to activate the migration and tumor-
killing ability of CD8+ T cells35,36 was found upregulated
in advanced HCC. Also, cellular stress response related
genes such as FOS, JUND, JUNB, and JUN showed sig-
nificant upregulation in advanced HCC (P < 2.2 × 10–16),
implying these cells might be engaged in complex tran-
scriptional reprogramming probably due to the disruption
of the TME (Fig. 5h; Supplementary Fig. S7c and Table
S6). Together, our results indicated a damaged function of
effector CD8+ T cells in advanced HCC that may lead to
impaired anti-tumor response.

Distinct subsets of CD4+ T cells and B cells identified in
HCC
We identified five clusters of CD4+ T cells by analyzing

7533 CD4+ T cells (Supplementary Fig. S8a–g), including
central memory CD4+ T cell (CD4_c1, marker genes:
CCR7, TCF7, and IL7R, 39.19%), Treg cells (CD4_c2,
marker genes: FOXP3, TIGIT, and CTLA4, 24.64%), T
helper cells (CD4_c3, marker genes: CCL5, GZMK, and
GZMA, 22.55%), cytotoxic like CD4+ T cells (CD4_c4,
marker genes: NKG7, FGFBP2, and GNLY, 13.59%), and a
small amount of antiviral-related CD4+ T cells (CD4_c5,
marker genes: IFIT1, IFIT2, and IFIT3, 0.72%). The
SCENIC analysis showed that genes regulated by MYC
were specifically upregulated in CD4_c1. MYC plays an
important role in cell cycle progression and can upregu-
late the transcription of various target genes. Pathway
analysis supported this phenomenon as the significantly
increased pathways were involved in nucleotide metabo-
lism of proteins and RNAs (Supplementary Fig. S8h, i).
We also recovered five subsets of B cells (3240 cells,

Supplementary Fig. S9a–g), including memory B cells
(B_c1, marker gene: AIM2 and GPR183, 48.02%),
unswitched naïve B cells (B_c2, marker genes: TCL1A,
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Fig. 5 Infiltration of diverse CD8+ T-cell subsets in HCC. a t-SNE projection of all CD8+ T cells showed in different colors. b t-SNE plots of different
subsets of CD8+ T-cell origin. c Proportions of five clusters in each patient. d Expression of marker genes for each cluster illustrated in the t-SNE plots.
e Multicolor IHC staining to validate the existence of CD3+CD8+CD56−XCL1+ T cells in HCC TME, white arrows (CD3+CD8+CD56−XCL1+). Scale bar,
20 μm. f Kaplan–Meier curve showing decreased survival in patients with low proportion of CD3+CD8+CD56−XCL1+ T cells (Log-rank test) in our
cohort (Supplementary Table S4). g Pseudotime trajectory of early-stage or late-stage CD8_c1 T cells demonstrated in the trajectory. h Expression of
selected genes in early-stage and late-stage HCC are shown in the boxplots. *P < 0.01.
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IGHD, and IL4R, 24.38%), plasma cells (B_c3, marker
genes: XBP1, MZB1, and CD38, 13.86%), tumor-specific B
cells (B_c4, marker genes: APOA2, APOC1, and APOA1,
8.58%), and atypical memory B cells (B_c5, marker genes:
SLC11A1, FGR, and TNFRSF1B, 5.15%).

Intercellular communication of diverse immune subsets in
microenvironment
Cell–cell interactions in TME are critical for tumor-

igenesis and progression. We performed CellphoneDB37

analysis to clarify interactions between immune subsets
and identified interactions specific for tumors (Fig. 6a;
Supplementary Table S7). Results showed that

interactions participating in immune activation and anti-
tumor response, such as, CXCL9-CXCR3, CXCL9-DPP4,
XCL2-XCR1, and TNFSF4-TNFRSF4 upregulated in
tumors, partly due to the continuous stimulation of tumor
antigens. Interestingly, we found that various immuno-
suppressive interactions were also upregulated in tumors.
For example, CCR1+ monocytes had been revealed to
facilitate immune escape in HCC by our previous study38,
here we also found that macrophage-derived CCL18 can
form self-feedback with receptor CCR1, potentially pro-
moting tumor immunosuppression (Fig. 6b). Also, inter-
actions such as CD80-CTLA4, CD86-CTLA4, and
LGALS9-HAVCR2, were mostly enriched in tumor,

