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Abstract

Electroencephalography (EEG), easily deployed at the bedside, is an attractive modality

for deriving quantitative biomarkers of prognosis and differential diagnosis in severe

brain injury and disorders of consciousness (DOC). Prior work by Schiff has identified

four dynamic regimes of progressive recovery of consciousness defined by the pres-

ence or absence of thalamically-driven EEG oscillations. These four predefined catego-

ries (ABCD model) relate, on a theoretical level, to thalamocortical integrity and, on an

empirical level, to behavioral outcome in patients with cardiac arrest coma etiologies.

However, whether this theory-based stratification of patients might be useful as a

diagnostic biomarker in DOC and measurably linked to thalamocortical dysfunction

remains unknown. In this work, we relate the reemergence of thalamically-driven EEG

oscillations to behavioral recovery from traumatic brain injury (TBI) in a cohort of

N = 38 acute patients with moderate-to-severe TBI and an average of 1 week of EEG

recorded per patient. We analyzed an average of 3.4 hr of EEG per patient, sampled to

coincide with 30-min periods of maximal behavioral arousal. Our work tests and sup-

ports the ABCD model, showing that it outperforms a data-driven clustering approach

and may perform equally well compared to a more parsimonious categorization. Addi-

tionally, in a subset of patients (N = 11), we correlated EEG findings with functional

magnetic resonance imaging (fMRI) connectivity between nodes in the mesocircuit—

which has been theoretically implicated by Schiff in DOC—and report a trend-level

relationship that warrants further investigation in larger studies.
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1 | INTRODUCTION

Disorders of consciousness (DOC), such as coma and vegetative state,

are conditions in which both responsiveness and conscious awareness

are diminished as a result of an insult such as brain injury or ischemia
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(Giacino, Fins, Laureys, & Schiff, 2014). Biomarkers of recovery are

greatly needed in DOC to inform prognosis and differential diagnosis,

as diagnostic error rates in DOC are as high as 40%, largely owing to

the challenges posed by behavioral assessments of level of conscious-

ness (Andrews, Murphy, Munday, & Littlewood, 1996; Childs, Mer-

cer, & Childs, 1993; Schnakers et al., 2009). Diagnostic biomarkers are

needed in DOC to identify instances of covert consciousness, that is,

consciousness that occurs in the absence of behavioral responsive-

ness (Huang et al., 2018; Monti et al., 2010). Furthermore, patients'

prognoses are also frequently inaccurate, with many families often

advised to consider withdraw of care despite over two thirds of

patients recovering consciousness when DOC results from traumatic

brain injury (TBI) (Giacino et al., 2014; Peberdy et al., 2003; Turgeon

et al., 2011). However, predicting which patients are likely to recover

consciousness in the absence of prognostic biomarkers remains chal-

lenging, thus underscoring the need for such biomarkers (Provencio

et al., 2020).

EEG is an attractive modality for biomarkers of postinjury recov-

ery. As a direct readout of cortical activity, EEG is inexpensive, porta-

ble, and easily deployed at the bedside. In particular, EEG may be well

suited to test hypotheses concerning the role of functional

reafferentation of the cortex during coma recovery, that is, restoration

of thalamocortical integrity. One such hypothesis, the mesocircuit

model, theorizes that the globus pallidus interna (GPi) is disinhibited

following diffuse brain injury, and thus, silences the central thalamus,

resulting in functional deafferentation of the cortex (Schiff, 2010,

2016). Thus, recovery from DOC requires restoration of striatal func-

tioning and thalamocortical integrity. The latter may be inferred from

EEG, given that cortical oscillations such as theta and alpha are

thought to be driven by the thalamus (Hughes & Crunelli, 2005;

Lindgren et al., 1999; Liu et al., 2012; Sarnthein & Jeanmonod, 2007;

Sarnthein, Morel, Von Stein, & Jeanmonod, 2003; Schreckenberger

et al., 2004). As such, the loss and recovery of thalamocortical integ-

rity is visible in noninvasive recordings and motivates the “ABCD”
model by Schiff.

Based on the assumption that specific cortical oscillations indicate

varying levels of thalamocortical integrity, Schiff (2016) has defined

four dynamic regimes that build on the mesocircuit model, each

detectable with EEG and corresponding to a thalamocortical state that

indicates progressive circuit recovery. In particular, this model empha-

sizes thalamic projections to frontal cortical areas, given the privileged

role of central thalamic nuclei in anterior forebrain arousal

(Schiff, 2020). These EEG types, labeled A–D (hence, ABCD model)

are summarized in Table 1. Later types (C, D) denote more progressive

recovery (i.e., are “better”) than earlier types, (A, B), which correspond

to a quiescent thalamic state. Specifically, A-type EEG spectra (featur-

ing no or only low frequency oscillations) are thought to indicate com-

plete cortical deafferentation on a circuit level and a vegetative state

on a behavioral level, whereas B-type spectra (featuring theta oscilla-

tions) indicate severe deafferentation and a minimally conscious state.

Next, C-type spectra (featuring theta and beta oscillations) may occur

when thalamic nuclei fire in burst mode, corresponding to less severe

deafferentation and emergence from the minimally conscious state.

Finally, D-type spectra (featuring alpha and beta oscillations) indicate

an approximately normal EEG, corresponding to tonic firing of tha-

lamic nuclei and a normal capacity for wakeful consciousness. During

the progression from A to D, excitatory synaptic background activity,

as well as metabolic rates in cortical, central thalamic, and pallidal tis-

sues, are increasingly restored to normal levels (Comanducci

et al., 2020).

Two recent studies have tested the mesocircuit hypothesis in the

context of the ABCD model using EEG. Forgacs et al. (2017) found

that EEGs from 44 patients who had lost consciousness following car-

diac arrest displayed a progression of EEG patterns consistent with

the ABCD model. In particular, EEG patterns indicative of greater

circuit-level recovery correlated with better outcomes at hospital dis-

charge. More recently, Alkhachroum et al. (2020) used the ABCD

model to examine recovery in DOC patients with largely anoxic etiolo-

gies treated with amantadine. The best recorded ABCD type

increased (A–D) linearly with the percentage of patients who recov-

ered the ability to follow commands.

The foregoing studies offer first evidence for the ABCD model.

However, it is unknown how EEG dynamic regimes relate empirically

to recovery of the mesocircuit in DOC and whether these EEG types

can be used as biomarkers. Deploying the ABCD model as a clinical

biomarker will depend crucially on whether the different types can be

detected at an acute stage and related to recovery of the mesocircuit.

With the exception of three patients (Alkhachroum et al., 2020), the

TABLE 1 EEG types, criteria, and descriptive statistics

Theoretical meaning
for thalamus

Theta
rhythm

Alpha
rhythm

Beta
rhythm

Proportion of EEG
observations

GCS
(mean ± SD)

GCS
(min–max)

A-type Quiescent No No No 71.6% (229/320) 5.9 ± 3.1 3–15

B-type Nearly quiescent Yes No No 15.0% (48/320) 9.3 ± 2.8 4–15

C-type Bursting Yes No Yes 1.88% (6/320) 8.8 ± 4.4 3–14

D-type Tonically active No Yes Yes 0.94% (3/320) 9.0 ± 4.4 6–14

θα� No theory No No N/A 69.1% (221/320) 5.9 ± 3.1 3–15

θα+ No theory Yes (or alpha) Yes (or theta) N/A 30.9% (99/320) 8.0 ± 2.9 3–15

Note: Theoretical meanings are based on the original ABCD model by (Schiff, 2016). Some EEG observations (10.6%) could not be classified according to

the ABCD model due to peak combinations that did not fit any ABCD type (e.g., a peak in beta without an accompanying peak in theta or alpha).
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ABCD model has never been applied to patients with severe TBI in

the acute stage.

