
Deracemization of Atropisomeric Biaryls Enabled by Copper
Catalysis
Jie Zhang,§ Kun Wang,§ and Can Zhu*

Cite This: JACS Au 2024, 4, 502−511 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Atropisomeric biaryls have found crucial applica-
tions in versatile chiral catalysts as well as in ligands for transition
metals. Herein, we have developed an efficient crystallization-
induced deracemization (CID) method to access chiral biaryls
from their racemates with a chiral ammonium salt under copper
catalysis including BINOL, NOBIN, and BINAM derivatives. After
being significantly accelerated by its bidentate diamine ligand, the
copper catalyst exhibits high efficiency and selectivity in racemizing
biaryl skeletons, and the cocrystal complex would be enantiose-
lectively formed together with chiral ammonium salt, which on
acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable,
and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable
element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation
by forming a delocalized radical.
KEYWORDS: deracemization, racemization, copper, atropisomeric biaryls, crystallization

■ INTRODUCTION
Crystallization-based chiral resolution processes are industrially
widespread, given the fact that they are practically scalable,
easy to handle, and generally column-free to give high
enantioselectivity.1 Consequently, in the resolution process,
one enantiomer was crystallized with an appropriate chiral
auxiliary through selective host−guest molecular recognition,
while the other remains in the mother liquid, thus, resulting in
a theoretical yield limited to 50%. In combination with the
resolution process, crystallization-induced deracemization
(CID)2 relies on the chirality inversion, under which one
enantiomer of the substrate is able to undergo the continuous
isomerization to the other enantiomer in the solution.3

Therefore, CID would directly produce the corresponding
single enantiomer through molecular complexation from its
racemate, with a theoretical yield of 100%. The key solution is
to find an efficient and compatible catalyst to efficiently
racemize chiral substrates for CID development. Currently, the
CID strategy has been successfully used to access chiral
carbonyl compounds and amines, in which stereochemical
center of α-carbonyls was inversed via base-promoted
racemization, and α-amine chirality was flipped via a Schiff
base intermediate (Scheme 1a,b).2

On the other hand, axially chiral biaryls, featuring the
hindered axial rotation around the aryl−aryl bond, are highly
important structural motifs in natural products,4 pharmaceut-
icals,5 privileged chiral ligands,6 and organocatalysts7 (Scheme
1c). Mastigophorenes A and B, a class of active natural

products isolated from the Boruneo liverwort Mastigophora
diclados, contain unique axially chiral herbertane-type
sesquiterpene dimers.8 These compounds have shown
potential application prospects for the treatment of neuro-
degenerative diseases such as Alzheimer’s and Parkinson’s
disease.9 (+)−Isokotanin A, isolated from the sclerotia of
Aspergillus alliaceus, also includes the unit of axially chiral 2,2′-
dihydroxy-1,1′-biaryl.10 Standing as the most representative
structure with axial chirality, 2,2′-binaphthol (BINOL) and its
derivatives,11 as well as NOBINs and BINAMs, have attracted
particular interest due to their wide applications in asymmetric
catalysis.12 From these basic axially chiral skeletons, diversified
chiral organocatalysts and metal ligands could be easily
accessible.13 Up to today, many protocols have been developed
to access the enantiopure form of axially chiral biaryls
including chiral resolution,14 asymmetric coupling reactions,15

enzymatic hydrolysis/esterification,16 and central-to-axial chir-
ality transformations.17 Among these methods, crystallization-
based chiral resolution can be achieved to produce chiral
BINOLs in a practical and scalable way (Scheme 1b).18

Targeting the CID of atropisomeric biaryls, the key solution
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would be the development of efficient and compatible
racemization catalysis. To the best of our knowledge, CID of
atropisomeric biaryls, including BINOL, NOBIN, and BINAM
derivatives, is still unexplored. Herein, we report the first
example of efficient CID of BINOLs under the catalysis of
copper in the presence of a chiral ammonium salt (Scheme
1d). With these combined protocols, a one-pot approach to
chiral BINOLs from their 2-naphthol analogues was equally
realized.