Fig. 6 Increased cell–cell interactions occurring in the HCC TME. a Overview of selected ligand–receptor interactions which presented
specifically in HCC tumors. P values indicated by circle size (permutation test). The means of the average expression level of interactions are indicated
by color. The cell types below the line are the ligand cells, and the cell types above the line are the corresponding receptor cells. b Selected
interactions of ligand-receptor pairs in HCC TME. The line color indicates ligands broadcast by the cell population of the same color. Lines connect to
cell populations where cognate receptors are expressed. The line thickness is proportional to the number of ligands where cognate receptors are
present in the recipient cell population.
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implying that these interactions might jointly conduce to
immune escape. Moreover, interactions related to tumor
angiogenesis, such as NRP1-VEGFB, ADRB2-VEGFB, and
NRP1-VEGFA were extensively recovered in tumor,
implying their potential roles in promoting tumor
angiogenesis.

Discussion
The TME has profound impacts on immunother-

apeutic response and clinical outcome. Although pre-
vious scRNA-seq studies in HCC have revealed new
T-cell subsets and immune cell migration among differ-
ent tissues12,13, the immune subset landscape within
HCC, which is easily affected by data analysis, is far from
full interpretation. We here uncovered a high degree of
spatiotemporal heterogeneity in the distribution, func-
tional properties, transcriptional regulation, and cell–cell
interactions of different immune subsets in HBV/HCV-
related HCC. We also identified two new subsets,
including CCL18+ M2 macrophages enriched in
advanced HCC, and XCL1+ CD8+ T cells capable of
recruiting DC to enhance anti-tumor response. Our study
depicted a global map of immune cell subsets in the liver
and represented an important basis for understanding the
immune regulation in HBV/HCV-related HCC.
Macrophages display noticeable plasticity in phenotypic

and functional properties. We uncovered four subsets of
macrophages that gradually transitioned from M1 to M2
phenotype. Consistent with previous reports14, our data
showed that M2 macrophages still retain some char-
acteristics of M1 macrophages, in spite of their obvious
tumor-promoting functions, indicating the dual role of
M2 macrophages in anti-tumor responses. Unexpectedly,
we observed significant heterogeneity and upregulation of
lipid metabolism during the transition of M1 to M2 states.
It is possible that the extreme conditions inside the tumor,
such as hypoxia, can cause aberrant expression of certain
genes, such as HIF1α, leading to metabolic reprogram-
ming39. We especially observed one M2 subpopulation
that was featured by high expression of CCL18 and mainly
presented in advanced HCC. These macrophages showed
well-defined features that promote tumor invasion,
angiogenesis, metastasis, and was associated with poor
prognosis in HCC. To date, CCL18+ macrophages have
been linked to various cancers such as breast40 and gall-
bladder41, suggesting the presence of such macrophages is
a common feature in cancer and may be a therapeutic
target. Moreover, we identified transcription factor CREM
and its putative target genes especially upregulated in this
subset. Although the precise regulatory mechanism of
CREM in CCL18+ M2 macrophage remains poorly
understood, in vivo study has shown that tumor acidosis
can induce CREM expression in macrophages, promoting

their non-inflammatory polarization42. Thus, a likely
essential function of CREM in M2 macrophages is to
mediate immunosuppression, which may be a potential
target for tumor immunotherapy, but the mechanistic
details need further study.
We identified one subset of CD8+ T cells with high

secretion of XCL1 that correlated with better prognosis.
XCL1 is mainly produced by activated NK cells and CD8+

T cells, and considered to be the only ligand of receptor
XCR1which is selectively expressed in cDC1 cells. Our
data showed that XCL1 mainly expressed in a sub-
population of CD8+ T cells that characterized as a pos-
sible “pre-exhaustion” status in HCC13. These cells play
an active role in anti-tumor effects partly by secreting
XCL1 and recruiting cDC1 cells for tumor antigens pre-
senting, which will, in turn, attract more CD8+ T cells to
exert cytotoxic response. Of note, a recent study has
shown that XCL1 is abundantly secreted by antigen-
responsive CD8+ T cells43, which further indicates the
initial activation status of these T cells and facilitates us to
map the antigen-specific T-cell receptors (TCR) sequence.
Together, our findings highlight the importance of XCL1-
XCR1 axis in anti-tumor response, indicating that
immunotherapeutic effect may be enhanced by recruiting
XCL1+CD8+ T cells into HCC.
We observed a continuous evolution in cytotoxic CD8+

T cells of HCC at different stages. Our results showed that
early-stage HCC had a higher proportion of cytotoxic
CD8+ T cells and displayed strong cytotoxicity, while
advanced HCC showed an increase proportion of
exhausted CD8+ T cells and decrease proportion of
cytotoxic CD8+ T cells with weakened killing ability. This
is partly due to the chronic stimulation of tumor antigens
and continuous remodeling of TME, which may eventually
alter the phenotype and function of immune subsets.
Furthermore, since advanced HCC has more infiltration of
M2 macrophages and Treg cells, it will further dampen the
anti-tumor ability of cytotoxic CD8+ T cells44.
Several limitations of this study need to be considered.

First, the number of patients in our study is relatively
small (n= 7), and these patients are either HBV- or HCV-
related HCC. Therefore, these results and conclusions
may not be applied to patients with fatty liver or alcohol
related liver cancer. Second, there were relatively sig-
nificant individual differences in AFP level, virus antigen,
HBV DNA copies, and liver cirrhosis among HCC
patients in our cohort, which may affect the composition,
transcriptional profile, phenotype and function of
immune cells, as well as the presence of donor specific
immune subsets (especially in myeloid and NK subsets).
Future work will need to be performed in a larger cohort
to validate these identified immune subsets and explore
their specific role in HCC.

Song et al. Cell Discovery            (2020) 6:90 Page 11 of 15



In summary, our study delineates the landscape of
diverse immune subsets and their underlying tran-
scriptome dynamics during tumor progression. This
comprehensive analysis extends our understanding of the
role of multiple immune subsets in HBV/HCV-related
HCC and may also contribute to the development of new
therapeutic targets and strategies.

Materials and methods
Patient samples
Seven patients had liver resection and were pathologi-

cally diagnosed HCC in January 2019 were enrolled for
scRNA-seq. None of the patients had received anti-tumor
treatments before surgery. Fresh tumor tissues and distant
non-malignant liver were obtained from each patient.
This study was conducted in accordance with the ethical
standards of the Research Ethics Committee of Zhong-
shan Hospital with patients’ informed consent.

Tissue microarray
Tissue microarrays (TMA) were produced as described

previously45. All HCC cases (n= 121) who underwent
primary resection between January and April 2008, were
histologically reviewed by H&E staining and representa-
tive areas were pre-marked in the paraffin blocks, away
from necrotic and hemorrhagic materials. Sections of
4 μm thick were placed on slides coated with 3-
aminopropyltriehoxysilane. None of the patients
received anti-tumor or immunosuppressive treatments
before surgery.

Preparation of single-cell suspensions
After resection, fresh tumor and adjacent non-

malignant liver tissues were transferred rapidly to the 50
mL centrifugal tube filled with DMEM (Gibco) medium
with 10% fetal bovine serum (Gibco) and transported
rapidly to the laboratory on ice. On arrival, samples were
transferred to a 6-cm dish and washed twice with 1× cold
PBS (Gibco). Each sample was cut into ~1mm3 piece on
ice and was subsequently transfered into 10mL digestion
medium containing 1mg/mL collagenase IV (Gibcol,
17104019) and 1 U/mL dispase II (Gibcol, 17105041).
Samples were incubated at 37 °C for 40min and stirred
every 10min with a pipette tip. The dissociated cells were
subsequently passed through a 40-µm cell-strainer nylon
mesh (BD) and centrifuged at 700 × g for 10 min. After
centrifugation, the supernatant was removed, and the cell
pellet was washed twice with MACS buffer (PBS con-
taining 1% FBS, 0.5% EDTA, and 0.05% gentamycin) and
then re-suspended in sorting buffer (PBS supplemented
with 1% FBS). To maximize more cell types, cells were
only stained with DRAQ5 (1:200, 15 min) and DAPI
(1:200, 15 min) to harvest nucleated living cells. Stained
cells were then run on MoFlo Astros EQ (Beckman

Coulter) Cell Sorter and sorted into DMEM media sup-
plemented with 10% FBS.

Single-cell RNA-sequencing
Chromium Single Cell 3′ Reagent Kits (V3) were used to

prepare individually barcoded single-cell RNA-seq
libraries following the manufacture’s protocol (10×
Genomics). The isolated single cells were loaded in each
channel with a target output of 6000 cells per sample. For
sequencing library construction, single-cell suspensions
were loaded on a 10× Genomics Single-Cell Instrument
and were partitioned in droplets. GEM-RT was per-
formed: 53 °C for 45min, 85 °C for 5 min. Sequencing was
conducted on Illumina Sequencer (NovaSeq). The Cell
Ranger Single-Cell SoftwarTABLEe suite was used for
demultiplexing, barcode processing, alignment, and initial
clustering of the raw scRNA-seq profiles. Raw sequencing
reads were mapped to the human genome (build GRCh38,
ENSEMBL), annotated and quantified based on the
GRCh38 reference annotation file (ENSEMBL) using
Cellranger pipeline (v3.0.1). Cells that had fewer than
2000 UMIs, or 800 genes, or more than 20% UMIs
mapped to the mitochondrial genome were filtered. To
remove possible doublets, we used Scrublet (v0.1),
Doublet Finder (v2.0) and Doublet Detection (v2.4)
together and removed those cells labeled as doublets by
more than two software. Moreover, we manually exam-
ined the expression of classical markers and removed the
cells expressing conflicting markers.

Determination of cell type and clustering
Cells were classified into the major cell types in the

HPCA database using SingleR15 (v1.0). Five major cell
types (Myeloid cell, NK cell, CD8+ T cell, CD4+ T cell,
and B cell) remained after excluding those cell types fewer
than 100 cells. Seurat (v2.3.4) was used for downstream
analysis. For each cell type, gene expression matrices were
normalized to cell library size and log-transformed using
Scale Data function. We assigned cell cycle score (G1/S or
G2/M) for each cell and found there were fewer than 3%
cells were mitotic cells. Thus, we did not correct our data
for the effects of the cell cycle. After normalization, we
identified most variably expressed genes using Find
Variable Genes function and performed principal com-
ponent analysis by Run PCA function. The first 30 prin-
cipal components were selected for clustering using Find
Clusters function. The marker genes for each cluster was
determined using Find All Markers function.

Differential expression and pathway analysis
Differentially expressed genes (fold change > 4 and

P value < 0.001) were identified using the QLF model
implemented in edgeR (a Bioconductor package for dif-
ferential expression analysis of digital gene expression
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data, v3.26.3) after correcting for the patient of origin.
Gene set variation analysis was performed using the gene
set variation analysis for microarray and RNA-Seq data
(GSVA, v1.32.0) and the gene sets (Hallmark pathways,
Canonical pathways) were derived from MSigDB (http://
software.broadinstitute.org/gsea/msigdb).

Multiplex immunohistochemistry and quantitative analysis
Multiplex immunohistochemistry (mIHC) was per-

formed according to manufacturer’s instruction (Perki-
nElmer, Opal® Kit). Slides were scanned and imaged
using the PerkinElmer Vectra3® platform and were ana-
lyzed in batches using PerkinElmer inform and R script
for quantification of positively stained cells. The primary
antibodies and dilutions used were listed in CTAT_table.
Briefly, TMA sections were de-paraffinized in xylene and
rehydrated in ethanol. After microwave antigen retrieval
in heated citric acid buffer (pH 6.0) for 10 mins, endo-
genous peroxidase activity was blocked by 3% H2O2 for
30mins, and nonspecific binding sites were blocked by
goat serum (Vector,11-06-18) for 30mins. Primary anti-
bodies were incubated for 1 h in a humidified chamber at
room temperature, followed by corresponding secondary
horseradish peroxidase-conjugated polymer. Visualization
of each target was accomplished using fluorescein TSA
Plus (1:200). Then the slide was again placed in heated
citric acid buffer (pH 6.0) using microwave antigen
retrieval to remove redundant antibodies before the
next step. Finally, nucleis were subsequently visualized
with DAPI (Sigma, D9542), and the section was cover-
slipped using fluorescence mounting media (DAKO,
S3023). Slides were scanned and imaged using the Per-
kinElmer Vectra3® platform and were analyzed in bat-
ches using PerkinElmer inform and R script for
quantification of positively stained cells. The cut-off
values of proportions of CD68+CD206+CCL18+ mac-
rophages and CD3+CD8+CD56-XCL1+ T cells were
determined by X-tile program.

Flow cytometry analysis
Fresh paired tumor and non-tumor tissues were

obtained from another seven HCC patients who under-
went hepatectomy in July 2019. None of these patients
had received anti-tumor treatments before surgery. Fresh
tissues were minced into pieces and digested in RPMI-
1640 medium (Gibcol, 11875093) containing 1mg/mL
collagenase IV (Gibcol, 17104019) and 0.4 mg/mL hya-
luronidase mixture on a gentleMACSTM Octo Dis-
sociator with Heaters machine (Miltenyi Biotec, 130-096-
427) for 1 h at 37 °C. Cell suspensions were filtered
through a 400-mesh sieve and mononuclear leukocytes
were obtained by Ficoll density gradient centrifugation.
Flow cytometry was performed on a BD LSR Fortessa cell
analyzer (BD Bioscience) according to the manufacturer’s

instructions and analyzed by FlowJo software
version 9.3.2.

TCGA data analysis
The TCGA-LIHC data were used to evaluate the

prognostic effect of individual genes or gene sets derived
from specific cell clusters. Patient cohorts were grouped
into high and low expression groups by the median value
of the normalized average expression of strong marker
genes (logFC > 2). Kaplan–Meier survival curves and
P values were generated by R package survminer.

Single-cell regulatory network inference and clustering
analysis
Gene regulatory networks were identified using SCE-

NIC27 (v1.1.0) with default settings. To reduce the com-
puting time, a python implementation in SCENIC
(GRNBoost) was used.

Developmental trajectory inference
Monocle (v2.12.0)23 was applied to determine the

potential lineage differentiation within each cell type.
Only top 1000 variable genes identified by differ-
entialGeneTest were selected for constructing the devel-
opmental tree.

Cell–cell interaction
CellphoneDB37 (v1.1.0) was applied to identify cell-cell

interactions for cells from the tumor and normal liver
separately. For those significant interactions (P < 0.05), we
also required the ligand/receptors were expressed in more
than 5% corresponding cells. We compared interaction
pairs between tumor and peri-tumor and filtered the
interaction pairs specific for tumor.

Statistical analysis
Statistical analysis was performed with the R, SPSS (v22,

IBM, Armonk, NY) and Prism 6.0 (SanDiego, CA) soft-
wares. Comparisons were performed using χ2 test, paired
t-test or two-sided Wilcoxon rank-sum test. The cumu-
lative survival time was estimated by Kaplan–Meier esti-
mator with log-rank test. P values < 0.05 were considered
statistically significant.
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