Moreover, prior studies have used manual scoring to categorize

ABCD type (Alkhachroum et al., 2020; Forgacs et al., 2017), which is

inefficient in clinical application; thus, it is necessary to test whether

similar results can be achieved using automated methods based on

quantitative EEG criteria. Finally, a weakness of the ABCD model is

that not all EEGs can be classified into one of four types, nor will one

type always capture a majority of EEG channels. Alternative models,

for which EEGs are always classifiable and one of two types always

captures a majority of channels, warrant investigation. It remains

unknown how the ABCD model compares to other approaches,

including more parsimonious models, models based on spectral power

rather than peaks, and data-driven clustering.

To address these open questions, we used objective criteria cate-

gorization of acute EEG following moderate-to-severe TBI to test the

ABCD model in a cohort of 38 severe TBI patients in the intensive

care unit (ICU). Our study tested four hypotheses: ABCD type relates

to (a) acute and (b) chronic (> 5 months) behavioral recovery in

patients, (c) the ABCD model outperforms alternative EEG categoriza-

tions that are more parsimonious, use different features, or are data-

driven, and (d) the reemergence of neural oscillations tracks mes-

ocircuit recovery. Our results show that the reemergence of neural

oscillations >4 Hz tracks recovery of behavioral responsiveness and

consciousness in acute patients following severe TBI and, moreover,

that EEG categories defined by spectral peaks outperform a data-

driven clustering approach. We also found that spectral power gener-

ally either did not predict these same variables or failed to improve

peak-based model fits, with the exceptions of relative alpha (8–12 Hz)

power and absolute beta (12–35 Hz) power. Finally, we also identified

promising relationships between EEG and mesocircuit recovery in a

subset of 11 patients.

2 | MATERIALS AND METHODS

2.1 | Data collection

We collected continuous recordings over several days from each

patient in our cohort. This strategy utilized a vast amount of data

(range: 15.0–320 hr per patient, mean ± SD: 163 ± 62.5 h) in a sample

of 41 patients admitted at the Ronald Reagan UCLA Medical Center

Neuroscience/Trauma ICU from December 2015 to February 2020

following moderate-to-severe TBI. The sample size was determined

by patient availability and was not set a priori. Our inclusion criteria

were as follows: patients were retained if they demonstrated an

admission Glasgow Coma Scale (GCS; Teasdale & Jennett, 1974) score

≤8 or an admission GCS score of 9–14 with computed tomography

(CT) evidence of intracranial bleeding. Our exclusion criteria elimi-

nated patients with any of the following: GCS > 14 with nonsignifi-

cant head CT, history of neurologic disease or TBI, and brain death.

Ethics approval for the study was obtained by the UCLA IRB. Families

of patients gave consent to participate in the study in accordance with

the Declaration of Helsinki.

While patients were in the ICU, clinical EEG was recorded contin-

uously for multiple days using a sparse montage with 13–17 channels

(Cz reference). Channel placement was modified from standard posi-

tions to accommodate bone flaps and injury sites in individual

patients. Given the small number of channels and variable channel

placement, we did not perform source localization or surface Laplacian

montages in our analyses (Cohen, 2014). EEG data were acquired

from most patients using a Nicolet Monitor (Natus Medical, Inc.,

Pleasanton, CA); however, data from two patients (#7 and #26, see

Table 1) were acquired using systems by Moberg ICU Solutions

(Moberg Research, Inc., Ambler, PA). Data were de-identified and

exported as European data format (EDF) files using Persyst software

(Persyst Development Corporation, Solana Beach, CA). Behavioral

assessments were performed several times daily using the GCS

(i.e., each EEG recording temporally overlapped with data from many

GCS assessments of the patient). To analyze patients at peak arousal,

we extracted 30-min EEG observations from 13 channels common to

all patients (Figure 1a) from timepoints corresponding to high GCS

scores, with EEG observations spaced a minimum of 12 hr apart. This

was accomplished by sorting each patient's GCS scores that over-

lapped with EEG recordings from high to low, appending the highest

score to a second list, and then crawling down the first list of GCS

scores to find the next timepoint that was at least 12 hr apart from

any timepoint on the second list and then adding this timepoint to the

second list, and so on until no additional timepoints could be added to

the second list without violating the 12-hr buffer. EEG observations

(30 min each) were then extracted according to the second list's

timepoints (Figure 1b). Finally, as a chronic outcome measure, the

Glasgow Outcome Scale Extended (GOSe, Jennett, Snoek, Bond, &

Brooks, 1981) was administered approximately 6 months (190

± 33 days, mean ± SD; min = 158 days, max = 318 days) postinjury

either in-person or by phone to patients and/or family members.

Additionally, we acquired functional magnetic resonance imaging

(fMRI) data from patients at the earliest date when patients were stable

enough to be scanned safely with an echo-planar imaging (EPI) sequence

on a 3 Tesla Siemens TimTrio (Siemens AG, Munich, Germany) MRI

machine at the UCLA Ronald Reagan Medical Center. Anatomical data

were acquired with a magnetization prepared rapid gradient echo imag-

ing sequence (MPRAGE, TR = 1,900 ms, TE = 3.52 ms, FA = 98); other

MRI sequences not used in this study were also acquired in the same

session. Because scanning did not always coincide with EEG acquisition,

only a subset of patients had fMRI data acquired within 48 hr of at least

one EEG observation (see Table 2).

2.2 | EEG preprocessing and analysis

A total of 419 EEG observations from 41 patients entered

preprocessing. After importing EDF files to MATLAB (version

R2019b, The MathWorks, Inc., Natick, MA) for analysis, all datasets

were re-referenced to average and bandpass filtered 0.5–45 Hz (finite

impulse response filter, filter order: 2� sampling rate). Sections of

data containing gross physiological or technical artifacts were manu-

ally free-selected and excluded from analysis. Independent

1806 FROHLICH ET AL.



component analysis (ICA) was used to remove stereotyped artifacts

such as muscle activity (algorithm: FastICA, Hyvarinen, 1999; Jung

et al., 2000) Because channel locations were highly variable (see

above) precluding spine interpolations of noisy channels, we also used

ICA to remove noisy channel components. During quality control,

EEG observations were eliminated due either to (a) persistent physio-

logical and/or technical artifacts not removable with ICA or

(b) insufficient data length (defined as <30 valid 1 Hz frequency trans-

form windows). EEG recordings were heavily contaminated with tech-

nical artifacts or corrupted from three patients, who were excluded

from further analysis. Following preprocessing and artifact reduction,

we implemented a frequency transform using log-spaced Morlet

wavelets (1–45 Hz, 8 wavelets per octave; f/σf = 8.7; σf, spectral SD);

see Supporting Information Materials and Methods for details.

2.3 | EEG classification

To classify EEG observations according to ABCD type, we spline-

interpolated channel-level power spectral densities (PSDs) to achieve

100 frequency bins per octave. Next, we identified local maxima in PSDs

[MATLAB function: findpeaks, min width = 0.1 log2(Hz), min promi-

nence = 0.001 log10(μV
2/Hz)] and determined the ABCD type using

criteria in Table 1. EEG frequency bands were defined as follows (lower

bounds are exclusive and upper bounds are inclusive): delta, 1–4 Hz;

theta, 4–8 Hz; alpha, 8–12 Hz; beta, 12–35 Hz. For each EEG observa-

tion, we used locations of local maxima of PSDs to determine which

ABCD type, if any, each channel belonged to. We then took the mode

across all classifiable channels to determine the type of the EEG; ties

were broken using the most progressive type (e.g., B-type in the event

of an equal number of channels in the A-type and the B-type). EEG

observations were only considered unclassifiable if all channels were

unclassifiable. We also classified EEG observations according to whether

they contained a theta and/or alpha peak (henceforth: θα type) using the

mode across channels, given that the long oscillatory periods (>83 ms) of

these EEG rhythms are compatible with physiological conduction delays

between thalamus and cortex (Swadlow & Waxman, 2012;

i.e., thalamocortical communication occurs fully within the excitable

phase of the oscillation or one half of the oscillatory period [Fries, 2005])

and are thus especially valuable for inferring thalamocortical integrity.