■ RESULTS
Although previous work has shown that, in the presence of
stoichiometric amounts of copper and chiral amine, one
enantiomer of BINOL can be eventually transformed to the
other via axial rotation by forming a ternary complex,19,20

catalytic racemization for CID system is still undeveloped, and
is greatly challenging due to the potential formation of a stable
complex with BINOL substrate, which exterminates its

catalytic activity.20 Based on the concept of catalytic
racemization of BINOLs, we started to investigate the activity
of complexes based on 3d transition metals, given the fact they
are generally earth-abundant, inexpensive, and of low toxicity
(Scheme 2a).21 When the reaction was performed with (R)-
BINOL (>99% ee) under the catalysis of metal chloride in
toluene at 40 °C, racemization of chiral BINOL was ultimately
observed only in the presence of FeCl3 or CuCl. Under the
catalysis of FeCl3, BINOL was recovered with 51% ee. In
contrast, slower racemization was accomplished with CuCl, as
shown by the detected enantiomeric excess of 96%.
Surprisingly, FeCl2 and CuCl2 showed no activity toward
chiral BINOL.
With these results in hand, we turned to introducing ligands

to accelerate the racemization step, given the fact that a
suitable ligand can significantly change the electronic property
of the central metal (Scheme 2b). A collection of nitrogen-
containing bidentate ligands was studied together with the

Scheme 1. CID of Atropisomeric Biaryls. X, Y = O or NH
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catalyst of FeCl3 or CuCl. Interestingly, the coordination of a
N,N-bidentate ligand to FeCl3 tends to block its activity, as a
retarded racemization process is observed in all tested cases. In
the system of copper chloride, many ligands performed with
negative influence as well, e.g., guanidine derivatives (L1 and
L2), 1,3-phenylenediamine (L3), bipyridines (L4 and L5), and
1,10-phen (L6). We further turned to aliphatic diamines as the
ligand in copper catalysis to enhance its reactivity. To our
surprise, complete racemization was achieved from chiral
BINOL in 50 min with CuCl and the ligand L7, which bears
two tBu groups, revealing the high efficiency of the catalytic
system. It is noteworthy to mention that diamine ligand L8,

where two methyl groups replace the two tBu groups in L7,
shows completely no activity in racemizing chiral BINOL.
These observations indicate the necessity of bulky substituents
in the diamine ligand. Therefore, L7 was defined as the optimal
ligand for further study.
Compatibility of racemization catalysis with chiral resolution

is a great test for CID development. Crystallization-based
chiral resolution can be achieved to produce chiral BINOLs via
selective supramolecular recognition with chiral ammonium
salts. Therefore, we turned to investigating the compatibility of
this copper catalysis with chiral resolution triggered by chiral
ammonium salt. First, we started to evaluate the performance

Scheme 2. Optimization of Racemization Catalysts using (R)-BINOL
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of the chiral ammonium salt. In the presence of N-
benzylcinchonidinium chloride (2a), cocrystal 2a•(R)-1a was
kinetically precipitated in 47% yield, and 98% ee of (R)-1a was
obtained after quenching the cocrystal with HCl. Meanwhile
the residual (S)-1a with 94% ee remains in the solution (Table
1, Entry 1). In combination with the chiral resolution process,
racemization catalysis was then utilized based on the studies in
Scheme 2b. We are delighted to see that the cooperative
system works nicely in one pot, leading to cocrystal 2a•(R)-1a
in 75% yield with CuCl and L7, which further delivers 98% ee
of (R)-1a via acid quenching (Table 1, Entry 2). Neither CuCl
nor the ligand (L7) could be absent from the reaction (Table
1, Entries 3,4). The reaction led to a lower yield by replacing
CuCl/L7 with [Cu(OH)Cl•TMEDA]2, where the detected
(S)-1a with 66% ee in the solution suggests that the
racemization step is still not fast enough with [Cu(OH)-
Cl•TMEDA]2 (Table 1, Entry 5). