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Walking rehabilitation processes include many repetitions of the same physical

movements in order to replicate, as close as possible, the normal gait trajectories,

and kinematics of all leg joints. In these conventional therapies, the therapist′s ability

to discover patient′s limitations—and gradually reduce them—is key to the success of

the therapy. Lower-limb robotic exoskeletons have strong deficiencies in this respect as

compared to an experienced therapist. Most of the currently available robotic solutions

are not able to properly adapt their trajectories to the biomechanical limitations of the

patient. With this in mind, much research and development is still required in order to

improve artificial human-like walking patterns sufficiently for valuable clinical use. The

work herein reported develops and presents a method to acquire and saliently analyze

subject-specific gait data while the subject dons a passive lower-limb exoskeleton.

Furthermore, the method can generate adjustable, yet subject-specific, kinematic gait

trajectories useful in programming controllers for future robotic rehabilitation protocols.

A human-user study with ten healthy subjects provides the experimental setup to

validate the proposedmethod. The experimental protocol consists in capturing kinematic

data while subjects walk, with the donned H2 lower-limb exoskeleton, across three

experimental conditions: walking with three different pre-determined step lengths marked

on a lane. The captured ankle trajectories in the sagittal plane were found by normalizing

all trials of each test from one heel strike to the next heel strike independent of the

specific gait features of each individual. Prior literature suggests analyzing gait in phases.

A preliminary data analysis, however, suggests that there exist six key events of the

gait cycle, events that can adequately characterize gait for the purposes required of

robotic rehabilitation including gait analysis and reference trajectory generation. Defining

the ankle as an end effector and the hip as the origin of the coordinate frame and basing

the linear regression calculations only on the six key events, i.e., Heel Strike, Toe Off,

Pre-Swing, Initial Swing, Mid-Swing, and Terminal Swing, it is possible to generate a

new calculated ankle trajectory with an arbitrary step length. The Leave-One-Out Cross

Validation algorithm was used to estimate the fitting error of the calculated trajectory

vs. the characteristic captured trajectory per subject, showing a fidelity average value

of 95.2, 96.1, and 97.2%, respectively, for each step-length trial including all subjects.

This research presents method to capture ankle trajectories from subjects and generate
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human-like ankle trajectories that could be scaled and computed on-line, could

be adjusted to different gait scenarios, and could be used not only to generate

reference trajectories for gait controllers, but also as an accurate and salient

benchmark to test the human likeness of gait trajectories employed by existing robotic

exoskeletal devices.

Keywords: gait, trajectory, ankle, step length, eigenvalue decomposition, key events, heel strike, toe off

1. INTRODUCTION

Gait rehabilitation usually implies specific routines consisting
in numerous repetitions of the same exercises. One or several
physical therapists (PTs) may be needed to help the patient re-
create, as close as possible, the movements of a normal gait
trajectory, e.g., two PTs supporting the right and left legs and
a third PT stabilizing the trunk. This kind of therapy is time
consuming, resource intensive, and can be frustrating for the
patient. Assistance robots are well known to be precise, regular,
and deterministic in supporting or substituting humans during
repetitive tasks. Nevertheless, their safe and effective direct
physical interaction with users is a critical factor, especially in
rehabilitation scenarios. These scenarios still requires constant
supervision from human operators.

One of the main challenges in rehabilitation robotics is to
achieve a smooth and comfortable interaction between the user
and the robotic device. Current exoskeletons are not flexible
or compliant enough to adapt to biomechanical or cognitive
limitations of each individual patient. As a consequence, patients
are often constrained to follow rigid trajectories, replicating
some normative kinematic reference. Some approaches do allow
certain variations from these reference baselines, but no patient-
specific adaptation mechanisms are currently available either in
commercial or research devices. In order to compare and contrast
previous developments in gait analysis, a review of current
ankle trajectory models was conducted. The review includes,
on the one hand, models employed to capture ankle motion,
and on the other hand, models employed to execute the robotic
ankle motion.

To emphasize the difference between mechanically generated
trajectories and software generated ones, some mechanical
systems are mentioned in the following lines. There are several
groups that have tried to find a mechanical way to replicate
human-like ankle joint trajectories while walking forward on flat
ground. In Flores et al. (2013), Tsuge and Michael McCarthy
(2016), Copilusi et al. (2014), Choi et al. (2017), Shao et al.
(2016) they all synthesized trajectories starting from different
number of bar linkage mechanisms for human gait rehabilitation
and mobility enhancement. The biggest drawback to this kind
of systems is the difficulty to make adjustments while it
is working, thereby limiting the range of modifications that
can be performed to generate different walking conditions,
i.e., changing step length while the subject is running a test
or adjusting the height of the exoskeleton segments to fit
different subjects.

To perform assisted movement of the hip and knee joints,
generate a path for the healthy ankle, and achieve that movement
as close as possible to a specific reference trajectory (Banala
et al., 2008), studied gait data. Tufekciler et al. found that
there were specific variations in gait trajectories such as the
peak values in position and velocity data, starting and ending
of each trajectory, and some other extra parameters with fixed
timing points (Tufekciler et al., 2011). Additionally, the reference
trajectories proposed by Jezernik et al. (2004) were parameterized
with three parameters for the hip and other three parameters
for the knee joint in order to scale the amplitude, stretch the
time and influence the period of the leg motion and change
the amount of the hip/knee flexion and extension. Most vision
systems use estimation algorithms while not capturing any
actual data for angular position or ground contact. In force
plate systems the subject has to calculate the step length in
order to coincide with the sensing plate, otherwise no valid
datas are generated. This could, of course, introduce bias in the
measurements. Mechanically generated trajectories have a big
limitation in on-line modifications, such as modifying step length
and foot clearance.

According to Tucker et al. (2015) the human gait cycle can
be segmented as a periodic sequence of phases or states, where
specific events trigger transitions between phases. Quote: “The
choice of the number of states and the type of events used are
somewhat arbitrary, and will depend on what information is
available from the sensors and which joint the prosthesis or orthosis
is to going actuate." Iosa et al. (2013) propose a relationship
between “golden ratio" and the proportion of consecutive gait
phases, revealing an intrinsic harmonic structure of gait cycle.
The Inertial Measurement Unit system implemented by Tunca
et al. (2017) is capable of extracting a set of standard gait metrics
like ground contact on and off, stride length, cadence, cycle time,
stance time, swing time, stance ratio, speed, maximum/minimum
clearance, and turning rate. With this information they can
segment the gait cycle according to phases, phases prevalently
found in the literature. Stöckel et al. (2015) propose eight
functional periods (initial contact, loading response, mid stance,
terminal stance, pre-swing, initial swing, mid swing, and terminal
swing) distributed in two know phases (stance and swing). Most
of these works have, on the one hand, common the ground
contact triggered events (Heel Strike and Toe off) that are
straightforward to detect. On the other hand the rest of the
events are not that clearly distinguishable, andmany rely on angle
or time thresholds to find a measurable trigger event to switch
between phases.
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FIGURE 1 | Experiment setup. The healthy subject is donning the exoskeleton and using crutches in order to replicate the case of use in rehabilitation. At the bottom

there are colored marks on the floor making three lanes, one for each of three step lengths. Green marks are for the right foot and orange for the left one. The setup

does not have to be modified during experimentation, as the marks in each lane are fixed.

This paper, thus presents in section 2 both the overall
mathematical method and the experimental setup used to
validate the trajectory generator method. The section includes a
brief description of the human-user test protocol and the group
of subjects. In section 3 the work presents the experimental
and statistical results. Section 4 follows with a discussion of the
adequacy, saliency, and accuracy of the method as compared
to the current state-of-the-art methods, and finally section 5
poses the concluding summary of this research and possible
future directions.

2. MATERIALS AND METHODS

In order to develop a method for systematically analyzing human
gait data and for creating arbitrary gait trajectories for robotic
rehabilitation systems, we begin by observing healthy subjects
in controlled donning and use of an H2 robotic exo-skeleton
while the robot is not powered. This section presents both the
experimental protocol and experimental setup for user test with
healthy subjects. The subject data can then be processed through
mathematical techniques to obtain the geometric centroids and
corresponding covariances of the location of characteristic key
events found in the generalized gait cycle. The method then
employs the centroids and corresponding confidence ellipses
as polynomial spline nodes in the formulation, interpolation
and scaling of a new ankle trajectory. The resulting trajectory
is validated via conventional statistical methods. The ankle
trajectory serves to formulate, via inverse kinematics, new joint
angle control trajectories, thereby generating exo-skeleton limb
gait of a desired step length.

2.1. Experimental Protocol
Subjects are prompted to walk on flat terrain while donning
the non-powered H2 lower limb exoskeleton, using crutches to

TABLE 1 | Test Description.

Trial Track Trial description Number of steps

T1 Markers 30 cm Self pace forwards and

backwards 2 repetitions

16 steps

T2 Markers 45 cm Self pace forwards and

backwards 2 repetitions

12 steps

T3 Markers 60 cm Self pace forwards and

backwards 2 repetitions

8 steps

replicate the conditions typically experienced by motor-impaired
people when using an exoskeletal device. All tests are performed
in a controlled laboratory environment. Each subject performs
seven different trials with two repetitions each, at three step
lengths and three step cadences, and one in free condition. The
cadence and free conditions are not evaluated in the rest of the
paper due to space. In all trials the healthy subject walks forwards,
turns around, and returns on a 10 meter long track, thereby
determining the number of steps during each particular trial.
Two repetitions of each trial provides at least 60 gait cycles of
each condition depending on the step length. Step length (SL) is
defined by the distance from the point when the dominant heel
makes contact with the ground to the next ground contact of
the opposite heel. The step lengths (SL)s selected are 30, 45, and
60 [cm]. Each track was marked with sticky papers equidistantly
for the length of the track as shown in Figure 1. Subjects are
instructed to walk with the appropriate step length in order to
step on each of the markers. The performed trials are described
in Table 1 and the setup is shown in Figure 1.

2.2. Experimental Setup
The H2 exoskeleton employed in this experiment was designed
for rehabilitation protocols of adult patients with a height
between 1.50 and 1.95[m], and with a maximum body weight
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of 100[Kg] (Bortole et al., 2015). The H2 is a robotic lower
limb exoskeleton with six active powered joints, 3 per side, all
operating in the sagittal plane, i.e., hip extension (−30◦), hip
flexion (+90◦), knee flexion (+110◦), knee extension (0◦), ankle
dorsiflexion (+20◦), and ankle plantar flexion (−20◦). Meaning
that when the leg is fully extended, all 6 joints are in 0◦of angular
position. The exoskeleton has eight braces for attachment to
the legs of the subject. One more brace is used to secure the
exoskeleton structure to the subject’s waist (see Figure 1). Each
joint has its own electronics for low level control, i.e., motor
spin with power electronics and network communication. Each
joint has a brushless motor and a harmonic drive coupled to
the leg segment of the exoskeleton in order to generate each
movement. At the beginning of each segment a pair of strain
gauges are located to measure the link deformation and therefore
the interaction forces between device and user. Each joint has a
pulley-base speed reducer and a precision potentiometer in order
to capture the angular position of the joint. A pair of contact
sensors, located under each foot sole, capture ground contacts.
The first sensor is located under the heel and the second one is
located under the distal pair of metatarsals.

Prior to the experiment, the motor transmissions are
mechanically decoupled from all joints by removing the
flexspline of the harmonic drive. The rest of the system remains
unaltered to maintain the added mass of the exoskeleton but with
reduced joint friction. In this way, the exoskeletonworks in a fully
passive mode, constraining the subject only from the kinematic
and inertial points of view, and without applying any motive or
resistive torques to subject joints i.e., motors are mechanically
disconnected but the joint angle encoders are not. Additionally,
each exoskeleton segment is adjusted and measured according to
the length of the femur and tibia of each subject. The captured
data thus contains the kinematics of the exoskeleton worn by
the subject, including absolute angular position of hip, knee, and
ankle joints from both sides. The strain gauge data is not captured
since we assume that the friction force is negligible compared
to the forces executed by the subject to move her legs and the
exoskeleton. Furthermore, data from plantar contact sensors are
also logged. Data are recorded at a frequency of 100Hz and stored
in an external SD Card as a log file.

2.3. Participant Subjects
Ten healthy subjects [5 males and 5 females, with 28 ± 6.56
(SD) year of age, 73 ± 9.04 (SD) kg, 1.71 ± 0.09 m, 8 right-
handed and 2 left-handed] volunteered for the experiments.
Lower-limb dominance was determined based on self-reported
handedness, i.e., 8 RH and 2 LH. None of the subjects had
symptoms of neurological or orthopedic dysfunction. Informed
consent was obtained from all subjects according to the protocol
of the Ethics Committee of the Tecnologico de Monterrey
Robotics Laboratory.

2.4. Mathematical Methods
The following subsections fully describe the mathematical
method. The method captures gait data, identifies the subjects′

key events and generates control trajectories through the
following steps: 1. Gait data capture (including ankle joint

position localization in the sagittal plane based on direct
kinematics and data identification and segmentation based on
the well-known Heel Strike (HS) and Toe Off (TO) events -
see Figure 2), 2. Centroid calculation to find a characteristic
trajectory that represents the subjects′ walking pattern, 3.
Trajectory generation based onmodeled data, and 4. Comparison
between captured and modeled data based on statistical analyses,
whereby salient results were found among groups and subjects.

2.4.1. Gait Data Capture
Based on the recorded data as described in 2.2 and as the femur
and tibia lengths are previously known for each subject, and since
the angular positions for hip, knee and ankle joints are captured,
these data are employed to reconstruct the leg movements by
calculating the forward kinematics. For this calculation, hip-joint
is the base and origin of the coordinate system while the ankle
joint acts as the end effector for the kinematics model. From the
series of forward kinematics from all gait cycles and repetitions
of each trial per subject, ankle trajectories are recreated as shown
in Figure 3A. In this way, ankle position in 2D space with respect
to the hip was calculated in the sagittal plane. Although all the
data for stride, i.e., both dominant and non-dominant sides is
captured and stored, only the dominant limb data is employed
in the analysis of the rest of this paper.

The captured data contains information about angular
position of all three joints: hip, knee and ankle exoskeleton joints
as well as contact sensors under heels and tarsals to detect ground
contacts. The beginning of the step is defined by the Heel Strike
HS event of the dominant limb defined as the moment that
the heel makes contact with the ground. This event is detected
by observing when the contact sensor magnitude changes from
0 logic level to 1 logic level or the rising edge as measured by two
the instrumented insoles of the exoskeleton. These sensors are
located in the most distal part of the metatarsals and just below
the tarsal under both foot support plates of the exoskeleton. All
of the data is segmented into steps using the following principle.
Data of each step is normalized from 0 to 100% of the gait
cycle, this means 0% (HS) is beginning of the step while 100%
is the next HS of the same leg. The second event is called Toe
Off TO, defined as the moment in which the toe is separating
from the ground, detected by distal metatarsal contact sensor
approximating 0 logic level or the falling edge and typically found
at 60% of the step. Both events are shown in Figure 3B where
pressure vs. step percentage was plotted.

While prior works (Iosa et al., 2013; Stöckel et al., 2015; Tucker
et al., 2015; Tunca et al., 2017) have observed and analyzed
the multiple phases of gait, we choose to identify events within
the gait cycle, events that could have rigorous mathematical
definitions. We propose that these points could serve as control
nodes for splines that could then replicate the shape of gait
patterns and trajectories. Due to the fact that the ankle trajectory
has a kidney bean shape in the sagittal plane, as shown in
Figure 3A, it was obvious that at least 4 control points would be
necessary, if not more. With this in mind, a series of points was
sought and observed. The gait literature already discusses two
points considerably, namely heel strike and toe off as identified
both in Figures 2 and 3.
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FIGURE 2 | Defined key events are sequenced in order of occurrence: Heel Strike, Toe Off, Pre-Swing, Initial Swing, Mid-Swing, Terminal Swing. The position of the

ankle in the sagittal plane is shown. Additionally, the approximate angular position of the hip and knee joints can also be seen in the cartoons.

A forward kinematics calculation provides the displacement
of the ankle in both axes, i.e., vertical and horizontal vs. step
percentage as shown in Figure 3C. With this information
is possible to calculate both the first and second backward
differences in order to also estimate the speed and acceleration,
respectively. Using the first backward difference, it is possible
to discover the zero velocity moments for both components of
horizontal and vertical motion. The Equations (1, 2) represent
both components, such that xi is the actual observation, xi−1 is
the previous observation, and 1t is the time elapsed between
samples.

ZVxi =
xi − xi−1

1t
(1)

ZVyi =
yi − yi−1

1t
(2)

In this context, zero velocity moments reflect a change of
direction of the ankle joint displacement. The second backward
difference shows acceleration and deceleration phases. Thus, two
other relevant events are the maximum ankle displacement on
the horizontal axis in both negative and positive directions,
events herein termed Pre-Swing PS and Terminal Swing TS.
Although some authors use these terms to describe phases of
gait, we employ them to describe the instants when swing is at
its upper and forward most locations.

We wanted to know how closely the shape of the generated
trajectories match the captured trajectory. By applying a
statistical tool called Fidelity measure we were able to find out

the grade of similarity for each combination. Figure 3C shows
the position of the ankle joint over time in the horizontal axis
where the change in slope is readily identifiable. In a similar way
the first backward difference of displacement in the vertical axis
allows the calculation of the Initial Swing IS instant. With these
5 key events, preliminary comparisons between the generated
ankle trajectory and the captured trajectory, were visibly still not
a close approximation. This can be summarized by the required
six control points required to generate the kidney bean shape of
the generated pattern. Figure 4 shows a comparison between 4,
5, and 6 key events trajectories and a random captured trajectory.
We calculated Fidelity measures and obtained: 72.4%, 81.7%, and
97.3%, respectively, showing that there are significant differences
in choosing <6 key events.

Therefore, we identify and acquire a sixth event, namely
Mid Swing MS, defined as the location of the mean distance
between the IS and TS events. These six events were calculated
as previously described and placed in an arrangement for better
data operations. It is worth emphasizing that the calculations of
this stage were performed offline, i.e., after collecting all data from
all subjects. From here onward the events will be referred to as the
six key events and which are, in temporal order: HS, TO, PS, IS,
MS, and TS as shown in Figures 2 and 3A.

Pi(xik, yik), i = 1, ..., n, k = 1, ..., 6 (3)

Where P is an array of points representing the key events, xj; j =
1, ..., 6 represent the coordinates of the jth event, and i is the
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FIGURE 3 | Walking events detection. In subfigure (A) Gait cycle key events calculated via forward kinematics of captured data. Subfigures (B) and (C), show the

ground contact and displacements of the ankle as functions of the percentace of the gait cycle. walking forward means moving left to right as gait evolves over time.

The key events are determined as maximums and minimums identified by direction changes in velocity of the ankle.

FIGURE 4 | Comparison between using 4, 5 or 6 key events for the trajectory generator. Fidelity measures are: 72.4%, 81.7%, and 97.3%, respectively, thereby

suggesting that the trajectory generator method should incorporate 6 key events herein proposed.

number of observations. Although the events are stored by their
coordinates in the sagittal plane, they inherently contain their
own time-stamp as a percentage of step. A sequence of ankle
positions over time produces a closed ankle trajectory known as
a captured trajectory. Thus the six key events of the gait sequence
were identified (see Figure 3A). The method considers the hip
joint as the origin of the coordinate system. All these six key
events are detected in each step and appended into a labeled array
for each subject. The key events found are represented in the
sagittal plane coordinate system with the HS as the origin of the

2D plane to make the analysis more understandable and useful.
The centroids are the average point of all key events of the same
type and the same trial for all subjects. The representation of each
key event per test was found as:

Cj =

(

1

m

∑

xjk,
1

m

∑

yjk

)

, j = 1, ...,m, k = 1, ..., 6 (4)

The Cjk pair represent the coordinates of the confidence hyper-
ellipse centroid per trial i.e., there is one set of 6 centroids per
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trial, now using the HS event as origin of coordinates, with
magnitude µx and µy with respect to the origin coordinates
in the sagittal plane. Where xjk and yjk are the j-th centroid,
k = 1 is HS, and continue with TO, PS, IS, MS, TS, µxjk and
µyjk are the mean coordinates of the key events coordinates in
their respective components. This means there exist clouds of
points that represent the centroid of the key events found for
each subject. Cj Represents the six centroids for each gait cycle,
j is the j-th trial in the same order as described above. The gait
cycle count depends on how many steps are made in the trial
(not always the same due to segmentation, sometimes first or
last steps are not taken into account, for 30[cm] trials between
15 and 17 steps, for 45[cm] trials between 10 and 13 steps and for
60[cm] trials between 8 and 19 steps are captured). This produces
a new set of points for the key event centroids per each trial and
test subject.

2.4.2. Key Event Centroids and Dimensional

Reduction
The EVD (Eigenvalue Decomposition) procedure is used as
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables. These variables correspond to the
maximum variance in a specific axis. The number of eigenvalues
is less than or equal to the smaller of the number of observations.
This transformation is defined in such a way that the first
component has the largest possible variance, and each succeeding
component in turn has the highest variance possible under the
constraint that it is orthogonal to the preceding components.
The resulting vectors are an uncorrelated orthogonal basis set.
Due to the nature of the data, the EVD process will result in two
orthogonal axes rotated with respect to the original horizontal
and vertical axes. In this way, it is possible to find the change in
direction between the centroids per person and per event.

cov(X) =
XTX

n− 1
(5)

Where X is the data array with dimension n x 2 and n is the
number of samples.

2.4.3. Trajectory Scaling Direction and Interpolation
Using these same centroids, the variance magnitudes for each key
event point cloud provide a resultant vector sum that adequately
describes the scaling orientation whereby the trajectory can be
modified via interpolation for other step sizes. This scaling
represents a new axis rotated from the base coordinates. This way
a vector and direction are found in order to scale the calculated
trajectory as a function of the Step Length (SL). In order to
calculate the scaling proportion, the reference step lengths from
the trials can be employed. Taking, for example, the 30 cm
SL trial as basis, and desiring a 35 cm SL, there exists a 17%
increase, an increase to be scaled via the resultant direction of the
linear regression between 30[cm] centroids and 60[cm] centroids
for each key event. In addition to scale the foot clearance, the
magnitude of the sum of the two eigen vectors for each centroid,

represented the scaling direction, the same direction should be
kept while increasing or decreasing the scale proportion.

The centroids of the 6 key events can now be employed as
nodes to create a polynomial curve to represent the trajectories.
For the closed interpolating curve, the first point of interpolation
must be the same as the last point (Navidi, 2010). Each centroids
will be employed as a nodes for the interpolation of the trajectory
and represents both the starting point for the next polynomial
curve and the ending point for the previous curve. Smoothness
is ensured by requiring equality of both the first and second
derivatives of the intersecting curves at each particular node
as follows:

S0 = Sn (6)

In this way, the resulting trajectory is a closed and continuous
ellipsoid curve. Each event that has been found produces a
geometric point in the sagittal plane, called node. Each node is
taken as a control point to generate the path for the calculated
trajectory. Each node means a change in the function that defines
the segment, each nodal transition is designed to be smooth
meaning that the second derivative of one segment ending at the
node is equal to the second derivative of the next segment starting
at the same node. After obtaining the calculated trajectory as
polynomials, the nodes can be parametrized based on the step
length (SL). The calculated trajectory can then be modified based
on the desired distance of SL.

By definition, a function f (t) is Ck-continuous, if the function
and its first k derivatives are continuous. Let V = {t0, ..., tn},
ti < ti+1 the node vector by the event detector algorithm. To
generate a periodic spline S, it is necessary to wrap the nodes
t0 and tn with each other, i.e., S (t0) = S (tn); S

′ (t0) = S′ (tn);
S′′ (t0) = S′′ (tn)

The S spline has the coefficients ai, bi, ci, di in the shape of a
cubic natural spline:

S (x) =















S0 (x) = a0x
3 + b0x

2 + c0x+ d0, t0 6 x 6 t1
.
.
.

Sn−1 (x) = an−1x
3 + bn−1x

2 + cn−1x+ dn−1, tn−1 6 x 6 tn

(7)

for t ∈ [ti, ti+1], i = 0, ..., n− 1
The calculated trajectory is a closed curve consisting of several

segments. By definition, each segment has to be tangent the next,
so each transition (key events denoted by the nodes) is “smooth"
between segments.

2.4.4. Statistical Validation of the Method
Multiple Analysis of variance (MANOVA) determines whether
the means of three or more groups are different. The null
hypothesis establishes that all of the population means are equal,
whereas the alternative hypothesis establishes that at least one
mean differs significantly from the rest. MANOVA uses F-tests
to statistically test the equality of means. The F statistic compares
the variability between the groups to the variability within the
groups (Burden and Faires, 2010).
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The groups are composed of the trajectory families for each
one of the trials. They are grouped by participant and by trial.
For example, all data for the 30 cm Step Length (SL) are grouped.
Utilizing the MANOVA it is possible to find groups out within
the same trial that are statistically different or not. For those
groups of trials that the MANOVA fails to find similarities, this
mean that the samples are rich in frequencies. This ensures that
results are not biased. The independent variables are Step Length
(SL), and Step Period (SP). Tukey′s method uncovers statistically
significant differences between groups and permits a labeling of
the most similar groups via simultaneous comparisons of the
group means.

MST =

∑k
i=1

(

T2
i /ni

)

− G2/n

k− 1
(8)

MSE =

∑k
i=1

∑ni
j=1 Y

2
ij −

∑k
i=1

(

T2
i /ni

)

k− 1
(9)

F =
MST

MSE
(10)

Observations are single values of SL or SP. Groups are defined
as sets of observations of the measures of SL and SP according
to each test from the same subject. Where F is the variance ratio
for Tukey′s test, MST is the mean square between groups, MSE
is the mean square due to error (within groups), ni is the number
in group i and n is the total number of observations in the tested
group, Ti is a group total, Yij is an observation, G is the grand
total of all observations.

The Leave-One-Out Cross Validation (LOOCV) algorithm
was used in order to estimate the level of fit of a single captured
step (Test Trajectory) to the generated characteristic trajectory
from the remaining dataset. This was done by leaving the test
trajectory from the dataset out of the characteristic trajectory
generation algorithm. Additionally the same process is repeated
with the next single trajectory until completing the entire data
set one by on. The core of the LOOCV algorithm is multiple
comparisons that estimate how accurately a new characteristic
trajectory will fit a new captured step.

NLOOCV30 = 10(subjects) ∗ 4(trials) ∗ 15(steps) ∗ 14

(steps− 1) = 8400 (11)

NLOOCV45 = 10(subjects) ∗ 4(trials) ∗ 9(steps) ∗ 8

(steps− 1) = 2880 (12)

NLOOCV60 = 10(subjects) ∗ 4(trials) ∗ 7(steps) ∗ 6

(steps− 1) = 1680 (13)

This process must compare 8,400, 2,880 and 1,680 times for
30, 40, and 60[cm] trials, respectively, and compute the average
for each trial set separately. The Fidelity measure servers
to compare the trajectories to each other as presented by
Cherelle et al. (2010).

Fidelity =

(

1−
var

(

TestTrajectory− CharacteristicTrajectory
)

var
(

TestTrajectory
)

)

∗ 100%

(14)

Since the number of samples of test trajectory may vary from
one step to other, the characteristic trajectory has to be evaluated
in the same number of samples in order to compute the point-
to-point difference

(

TestTrajectory− CharacteristicTrajectory
)

,
then the variance of the resulting array has to be calculated
and divided by the variance of the test Trajectory. The result is
an estimation of how similar both trajectories are, the average
contains the NLOOCVxx Fidelity measures.

2.4.5. Trajectory Step Length Scaling Process
Starting from all centroids found out for each trial, and taking
into account the three centroids that belong to the same key event
but in different trial, those represent points over the sagittal plane
and it is possible to discover a line that minimizes de euclidean
distance to the points applying linear regression. The resulting
lines show that the same key events from the corresponding three
characteristic trajectories are almost co-linear, e.g., IS30, IS45, IS60
almost coincide on the same line, proving that the corresponding
Key Events to all steps length in between 30 and 60 [cm] move
over these lines. TheHSKey event is the origin of the coordinates
so all of its centroids are aligned.With this information is possible
to generate any trajectory in proportion to the actual variation in
size starting from known sizes, the defined trials SL.

desiredXi =
desiredStepSL− 30

30− 45
∗
(

C30(i)− C45(i)
)

+ C30(i)

desiredYi = mi ∗ desiredXi + bi
(15)

Where desiredStepSL is the value in [cm] of the desired SL, 30 and
45 are trial SL, C30(i) and C45(i) are the centroid coordinates for
30 and 45 are trial SL, mi is the slope and bi is the Y-intercept
of the corresponding line found by linear regression and i is the
ith iterator for the key events in chronological order. To find
the desired centroid coordinates for the new SL, the Equation 15
has been used. After applying this equation to the 6 key events,
we knew six centroids that represent the starting points to run
the generator algorithm and obtain a new trajectory with the
desired SL.

3. RESULTS

All six key events are identified in the captured trajectory, i.e.,
each gait cycle. Each key event conforms a dot cloud and its

TABLE 2 | Actual data summarized for Step Length (SL) [cm] for all trials including

all subjects.

30 cm 45 cm 60 cm

SL 31.26± 3.96 44.87± 3.49 58.88± 3.87
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FIGURE 5 | SL values are shown for each subject grouped per test. The median (dot), first and third quartiles (box), minimum and maximum values (lines) and some

outliers (plus sign) are displayed. As expected, restricted SL trials appear close to each other across subjects, trials 1, 2, and 3.

TABLE 3 | Grouping using the tukey method and 95% confidence for step length (SL).

Trial 1 (SL = 30[cm]) Trial 2 (SL = 45[cm]) Trial 3 (SL = 60[cm])

Subject N Mean Grouping Subject N Mean Grouping Subject N Mean Grouping

S5 56 34.062 A S3 27 46.714 A S4 26 61.961 A

S3 55 33.509 A S5 34 46.415 A S7 24 60.491 A B

S2 57 32.169 A B S7 34 46.377 A S9 27 59.285 A B C

S8 56 31.259 B C S8 35 45.292 A B S1 28 58.882 A B C

S7 56 31.082 B C S1 36 45.085 A B S3 22 58.790 A B C

S6 56 30.670 B C S2 36 44.824 A B S10 27 58.657 B C

S10 56 30.462 B C S4 36 44.260 A B S8 25 58.278 B C

S4 55 30.198 B C S10 38 43.699 B S2 26 58.212 B C

S1 44 29.437 C S6 33 43.505 B S6 25 57.388 B C

S9 57 29.417 C S9 37 43.202 B S5 26 56.893 C

centroid is computed HS = (0.0, 0.0), TO = (−33.45, 2.92),
PS = (−36.73, 6.12), IS = (−33.66, 9.45), MS = (−15.52, 3.52),
TS = (2.61, 0.27). The centroids represent the key events found
for all-subjects-mean gait cycle captured trajectories. A new set of
events is calculated per trial, i.e., event identification and centroid
computation for 30, 45, and 60 cm SL trials.

The following Table 2 summarizes the actual data for Step
Length (SL). The means and standard deviations for SL are
calculated for all subjects per each trial. Expected reference values
for each SL are covered by themean and one σ standard deviation
values in all cases, i.e., the 30[cm] reference value for SL is inside
one σ of SL30cm = 31.262± 3.965[cm], for the 45[cm] reference

value for SL is SL45cm = 44.873± 3.485[cm] and similarly for the
60[cm] reference value for SL is SL60cm = 58.882± 3.865[cm].
These values show that subjects reasonably accomplished the
tasks they were asked to do. In the three-SL trials (see Figure 5),
the subjects perform steps of 30, 45, and 60 cm, as required. We
observed certain variation across subjects (see Table 3), which
confirms that performance of most subjects is different from
each other.

The components of the direction for the calculated trajectory
can be represented by the EVD and confidence ellipse for
each event. These components become the directions and
proportions of scaling for modifying the calculated trajectories.
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FIGURE 6 | Gait cycle of all subjects aligned by HS for all repetitions of the trial SL = 30[cm]. Eigenvalue Decomposition for the centroids of Key Events. Heel Strike is

placed in coordinates (0,0) and marked with a white cross. Toe Off events are shown in blue, PS are shown in yellow, IS are shown in cyan, MS are shown in green

and TS are shown in magenta. Confidence ellipses are shown in red. Centroids and maximun and minimum variance are shown as vector components. Both

SL = 45[cm] and SL = 60[cm] had similar results.

FIGURE 7 | Captured (Full line) Vs Generated Trajectory (Dotted line). Fidelity 97.3% which is the degree of similarity of both trajectories.

(see Figure 6). Both orthogonal axes resulting from the EVD are
the axes of maximum variance of the point cloud per event. In
addition, major axis in red and minor axes in white indicate the
proportion for the centroid to be moved in order to scale the
calculated trajectory.

Using cubic periodic splines based on the key events found in
the calculated trajectory of the ankle joint of a healthy subject as
shown in Figure 7 a polynomial segmented calculated trajectory
was found. Thus, it is possible to generate the whole calculated
trajectory using only the six key events as the control nodes.

A MANOVA test was run for SL data sets. Assuming the truth
of the null hypothesis: all subject′s means are statistically equal in
each trial. There is enough statistical evidence to reject the null
hypothesis with a significance of α = 0.5 and P − value = 0.00.
This means that at least one mean is statistically different from

the rest of the trial group. Additionally, this proves that obtained
data is statistically different between all users and enriches the
data set for trajectory generation.

The Tukey method identifies any difference between two
means that is greater than the expected standard error. Since
the data is from 10 subjects, the Tukey test allows a paired
test between all possible combination of subjects. The Tukey
test generates a grouping map for the subjects with similar
means for the SL trials (see Table 3). The simultaneous pairwise
comparisons indicate that subjects without significant differences
belong to the same group.

The results shown in Table 3 demonstrate that there are
significant differences between some subjects, this contributes to
form a data set that is rich in variations. Furthermore, this ensures
that our experiments are not biased. As expected, every subject
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FIGURE 8 | In the background, actual captured ankle position data point in the sagittal plane, all from subject gait cycles. Same Key events for all subjects are shown

in color clusters. Centroids and ellipses represent average data and maximum and minimum variance per test. Top: Key events of 60[cm], Middle: Key events of

45[cm], Bottom: Key events of 30[cm].

is different from every other, but at the same time some means
are similar enough to be regrouped as smaller groups depending
on the 95% confidence level. Finally, the data reveals that there
is no question that the means of the all the trials across the
different conditions are different in magnitude from each other.
Thereby indicating that the methods can adequately differentiate
step lengths.

Centroids of clustered data per each trial 30, 45, and 60 [cm]
SL tests are shown, respectively, in (see Figure 8). With this we
demonstrate that there actually significant differences between
test. Confidence ellipses represents the region with 95% certainty
according to a chi squared distribution to find a point that
belongs to the corresponding key event region. On the one hand,
it demonstrates that there exist significant differences between
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FIGURE 9 | Generated characteristic trajectories in dotted lines for the three

trials. Solid line represents the interpolated trajectory proposed for

SL = 37[cm]. Product of the linear regression between centroids of the same

key event, the red lines are used to represent the linear relationship between

centroids for the same key event but different test. These lines suggest the use

of linear interpolation to predict and set up any intermediate SL for

programming a rehabilitation exoskleton as well as assistive devices. Angular

position for hip and knee joints are calculated using inverse kinematics.

subjects, while on the other hand it is possible to group the points
into elliptical regions.

A comparison among the tests shows that centroids are almost
aligned, linear fitting shows R2 value of R2TO = 0.9998, R2PS =

0.9953, R2IS = 0.9757, R2MS = 0.8159, R2TS = 0.4008, (note thatHS
events are all aligned in the origin of coordinates). Thementioned
linear fitting ri represents a direction tendency for each key event.
These tendencies can be used to interpolate an intermediate SL as
needed. To interpolate a new trajectory, a point that belongs to ri
might be selected according to the desired scale (e.g., 37[cm] SL;
see Figure 9).

Based on the six key events of the captured ankle trajectory
as seen in the sagittal plane, a new calculated trajectory can
be generated as needed. Average values of 95.2%, 96.1%, and
97.2% for 30, 45, and 60 [cm] SL trials including all subjects.
These values reflect the trajectory fit and were revealed after
running the LOOCV algorithm including the fidelity measure in
each iteration.

The correct proportion and human likeness is the result of
using the linear regression to propose new points over the line
that represent the scale direction for each of the six key events.
In Figure 9 a control trajectory was calculated for 37[cm], just in

the middle of the first two trials to demonstrate that any reference
trajectory could be generated between SL 30[cm] and SL 60[cm]
the smallest and largest SL values for the present work.

4. DISCUSSION

Prior work has attempted to apply healthy gait trajectories to
exoskeletons being donned by disabled subjects, thereby forcing
the subjects to follow a particular trajectory. This forced guidance
causes the exoskeleton system to be uncomfortable. These healthy
patterns neither deal with the limited range of motion nor
take into account conditions typically addressed by disabled
subjects when using an exoskeletal device. The introduction
of the crutches and the non-powered exoskeleton in the data
capture process provides adequate notions of the limitations of
the joint ranges of motion, step lengths, foot clearances and step
cadences. With this information, it could be possible to design
rehabilitation gait trajectories with patient-specific variations
between steps but still visibly human-like walking patterns.