2.4 | fMRI data processing

Patients in our cohort are prone to high motion so we have

implemented several preprocessing measures and exclusion criteria to

F IGURE 1 EEG types and behavioral trajectories. (a) Thirteen EEG channels common to all patients were imported for analysis. Actual
channel positions varied from patient to patient to accommodate bone flaps and injuries. (b) EEG observations (green circles) were sampled at
timepoints corresponding to local maxima of the Glasgow Coma Scale (GCS, black trace), with a 12-hr buffer in between observations. Purple
highlights show times with available EEG data. Time is referenced to the patient's earliest GCS score. (c) ABCD type (color) and θα type (shape)
for all patients and observations. Successive observations are spaced equally regardless of chronical time elapsed. (d) Example GCS trajectories for
six representative patients showing ABCD type (color) and θα type (shape) at each observation along the trajectory. Time is referenced to earliest
time with EEG for each patient
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TABLE 2 Patient details and demographics

IDs

Age at

injury
(years) Sex

Number of usable
EEG observations

Mean
GCS GOSe

Time to

follow
up (days)

Included in
fMRI analysis? Comments

1 19 Male 9 10 7 181 No

2 20 Female 4 4 3 192 Yes

3 20 Male 2 7 6 170 No Excluded from LMMs due to

insufficient number of

observations

4 22 Male 9 7 6 179 No EEG recorded with Moberg ICU

solutions

5 22 Male 7 6 3 164 No

6 22 Male 1 10 4 158 Yes Excluded from LMMs due to

insufficient number of

observations

7 22 Male 1 13 8 184 No Excluded from LMMs due to

insufficient number of

observations

8 23 Female 12 7 7 182 Yes Excluded from non-fMRI analyses

due to missing medication data

9 23 Female 3 7 3 183 Yes

10 25 Male 11 3 8 180 Yes

11 26 Male 14 3 2 161 No

12 27 Male 3 10 7 179 No

13 28 Male 13 8 4 177 No

14 31 Male 15 3 3 246 Yes

15 31 Male 13 7 6 182 No

16 31 Male 13 4 3 183 No

17 32 Male 8 6 3 177 No

18 33 Male 11 6 N/A N/A Yes Excluded from prediction of chronic

outcome (missing GOSe score)

19 36 Female 9 6 7 188 No

20 37 Male 8 4 2 177 No

21 39 Male 12 7 3 179 Yes

22 40 Male 2 10 5 173 No Excluded from LMMs due to

insufficient number of

observations

23 43 Male 4 7 5 203 No

24 44 Male 12 11 2 172 No

25 45 Male 9 10 3 182 No

26 47 Male 4 8 5 184 No EEG recorded with Moberg ICU

solutions

27 49 Male 6 14 6 174 No

28 54 Male 9 8 5 189 No

29 55 Male 15 7 N/A N/A No Excluded from prediction of chronic

outcome (missing GOSe score)

30 55 Female 13 14 N/A N/A Yes Excluded from prediction of chronic

outcome (missing GOSe score)

31 57 Male 11 7 3 224 Yes

32 58 Female 11 9 1 N/A No Patient deceased

33 59 Male 16 6 3 279 Yes

34 61 Male 4 8 7 318 No
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cope with motion-related artifacts (See Supporting Information Mate-

rials and Methods). Other details of the preprocessing, including skull-

stripping, segmentation, motion correction, and registration, can also

be found in Supporting Information Materials and Methods.

2.4.1 | Brain parcellation using independent
component analysis

We performed ICA using the GIFT toolbox (http://mialab.mrn.org/

software/gift/index.html) to parcellate the brain as implemented in

Allen et al. (2014). We chose this parcellation approach (Crone

et al., 2015; Crone, Lutkenhoff, Vespa, & Monti, 2020) as opposed

to standard atlases, because the brains we investigated were

severely injured. Thus, it is problematic to assume that parcellation

resulting from the average of young and healthy brains adequately

represents function in a brain that has been subject to reorganization

due to TBI. We defined the cortical regions of interest (ROIs) at an

individual level based on the individual functional covariance using

groupICA. See Supporting Information Materials and Methods for

further details of the parcellation and seed-based connectivity

analysis.

2.5 | Principal components space clustering

Having classified EEG observations according to the presence or

absence of power spectral peaks, we next asked how the foregoing

approach would compare with a data-driven approach. To implement

such an approach, we began by averaging power (unnormalized)

across channels for each patient and log-scaling. Due to the large

number of frequency bins (44), we next applied PCA to this feature

space and retained the top two PCs according to variance explained.

We then used k-means clustering to identify two clusters in PC space.

Only one EEG observation was used per patient for clustering; EEG

observations were selected according to the procedure described

below under statistical analysis.

2.6 | Patient medications

Patients in our study were administered a very large number of medi-

cations in the ICU. To appropriately account for medications, we first

categorized medications from each EEG observation into one of five

classes: propofol, opioids, benzodiazepines, barbiturates, and dissocia-

tives (i.e., ketamine and dexmedetomidine). Next, we applied logistic

PCA to the resultant matrix of observations � medication classes to

reduce the medication data to a two-dimensional space; note that

multiple observations per patient were included. This technique is a

variant of PCA that is appropriate for binary variables

(Landgraf, 2016; Landgraf & Lee, 2020). See Supporting Information

Materials and Methods for further details.

2.7 | Statistical analysis

To determine the extent to which EEG spectral peaks predicted

patients' behavior, we related acute, longitudinal EEG data to both

acute, longitudinal behavioral data (i.e., daily maximum GCS scores)

and a single, chronic behavioral datum (i.e., chronic GOSe score). For

the former, we used linear mixed models (LMMs) with random inter-

cepts, that is, varying-intercept models. We allowed intercepts but

not slopes to vary between patients as we expected patients to have

different baselines but did not expect predictors to exert differing

levels of influence across patients. Furthermore, given that all models

had at least five predictor variables, modeling random slopes for each

predictor would result in a cumbersome level of model complexity rel-

ative to our sample size. This LMM had the formula

GCS�1þEEGþAGEþSEXþPC1þPC2þ 1jPATIENTð Þ ð1Þ

where GCS is the daily maximum GCS score, EEG is either an ordinal

variable [A-type, B-type, C-type, D-type] or binary variable [A-type,

non-A-type; or θα�, θα+], AGE is the age at injury in years rounded

down to the nearest whole number, SEX is the sex of the patient, and

PC1 and PC2 are the first and second PCs yielded by the logistic PCA

TABLE 2 (Continued)

IDs

Age at

injury
(years) Sex

Number of usable
EEG observations

Mean
GCS GOSe

Time to

follow
up (days)

Included in
fMRI analysis? Comments

35 62 Female 8 10 3 181 No

36 72 Male 6 14 6 182 No

37 75 Male 8 7 N/A N/A No Excluded from prediction of chronic

outcome (missing GOSe score)

38 84 Male 4 7 5 177 No

Note: Our heavily male sample reflects higher risk for TBI in males. “Time to follow up” gives the number of days postinjury when GOSe assessments were

performed. Note that GOSe = 1 indicates that the patient was deceased (thus, for Patient 32, the time to follow up was not applicable). Comments give

additional details including which analyses, if any, patients were excluded from and why.

Abbreviation: N/A, not applicable.
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of medications. LMMs were fit in MATLAB using the function fitlme.

Instances of unclassifiable ABCD type were treated as missing data.

Patients with fewer than three usable EEG observations were

excluded from this analysis due to an insufficient number of observa-

tions for inclusion in LMMs.

Additionally, we utilized GCS subscales to infer consciousness in

patients and related the same predictors to a binary variable denoting

conscious state. Specifically, we inferred the presence of conscious-

ness from a GCS motor score ≥5 or a GCS verbal score ≥4 (see Crone

et al., 2020 for further details). We then tested the relationship

between predictors and conscious state using generalized LMMs

(GLMMs; MATLAB function fitglme) with the logit link function and

the formula:

CONSCIOUS�1þEEGþAGEþSEXþPC1þPC2þ 1jPATIENTð Þ
ð2Þ

where CONSCIOUS is a binary variable denoting the presence or

absence of consciousness. For each of the above LMMs and GLMMs,

we performed an F-test to evaluate the EEG term.

An alternative model that predicts GCS scores and conscious

state based on EEG spectral band power, rather than peak combina-

tions, was also assessed. Separate models were fit for the absolute

spectral power (unnormalized) and relative power (normalized by the

total 1–45 Hz power). Specifically, we fit LMMs with the formula

GCS�1þDELTAþTHETAþALPHAþBETAþAGEþSEXþPC1
þPC2þ 1jPATIENTð Þ

ð3Þ

where the following variables are log-scaled absolute or relative

integrated power (lower bounds are exclusive, upper bounds are

inclusive): DELTA, 1–4 Hz; THETA, 4–8 HZ; ALPHA, 8–12 Hz;

BETA, 12–35 Hz. We did not use gamma power as a predictor for

two reasons: (a) gamma power is confounded by difficult to remove

muscle artifacts that are likely to be correlated with GCS scores, and

(b) because we used logarithmically spaced Morlet wavelets, there

were only two frequency bins in the gamma range between 35 Hz

and the lowpass filter cutoff frequency at 45 Hz. Next, we used

GLMMs with the logit link function to predict conscious state with

the formula

CONSCIOUS�1þDELTAþTHETAþALPHAþBETAþAGEþSEX
þPC1þPC2þ 1jPATIENTð Þ

ð4Þ

For the second aim (i.e., relating multiple longitudinal EEG observa-

tions per patient to a single chronic outcome), we were unable to fit

LMMs or GLMMs because they are not compatible with an unbal-

anced design featuring dynamic/longitudinal predictors with a static

outcome variable. Rather than arbitrarily choosing one EEG timepoint

for each patient to create a balanced design, we utilized multiple linear

regression models with a resampling approach that randomly sampled

one EEG observation per patient with replacement for each of 9,999

resamples and constructed an empirical distribution of test statistics.

Resamples that yielded invalid combinations (i.e., a rank deficient

regression design matrix) were discarded and replaced with a new

sampling. We reported the results of the resample that yielded the

median t-statistic for the variables EEG, DELTA, THETA, ALPHA, or

BETA; for this reason, the number of resamples N was chosen as an

odd number such that the middle-most test statistic would be defined.

Our initial multiple linear regression model was specified as

GOSe¼ β0þβ1EEGþβ2AGEþβ3SEXþβ4PC1þβ5PC2þε ð5Þ

where GOSe is the chronic GOSe score. For alternative models using

spectral power as predictors, we used multiple linear regression

models with the formula

GOSe¼ β0þβ1DELTAþβ2THETAþβ3ALPHAþβ4BETAþβ5AGE
þβ6SEXþβ7PC1þβ8PC2þε

ð6Þ

Next, we compared GCS and GOSe scores between clusters identified

using k-means clustering. This clustering approach requires only one

EEG observation per patient. Because including all data from each

patient in our clustering would have biased clusters toward patients

with more observations, we once again utilized a resampling approach

with replacement using 9,999 resamples to include only one EEG

observation per patient per resample. Invalid resamples were dis-

carded and replaced as described above. For each random resampling,

we constructed a feature space using channel-averaged spectral

power across all frequency bins, applied PCA, retained the two PCs

that accounted for the highest proportion of variance, and identified

two clusters in PC space using k-means clustering. For consistent

labeling of clusters across resamples, we used one label for all clusters

that had a centroid with a PC1-coordinate ≥0 and another label for

those with a PC1-coordinate <0. We then performed multiple linear

regression using the model

SCORE¼ β0þβ1CLUSTERþβ2AGEþβ3SEXþβ4PC1þβ5PC2þ ε
ð7Þ

where SCORE is the behavioral measure (GCS, conscious state, or

GOSe) and CLUSTER is a binary variable denoting the patient's power

space cluster membership. For predicting conscious state (a binary

variable), we utilized logistic multiple regression. GCS scores were

selected corresponding to the day/time of each patient's randomly

resampled EEG observation. The resample yielding the median t-

statistic for CLUSTER was then selected for reporting. Note that this

resampling procedure was performed separately for GCS and GOSe.

Finally, to relate EEG to fMRI connectivity, we correlated the

mean proportion of channels with a θα peak with the z-scored fMRI

connectivity for each of four fMRI ROI pairings: thalamus-striatum,

striatum-globus pallidus, thalamus-prefrontal cortex (PFC), and

thalamus-posterior cingulate cortex (PCC). We used θα type rather

1810 FROHLICH ET AL.



than ABCD type due to the greater variance and weaker skew of the

former (see Section 3). Furthermore, to reduce the number of data

points at floor (i.e., all θα�) or ceiling (i.e., all θα+), we choose to exam-

ine the proportion of EEG channels with a θα peak, rather than the

modal (and thus binary yes/no) θα type of each EEG observation. To

derive noise-robust estimates for each patient, we averaged this pro-

portion across all EEG observations within 48 hr of fMRI acquisition.

Correlations were derived using the Pearson coefficient. We did not

include covariates in this analysis for two reasons: (a) EEG observa-

tions from both before and after fMRI acquisition were included, and

so temporal precedence of predictors could not always be established,

and (b) because EEG and fMRI are both intimately related measures of

brain activity, their relationship is not confounded by the same vari-

ables that were covaried for in other analyses. Outliers were identified

and excluded from correlation analysis using a threshold of three

scaled median absolute deviations from the median of either variable

(peak proportion or fMRI connectivity) using the MATLAB function

isoutlier with default parameters. To account for multiple testing, we

applied false discover rates (FDR, Benjamini-Hochberg) to correct p-

values (Benjamini & Hochberg, 1995).

In all models, we corrected for the four hypothesis tests outlined

in the introduction using a Bonferroni correction, yielding a test-wise

criterion of α = .0125 (for fMRI connectivity, this was performed in

addition to the FDR correction).

3 | RESULTS

Following preprocessing and quality control, we retained 320 EEG

observations across 38 patients (31 male) with ages ranging from

19 to 84 years (40 ± 17 years, mean ± SD). Patient demographics are

summarized in Table 2 and Figure S1. The number of usable EEG

observations per patient ranged from 1 to 16 (8.4 ± 4.3, mean ± SD),

with 1.8–30 min of usable data per observation (24 ± 7.2, mean ± SD).

Thus, despite our modest patient sample size, we analyzed an average

of 3.4 hr of data per patient.

EEG observations were associated with medications as follows:

opioids (75%), propofol (43%), benzodiazepines (38%), dissociatives

(28%), and barbiturates (16%). Following logistic PCA of medication

variables, two PCs explained the majority of variance in the presence/

absence of medications (66.9%). Each PC exhibited a positive weight

for only one medication variable: barbiturates (PC1) and dissociatives

(PC2) (Figure S2). PC1 and PC2 also featured strong negative weights

for propofol and benzodiazepines, respectively (Figure S2).

EEG observations were most commonly categorized as A-type

(71.6%), with those remaining categorized as B-type (15.0%), C-type

(1.88%), D-type (0.94%), or unclassifiable (10.6%). Separately, 30.9%

of observations exhibited a peak in the theta-alpha band in the major-

ity of channels (θα+). Distributions of GCS scores for each type are

described in Table 1 and Figure 2. See Figure 3 for examples of each

ABCD type and Figure S3 for behavioral trajectories and EEG vari-

ables for all patients.

3.1 | Thalamically-driven oscillations track
behavioral recovery

Given the very small proportion of EEG observations that were cate-

gorized as C-type or D-type, we opted to create a binary variable by

grouping types B, C, and D together, thus avoiding outlier effects. To

investigate ABCD type in relation to acute behavioral state, we used

an LMM with GCS as the dependent variable. We excluded four

patients from the model due to having fewer than three observations,

plus an additional patient with missing medication data, yielding

n = 33. We found that ABCD type (i.e., A vs. B, C, D) significantly

predicted GCS (p < 0.0001, F(1,268) = 17.0), with more progressive

states (B, C, D) associated with higher GCS scores (t = 4.13); see

Table S1 for F-statistics and p-values of the covariates and intercept

in this and other models). However, unclassifiable EEG observations,

which were omitted from the above model, were significantly more

likely to correspond with higher GCS scores than classifiable EEG

observations (t = �2.59) as revealed using an LMM with ABCD classi-

fiability (yes/no) as the EEG predictor (p = .010, F(1,296) = 6.71).

ABCD type also significantly predicted the presence/absence of

consciousness in patients, as inferred from GCS subscales (p = .0037,

F(1,268) = 8.57), with more progressive states (B, C, D) associated with

consciousness (t = 2.93); 120 out of 302 (39.7%) EEG observations

included in the GLMM corresponded to conscious states. ABCD types

of B or higher were rarely observed outside of conscious states, with

only 8.2% (15 out of 182) of unconscious states in the GLMM coincid-

ing with an ABCD type of B or higher.

Next, we fit the same models substituting θα type for ABCD type.

Similar to ABCD type, θα type was significantly predictive of both

GCS (p = <.0001, F(1,296) = 16.2) and conscious state (p = <.0001,

F(1,296) = 15.6), where θα + patients were more likely to have higher

GCS scores (t = 4.03) and to be conscious (t = 3.95). Adding θα type

as a predictor to the LMM fit using ABCD type only improved predic-

tion of GCS scores before adjusting our α level for the additional

hypotheses outlined in the introduction (p = .032, likelihood ratio

stat = 4.59); thus, a larger sample might demonstrate an added value

for including both predictors in the model. On the other hand, adding

ABCD type as a predictor to the GLMM fit using θα type unambigu-

ously improved prediction of conscious state (p <.0001, likelihood

ratio stat = 75.4).

As a benchmark to compare the above models against, we also

predicted GCS and conscious state using spectral power in the delta,

theta, alpha, and beta frequency bands. Absolute alpha (p = .0037,

F(1,293) = 8.56) and beta (p = 2.9 � 10�5, F(1,293) = 18.1) power signifi-

cantly predicted GCS, with lower alpha power (t = �2.93) and higher

beta power (4.25) corresponding to higher GCS scores after account-

ing for covariates. Note, however, that alpha power was positively

related to GCS in raw correlations that did not control for other pre-

dictors (absolute power, r = .29; relative power, r = .065). Adding

absolute alpha power to LMMs that predicted GCS using ABCD type

(p = .19, log likelihood stat = 1.70) or θα type (p = .23, log likelihood

stat = 1.41) did not significantly improve model fit in either case.
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However, adding absolute beta power to the LMM that predicted

GCS using θα type significantly improved model fit (p = .0028, likeli-

hood ratio stat = 8.93), and a trend level improvement was observed

when added to the LMM that predicted GCS using ABCD type

(p = .019, likelihood ratio stat = 5.52). Using relative power, we again

found that alpha (p = .0022, F(1,293) = 9.58) and beta (p = .0011,

F(1,293) = 10.9) power significantly related to lower and higher GCS

scores, respectively. Model fits were significantly improved when rela-

tive alpha power was added to LMMs predicting GCS (ABCD type:

p = 3.2 � 10�4; θα type: p = 5.1 � 10�5), but relative beta power did

not significantly improve model fits (ABCD type: p = .079, log likeli-

hood stat = 3.08; θα type: p = .32, log likelihood stat = 0.98).

Having examined spectral power as a predictor of GCS, we next

examined it as a predictor of conscious state using GLMMs. No abso-

lute power features significantly predicted conscious state, though we

observed a trend for beta power (p = .058, F(1,293) = 3.63), with higher

power corresponding to consciousness (t = 1.91); however, relative

delta power did significantly predict conscious state (p = .0069,

F(1,293) = 7.41), with lower power corresponding to consciousness

(t = �2.72). Nonetheless, adding relative delta power to GLMMs that

predicted conscious state from ABCD type or θα type did not improve

model fit (the original models lacking relative delta power featured

greater maximized log-likelihoods and thus no test was performed).

Next, we used multiple linear regression with resampling to inves-

tigate whether ABCD type predicts chronic outcomes as measured

with GOSe (again, types B, C, and D were grouped together to avoid

outlier effects). Four patients missing GOSe score were excluded and

four previously excluded patients with fewer than three EEG observa-

tions were reincluded here, see Table 2. The number of postinjury

days to follow up did not correlate with GOSe scores (r = .05, p = .76)

and thus was not considered to be a confound. For all hypotheses

tested, the median t-statistic across resamples stabilized after ~1,000

resamples (Figure S4), that is, well within the number of resamples we

performed (N = 9,999). ABCD type did not significantly predict GOSe

(p = .37, t = 0.92). We then substituted θα type for ABCD type in the

original multiple linear regression model and repeated the resampling

procedure. As with ABCD type, θα type did not significantly predict

GOSe (p = .52, t = 0.65). Neither absolute nor relative power in any

frequency band significantly predicted GOSe.

Finally, we used a data-driven clustering approach to determine

whether clusters based on EEG spectral power (unnormalized) would

predict GCS (n = 37) and/or GOSe (n = 33). Once again, we utilized

N = 9,999 resamples to choose randomly one EEG observation per

patient per resample. Two PCs were retained that, for all resamples,

explained at least 80% of the variance in spectral power (resamples

that did not explain this proportion of variance in the first two PCs

F IGURE 2 Surface plots and histograms of EEG types. Time is referenced to the earliest time with EEG for each patient (a,b). (a) Number of
EEG observations (height of surface plot) and ABCD type (color) across all patients as a function of time and GCS score. Note that low GCS
trajectories do not evolve beyond A-type. (b) Number of EEG observations (height of surface plot) and θα type (color) across all patients as a
function of time and GCS score. Note that low GCS trajectories do not evolve beyond θα�. (c) Histogram of GCS scores across all patients' EEG
observations color-coded by ABCD type. (d) Histogram of GCS scores across all patients' EEG observations color-coded by θα type
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were discarded and not counted toward N). K-means clustering was

used to identify clusters in PC space (see Figure 4). Each resample

yielded one cluster whose centroid had a positive PC1-coordinate and

one cluster whose centroid had a negative PC1-coordinate (Figure 4d),

and clusters were therefore labeled accordingly. Cluster labeling did

not significantly predict GCS (p = .11, t = 1.64), conscious state

(p = .32, t = 1.00), or GOSe (p = .68, t = 0.42). See Tables S2–S4 for

p-values, t-statistics, and F-statistics from resampled tests.

3.2 | Relating thalamically-driven oscillations to
mesocircuit recovery in a small sample

We identified 11 patients (seven male; age at injury: 20–59 years;

35 ± 15, mean ± SD) with usable fMRI data within 48 hr of at least

one EEG observation, including Patient 9 (Table 2) who was

excluded from prior analyses due to lack of medication data that

were not covaried for in the present analysis (see Section 2). For this

smaller cohort, we then examined the ABCD type of all EEG obser-

vations occurring within 48 hr of scanning. We determined that θα

type was more amenable to correlational analysis than ABCD type

(see Section 2), given that our samples were heavily skewed toward

the A-type, with 9 out of 11 patients showing only A-type or

unclassifiable EEG observations within this time window; by compar-

ison, θα type displayed a weaker skew and greater variance, with the

majority (6 out of 11) of patients exhibiting a mixture of both

θα + and θα- EEG observations (Table 3). We therefore correlated

the proportion of channels with a θα peak (peak proportion), aver-

aged across EEG observations within 48 hr of scanning, with fMRI

connectivity.

F IGURE 3 Examples of ABCD model types. Power spectral densities (PSDs) from each channel are color-coded according to their ABCD
type; unclassifiable channels are colored black. Peaks detected for classification are indicated with circles. Channels with a θα peak are dashed.
Shaded areas are colored according to frequency band. (a) A-type EEG corresponding to a GCS score of 3. All channels were categorized as A-
type, and peaks were only present in the delta band. (b) B-type EEG corresponding to a GCS score of 9. In total, one channel was categorized as
A-type, nine channels as B-type, two channels as C-type, and one channel as unclassifiable (due to the presence of a beta peak without an
accompanying theta or alpha peak). Eleven channels showed a θα peak. (c) C-type EEG corresponding to a GCS score of 7. In total, two channels
were categorized as C-type, and the remaining nine channels were uncategorizable. Seven channels showed θα peaks. (d) D-type EEG
corresponding to a GCS score of 14. In total, one channel was categorized as A-type, one channel as D-type, and the remaining nine channels
were uncategorizable. Because D-type is a more progressive type than A-type, the tie between A-type and D-type (one channel each) is broken
by D-type. Twelve channels showed a θα peak

FROHLICH ET AL. 1813



We found a trend relating peak proportion to fMRI connectivity

between thalamus and PFC (r = .68, Pearson coefficient, p = .08, FDR

corrected). Trend-level relationships were also observed between

peak proportion and thalamo-striatal (r = .63, p = .10, FDR corrected)

and striatal-pallidal BOLD signal coupling (r = .59, p = .10, FDR

corrected). No relationship was observed between peak proportion

and BOLD signal coupling between thalamus and PCC (r = .01,

p = .97, FDR corrected). See Figure 5 for scatter plots and correla-

tions. To ensure that these correlations were not overly sensitive to

the 48-hr time limit used to select EEG observations, we also per-

formed a sensitivity analysis and computed Pearson coefficients for

time windows ranging 6–72 hr in length. Correlations appeared stable

and maximized usable data when EEG observations were included

within 13–51 hr of fMRI scanning (Figure S5). Thus, our 48-hr time

limit appears to maximize the amount of available data without includ-

ing EEG observations outside of the observed window of stability.

4 | DISCUSSION

Here, we have shown that EEG oscillations emerge as patients

recover consciousness following TBI. Our findings build on previous

work describing the ABCD model in largely anoxic patients by demon-

strating that the model correlates with behavioral responsiveness

(as measured by the total score of the GCS indicating recovery from

TBI) and consciousness (as measured by specific scores on the sub-

scales of the GCS) in TBI and outperforms categorization based on

data-driven clusters. When considering spectral power features that

F IGURE 4 Principal component weights and clusters from resampling. Most patients (36/38, 94.7%) had multiple usable EEG observation
(Table 2, mean number of EEG observations per patient = 8.4). We therefore used resampling (N = 9,999 resamples) to draw one EEG
observation per patient for clustering in principal components (PC) space (so that clusters are not weighted more heavily toward patients with
more observations). For each model, the resample yielding the median t-statistic was selected. (a) PCA weights yielded from the median resample

for each model. PCA was performed on channel-averaged and log-scaled EEG power spectra to cluster patients in PC space. For each model
(predicting Glasgow Outcome Scale extended/GOSe, Glasgow Coma Scale/GCS or conscious state), the first PC reflected the overall EEG power
(i.e., a roughly equal weighing of power across all frequencies; variance explained: 75.4%, GCS and 74.9%, GOSe) and the second PC reflected
power at high frequencies (variance explained: 15.2%, both models). (b) PC space clusters and cluster centroids for each model. For all models,
clusters were separated along the first PC, with the second PC accounting for most within-cluster variance. Cluster membership was then entered
as a predictor into regression models. (c) PCA weights shown for all 9,999 resamples. (d) PC space cluster centroids shown for all 9,999 resamples
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TABLE 3 EEG observations included in correlations with fMRI connectivity

ID

Age at injury

(years) GCS Sex Modal ABCD-type Modal θα type Type proportion Peak proportion

EEG time

post-fMRI (hr)

2 20 7 Female A FALSE 0.077 0.077 7.3

2 20 4 Female A FALSE 0.385 0.462 �12.7

2 20 7 Female A FALSE 0.000 0.000 19.3

6 22 10 Male Unclassifiable TRUE 0.000 1.000 �9.6

8 23 5 Female A FALSE 0.000 0.000 3.6

8 23 3 Female A FALSE 0.000 0.000 15.6

8 23 3 Female A FALSE 0.000 0.000 �16.5

8 23 3 Female A FALSE 0.000 0.000 27.6

8 23 3 Female A FALSE 0.000 0.000 �28.5

8 23 6 Female Unclassifiable TRUE 0.000 1.000 �40.5

8 23 4 Female A FALSE 0.000 0.000 43.3

9 23 3 Female A FALSE 0.000 0.000 34.1

10 25 3 Male A FALSE 0.000 0.231 8.0

10 25 3 Male A FALSE 0.000 0.077 �9.8

10 25 3 Male A FALSE 0.000 0.000 20.2

10 25 3 Male Unclassifiable TRUE 0.000 1.000 �21.8

10 25 3 Male A FALSE 0.000 0.000 34.2

14 31 3 Male A FALSE 0.000 0.000 4.6

14 31 3 Male A FALSE 0.000 0.000 �7.4

14 31 3 Male A FALSE 0.000 0.000 16.6

14 31 3 Male A FALSE 0.000 0.000 �35.4

14 31 3 Male A FALSE 0.000 0.000 42.6

14 31 3 Male A FALSE 0.231 0.231 �47.4

18 33 6 Male A FALSE 0.000 0.462 �2.0

18 33 6 Male A TRUE 0.000 0.769 �14.0

18 33 6 Male A FALSE 0.000 0.000 14.0

18 33 6 Male A FALSE 0.000 0.000 28.0

18 33 4 Male A FALSE 0.000 0.000 40.0

21 39 6 Male B TRUE 0.077 1.000 �8.9

21 39 6 Male B FALSE 0.462 0.462 19.1

21 39 6 Male B TRUE 0.154 1.000 �20.9

21 39 7 Male A TRUE 0.000 0.846 �36.9

30 55 5 Female A FALSE 0.000 0.000 6.3

30 55 5 Female A FALSE 0.000 0.000 20.3

30 55 8 Female A FALSE 0.000 0.000 36.3

31 57 7 Male A FALSE 0.000 0.000 6.9

31 57 7 Male B TRUE 0.615 0.769 �11.6

31 57 8 Male A FALSE 0.000 0.000 18.9

31 57 10 Male A FALSE 0.000 0.154 34.9

33 59 6 Male A TRUE 0.000 0.846 2.7

33 59 5 Male A TRUE 0.000 0.846 �10.3

33 59 7 Male A FALSE 0.000 0.077 21.7

33 59 6 Male A TRUE 0.000 0.846 �22.3

33 59 7 Male A FALSE 0.077 0.308 37.2

Note: Forty-four EEG observations from 11 patients were included in the correlation of EEG with fMRI connectivity measures. EEG observations were considered if

they fell within 48 hr of MRI. Type proportion gives the proportion of EEG channels with a type progressed beyond the A-type (B, C, or D). Peak proportion gives

the proportion of EEG channels with a θα peak. EEG time post-fMRI gives the number of hours before that the EEG observation took place after the patient's MRI

scan (negative values indicate that the EEG observation preceded the MRI scan). Given the more favorable statistics of peak proportion (less skew and greater

variance), this measure was correlated with fMRI connectivity (Figure 5) after averaging across all available observations.
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also predict these variables, only relative alpha power significantly

improves model fit when added as a predictor alongside ABCD type.

Given its ability to predict conscious state, the ABCD model may have

applications as a diagnostic biomarker, for example, to detect

instances of covert consciousness (Huang et al., 2018; Monti

et al., 2010) in patients lacking behavioral responsiveness. However,

our findings suggest that, in acute patients, more progressive types

(C and D) are rare, as patients may generally achieve this level of

recovery after leaving the ICU. Accordingly, a more parsimonious cat-

egorization of EEG type based on the presence or absence of θα (4–

12 Hz) peaks may be equally useful, as it concentrates specifically on

thalamically-entrained cortical rhythms that form the core of the

ABCD model (see Table 1). Furthermore, this approach has several

practical advantages over the ABCD model: (a) all usable data are clas-

sifiable, (b) one classification will capture the majority of channels for

all EEGs with an odd number of channels, and (c) because all data are

classifiable, this approach does not introduce the sampling bias that

occurs using the ABCD model. Finally, our study is the first to offer

provisional evidence of the relationship between EEG and mesocircuit

recovery, as measured with fMRI connectivity. Importantly, as

predicted by the mesocircuit hypothesis, which emphasizes central

thalamic projections to frontal cortex (Schiff, 2016), we found a stron-

ger relationship between θα peak proportion and coupling between

thalamus and PFC, versus coupling between thalamus and PCC.

4.1 | EEG oscillations as a readout of mesocircuit
recovery

The mesocircuit model explains postinjury forebrain dysfunction in

terms of inactive striatal medium spiny neurons (MSNs; Schiff, 2010,

2016). MSN firing rates may be particularly sensitive to diffuse injury,

as they require high levels of both dopaminergic neuromodulation and

spontaneous background corticostriatal and thalamostriatal synaptic

F IGURE 5 Correlations of EEG (proportion of channels with θα peak or “peak proportion”) with fMRI connectivity. Peak proportion was
averaged across all usable EEG observations within 48 hr of MRI. Data points are sized proportionally to the number of averaged EEG
observations and colored according to the mean hours elapsed between EEG and MRI (absolute value, warmer colors indicate greater mean time
elapsed). Outliers (>3 scaled median absolute deviations from the median of either variable) are indicted with red circles around data points and
were excluded from analysis. Dotted black lines represent the least-squares linear fit for included data points. We corrected for testing across
four region of interest (ROI) pairings using false discovery rates (FDR). Correlations are reported as Pearson coefficients. (a) Peak proportion
versus z-scored thalamo-striatal connectivity: r = .63, p = .10, FDR corrected (uncorrected: p = .07). Note the presence of two excluded outliers.
(b) Peak proportion versus z-scored striatal-pallidal connectivity: r = .59, p = .10, FDR corrected (uncorrected: p = .07). Note the presence of one
excluded outlier. (c) Peak proportion versus z-scored thalamo-prefrontal cortical (PFC) connectivity: r = .68, p = .08, FDR corrected (uncorrected:
p = .02). (d) Peak proportion versus z-scored thalamo-posterior cingulate cortical (PCC) connectivity: r = .01, p = .97, FDR corrected
(uncorrected: p = .97). Note the presence of two excluded outliers
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input to reach firing threshold (Grillner, Hellgren, Menard, Saitoh, &

Wikström, 2005). When these necessary conditions are disrupted by

diffuse, multifocal brain-injury, GABAergic MSNs go offline, and the

GPi is released from striatal inhibition (Schiff, 2010). As a result, GPi

powerfully inhibits central thalamus, leading to functional

deafferentation of cortex (Figure S6). Furthermore, the striatum

receives weaker cortical and thalamic drive as a result of GPi inhibiting

thalamus, leading to a positive feedback loop in which GPi is further

disinhibited and central thalamus further inhibited.

As originally proposed by Schiff, the ABCD model is a readout of

mesocircuit recovery, with thalamically-driven EEG oscillations indi-

cating progressive levels of thalamocortical integrity (Schiff, 2016).

Consistent with this hypothesis, we found that ABCD type predicts

conscious state, suggesting clinical application as a diagnostic bio-

marker in DOC. Because frontal cortical areas receive denser projec-

tions from central thalamus than other cortical areas (Deschenes,

Bourassa, & Parent, 1996; Morel, Liu, Wannier, Jeanmonod, &

Rouiller, 2005), frontal cortex is proposed to be disproportionately

affected by mesocircuit dysfunction (Schiff, 2010, 2016). Accordingly,

we found that the proportion of EEG channels displaying a θα peak is

correlated with thalamo-prefrontal connectivity (r = .68), but not with

thalamo-posterior cingulate connectivity (r = .01), in a small subsam-

ple of patients. Although neither relationship was significant after cor-

recting for multiple comparisons, the former correlation appears

promising and therefore warrants further investigation in larger sam-

ples. Furthermore, we also observed provisional, trend-level evidence

relating EEG peak proportion to subcortical mesocircuit connections

(thalamo-striatal and striatal-pallidal connectivity). Taken together, our

findings in this small subset of patients are a promising, albeit incon-

clusive, indicator that EEG oscillations in the 4–12 Hz range may be

reflective of mesocircuit recovery.

4.2 | Improving the ABCD model

While alternative models that predicted acute variables based on

spectral power—used as benchmarks for the ABCD model—found that

both absolute and relative alpha and beta power predicted GCS and

that relative delta power predicted conscious state, only relative alpha

power significantly improved the fit of any model with ABCD type as

a predictor, as determined using log likelihood ratio tests. Adding

absolute beta power, rather than relative alpha power, to the same

model resulted in a trend-level improvement, but significantly

improved model fit in the same LMM with θα type substituted for

ABCD type. These results suggest that incorporating both information

regarding peaks in frequency bands and the area under the curve in

one or more frequency bands might improve the utility of the ABCD

model as a diagnostic biomarker in DOC. Surprisingly, we found that

even though the presence of alpha peaks in the ABCD model was

associated with higher GCS scores, alpha power itself was associated

with lower GCS scores in our models, though only after accounting

for beta power and other covariates, as the raw correlation between

alpha power and GCS was positive for both absolute and relative

power when not controlling for other predictors. This multifaceted

relationship between alpha oscillations and behavioral recovery

underscores the potential importance of considering both oscillatory

power and peaks.

Furthermore, as the resonant frequency of alpha oscillations

changes with development and aging (Chiang, Rennie, Robinson, Van

Albada, & Kerr, 2011; Donoghue et al., 2020), the area under the

curve in the alpha frequency range might be more sensitive to alpha

activity than the presence or absence of a local maximum in the alpha

range. For example, consider a slow 7 Hz posterior alpha rhythm peak

that would still “leak” energy into the flanking 8–12 Hz band. Addi-

tionally, alpha and other oscillations could perhaps be more reliably

detected in the ABCD model using the FOOOF (fitting oscillations

and one-over f) algorithm recently introduced by Donoghue

et al. (2020) for identifying EEG oscillations in a data-driven manner.

Finally, given that delta oscillations are widely regarded as indica-

tors of cortical down states and unconsciousness (Buzsaki, 2006;

Koch, Massimini, Boly, & Tononi, 2016; Massimini, Ferrarelli, Sara-

sso, & Tononi, 2012), one might be surprised by our finding that rela-

tive delta power, while predictive of conscious state, did not improve

the fit of any peak-based model, especially given that these models

did not already consider any peaks <4 Hz. While delta oscillations are

clearly seen in states of unconsciousness including the slow wave

sleep (Brown, Lydic, & Schiff, 2010; Franks, 2008; Murphy

et al., 2011), anesthesia (Franks, 2008; Murphy et al., 2011; Purdon

et al., 2013; Supp, Siegel, Hipp, & Engel, 2011), and DOC (Hussain

et al., 2019; Kaplan, 2004; Sutter & Kaplan, 2012) including coma and

the vegetative state (Sutter & Kaplan, 2012), high amplitude delta

oscillations can nonetheless be observed in a variety of circumstances

in which individuals are fully conscious and responsive, such as Angel-

man syndrome (Frohlich et al., 2020); for a comprehensive review of

this and other cases, see Frohlich, Toker, and Monti (2021). Based on

these other findings and our results herein, the consideration of

parameters in the delta band may not be necessary for improving the

ABCD model.

Although the ABCD model outperformed a data-driven clustering

approach based on PCA and K-means clustering, it is possible that fur-

ther refinement of the clustering model or a more sophisticated

unsupervised learning approach could yield competitive results. Fur-

thermore, while the clustering approach assigned all EEG observations

to a cluster, the ABCD model was unable to classify some EEG obser-

vations, resulting in a sampling bias revealed in our study using an

LMM, where EEG observations corresponding to higher GCS scores

were less likely to be classified. This is likely due to the fact that in

conscious states, there are a greater number of “illegal” peak combi-

nations that cannot be classified (e.g., a beta peak without any accom-

panying theta or alpha peak). This bias can be addressed by replacing

ABCD type with θα type, which allows all EEG observations to be

classified.

We also observed that dynamic regimes from the ABCD model

reflecting high levels of thalamocortical integrity (C and D types) were

rare in acute patients. This is perhaps unsurprising, as more recovered

patients would exhibit C and D types, but they are typically moved
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from the ICU to less intense care and, thus, not part of our acute sam-

ple. We must therefore consider whether circuit-level recovery pre-

cedes behavioral recovery early enough to be useful for predicting

outcomes, as an ideal biomarker should predict a patient's pending

recovery before the patient is moved out of the ICU. It is possible that

the mere reemergence of theta oscillations (B-type), prior to that of

other oscillations, already heralds recovery. However, we did not

observe a predictive relationship between ABCD type (after grouping

types B, C, and D together to avoid outlier effects) and chronic out-

comes as measured with GOSe. This might be due to the differing

sensitivities of the GCS and GOSe assessments, where the former is

better suited for detecting the presence/absence of consciousness,

whereas the latter is better suited for detecting recovery of daily liv-

ing skills. Because ABCD types of B or higher were rarely observed in

conscious states, ABCD type relates very closely to GCS but less well

to GOSe. It is possible that had our sample included more instances of

C-types and D-types, which might relate to recovery of daily living

skills, a relationship with GOSe would have also been detected.

Finally, the mean GCS score corresponding to EEG observations

that were categorized as C-type or D-type did not exceed that of

those categorized as B-type (Table 1, Figure 2c), suggesting that C-

type and D-type do not indicate progressive recovery beyond B-type.

However, given the small number of EEG observations that were cat-

egorized as C-type or D-type, it is possible that we did not have suffi-

cient data to observe the progressive hierarchy predicted by the

ABCD model. GCS ranges for A-type (GCS = 3–15) and B-type

(GCS = 4–15) were both broad, suggesting low specificity. A-type

was observed at ceiling (GCS = 15), though conversely, B-type was

never observed at floor (GCS = 3). Given these data, EEGs that have

progressed beyond A-type likely indicate that patients have already

begun recovering behavioral responsiveness.

Besides relating EEG to behavioral data, an important aim of our

study was to validate an automated procedure for categorizing EEG

observations according to ABCD type using quantitative objective

criteria. We found that our automated EEG classification cor-

responded significantly with contemporaneous behavior, suggesting

that the ABCD model can be implemented computationally, without

the need for manual scoring. However, we found that 10.6% of EEG

observations could not be classified according to the ABCD model

due to peak combination that are not defined by the model. Addition-

ally, since each EEG channel had five possible classifications (A, B,

C, D, or unclassifiable), one classification did not capture the majority

of EEG channels in all instances. The foregoing issues are solved using

a more parsimonious classification between two types, θα- and θα+,

with one type capturing the majority of EEG channels in all instances.

We found that classification based on θα type performed equally well

as ABCD classification in predicting GCS (both were strongly predic-

tive) and GOSe (neither was predictive). The main advantage of the

ABCD model was in improving prediction of conscious state when

added to the GLMM with θα type as a predictor. Our findings suggest

that the ABCD model performs similarly to a parsimonious and com-

putationally simpler categorization scheme that infers thalamocortical

integrity based on the presence of theta and/or alpha EEG oscillations

in acute TBI patients.

4.3 | Limitations and future directions

Our study has a number of methodological limitations: (a) Because

EEG data were collected in a clinical setting, EEG channel placement

was variable and the number of channels common to all patients was

low. This precluded the use of EEG source localization or spatial filter-

ing (e.g., surface Laplacian) in our analysis. Furthermore, although

patients with more progressive EEG types (C and D) were largely

absent from our study due to the fact that EEG data were only col-

lected in the ICU, we believe that our findings have greater translat-

ability since the need for diagnostic and prognostic biomarkers is

most prevalent in the acute stage. (b) Despite collecting a large

amount of EEG data (multiple days) from each patient, our patient

sample size was relatively small (38 patients analyzed total, 33 patients

in the main analysis), and so caution should be used in generalizing

these findings to larger patient populations. (c) Patients were adminis-

tered a large number of different medications, the influences of which

could not be entirely controlled in our study. However, by utilizing

logistic PCA, we covaried for two PCs that explained roughly two

thirds of the variance in medication data. (d) The GOSe, our measure

of chronic (~6 month) outcome, was conducted in some cases as a

phone interview and thus an indirect assessment. The indirect nature

of the assessment may have added substantial noise that could reduce

correlations with EEG measures, possibly explaining our absence of

findings when relating EEG to GOSe. (e) Our k-means clustering

approach to predicting GCS did not perfectly mirror that based on

EEG spectral peak classification (ABCD type or θα type), as the latter

approach utilized LMMs and thus discarded four patients with insuffi-

cient longitudinal data who were included in the former approach.

However, we believe that our results unambiguously show no rela-

tionship between data-driven clusters and GCS; thus, the asymmetry

in our two analyses is likely inconsequential, though we acknowledge

that a more sophisticated or better developed clustering or

unsupervised learning approach could perhaps yield competitive

results. (f) Our correlation of EEG with fMRI measures was limited by

the fact that many patients were not scanned until leaving the ICU, at

which point EEG was no longer acquired. Thus, only 11 patients had

at least one EEG observation within 48 hr of fMRI. We were therefore

likely underpowered to detect significant relationships between neu-

ral oscillations (EEG) and mesocircuit integrity (fMRI). However, after

removing outliers that would easily influence our small sample, we

observed statistical trends.

Two future directions are strongly encouraged by our results.

Firstly, given the paucity of C and D types found in our data from

acute patients in the ICU, future work should apply our automated

peak fitting approach to data from patients moved to less intensive

care, for whom more progressive types (C and D) may be observed.

Such an investigation might be more successful in relating ABCD type

to long-term outcome, given the potentially larger spread in ABCD

type after sampling more recovered patients. This sample might also

help determine if a more parsimonious approach based on θα type is

indeed preferable over the ABCD model, even when patients are

more likely to exhibit a large spread in ABCD types. Secondly, we

advocate for further work relating the proportion of EEG channels
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displaying θα peaks to mesocircuit functional connectivity in larger

samples. Given the large correlation we observed between EEG peak

proportion and thalamo-prefrontal connectivity (r = .68), only three

additional patients (n = 14) are needed to achieve >80% statistical

power. Thus, even moderately larger samples may be beneficial in

detecting significant correlations. Additionally, dynamic causal model-

ing (Friston, Harrison, & Penny, 2003) applied to larger datasets may

be useful for inferring the directionality of interactions between mes-

ocircuit nodes, for example, to show that EEG peak proportion corre-

lates with increased thalamic drive to cortex or decreased pallidal

inhibition of central thalamus.

5 | CONCLUSIONS

Noninvasive readouts of mesocircuit recovery are desirable for diag-

nosing DOC in TBI patients. Because circuit-level recovery should

precede behavioral recovery, such a readout may also be more useful

than behavioral scales (e.g., GCS) in predicting which patients will

recover consciousness. Our findings show that the reemergence of

neural oscillations tracks recovery in acute TBI patients, as relevant

EEG measures correspond strongly and significantly with behavioral

responsiveness and conscious state in the ICU while also exhibiting a

trend of greater spatial extent (i.e., peak proportion) with increasing

thalamocortical connectivity. These results suggest that thalamically-

driven EEG oscillations may serve as diagnostic biomarkers in TBI and

DOC, although the failure to detect a relationship between EEG and

chronic outcome in our patient cohort may be only due to the low

occurrences of C and D types in our sample, and thus, may still have

prognostic value when investigated at a less acute timepoint.
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