Kazemi and Ozgoli (2018) introduced a real-time gait planner
for human walking using a lower limb exoskeleton, in their work
they present a feedback controller and pattern generator. Their
work is based on two feedback-controlled third order systems as
optimal trajectory planners for generating the walking trajectory,
thereby adjusting the joint angles according to pre-configured
parameters and stability margins. In contrast, this work requires
both well-calculated parameters in order to converge in a limb
trajectory and exact knowledge of the stablility margins.

Pre-programmed and constrained gait trajectories and
controllers have been proposed previously. Gui et al. (2017)
and Bhaumik et al. (2017) both presented predefined trajectories
for lower limb exoskeletons, where trajectories tend to be fixed
to a specific trajectory and followed by the controller named
Central Pattern Generator and proprietary position controllers,
respectively. In contrast to previous work that proposes pre-
calculated lower limb trajectories, and little or no flexibility to
adjust the trajectory according to the particular subject, we show
that with knowledge of only six key-events of the gait cycle, it is
possible to reconstruct a human-like ankle captured trajectory.
This work introduces preliminary results for three reconstructed
trajectories based on fixed SL trials. To generate a new calculated
trajectory for an arbitrary desired SL, new key event locations
could be selected from each direction tendency. The direction
tendencies indicate the relative position of the new key events
to the reference key events. The position of the new key events
are over the direction tendency and proportional to the desired
step in comparison with 30[cm] SL, i.e., change the SL to any
length between 30 and 60[cm] to adapt the calculated trajectory
to another subject.

In the present work a way to represent the ankle joint
trajectories from only six key events has been studied. These key
events have certain characteristics that makes them recognizable
each time the “key events centroids and dimensional reduction"
algorithm was run. The proposed representation for the
trajectories allows to make a salient difference, comparison and
evaluation of the ankle joint trajectories in the non-pathological
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walking cycle context. The first two key events are identifiable
from ground contact sensors data. The remaining key events
are unequivocally identifiable thanks to the position, velocity
and acceleration during one walking cycle as described in
6. The definition of probability regions allows developers to
make comparisons with different captured or new proposed
trajectories. The benchmark evaluation of the captured or new
proposed trajectories enables to test the relevance of a human-like
walking cycle trajectory for the ankle.

For further comparison and experimentation a data base
with captured raw and filtered data are available in: Mendoza
et al. (2019). Data are organized per subject and trial for both
raw and filtered logs. Please refer to the present publication
for citations.

The present work does not include the testing of a control
system for the joints in order to reproduce the generated
trajectories with classical control techniques and thereby contrast
the results to the reference trajectories. Furthermore, no
method testing has been performed with impaired subjects.
The method was also not tested in conditions of starting or
ending a trajectory at any stage of the walking cycle. Besides
no trajectories were based on a starting double foot support
stance at any stage. And no trajectories considered conditions
where the subject or therapist desired to begin, delay, or pause
the therapy trial. All of these special conditions are left for
future work.

5. CONCLUSION

This human-user experiment provided kinematic gait data, data
collected during the walking of 10 healthy subjects in 7 different
test conditions while they donned an instrumented, yet non-
powered, exoskeleton. As a result of an initial data analysis
looking at events of the gait cycle, this research proposes a novel
mathematical method to analyze gait and generate limb-joint
angle control trajectories primarily employed for therapeutic
gait purposes in robotic rehabilitation systems. The method
includes data acquisition and normalization, novel key event
identification, and formulation of generated trajectories. The six
key events that we propose and mathematically define, serve
as the control nodes for a closed third-order polynomial spline
to represent the ankle trajectory in the sagittal plane. The
approach of considering the ankle joint as the end effector,
gives the advantage being able to calculate a different reference
trajectory on-line for each step each time as needed, i.e., adjust
arbitrarily the step length, cadence, and/or foot clearance. This
provides the controller the possibility of saliently adjusting the
gait trajectories to different rehabilitation protocols by only
modifying six parameters as key events. The main processor
for the exoskeleton, an ARM micro-controller, could calculate
the reference trajectory, the inverse kinematics, the angle
references for each step, and generate angle references for all
exoskeleton joints. The gait pattern parameters could also be
set by the therapist according to experience and the patient′s
therapeutic evolution.

The integrated method to capture, segment, and process
data as well as to generate control trajectories demonstrated
a throughput fitting error fidelity of 95.2, 96.1, and 97.2%,
respectively, for each trial set. This is the result of the LOOCV
test. This implies that the selected key events and the methods
to manipulate them, minimize the quantity of required control
reference data while increasing both trajectory saliency between
patients and the ability to generate accurate new calculated
trajectories for individual patients. Ultimately, it is possible
to generate, with certainty, an arbitrary step length reference
trajectory for any SL value between 30 and 60[cm]. Finally,
the method proposed herein could accurately and saliently
benchmark the human likeness of gait trajectories of existing
robotic exoskeletal devices.

As stated by Leisman et al. (2016), “One may never
have thought about how one plans and controls movement",
and human locomotion is the result of a set of several
mental processes. Motor actions are goal specific and integrate
considerable cognitive functions to achieve successful motor
performance.When one thinks about walking, one does not think
about the particular angular position of lower limb joints. On
contrary, one can consciously choose how long of a step to take.
We took this approach on the trajectory generator for the ankle
joint. Starting from the generated trajectory and then obtaining
the corresponding joint angles.
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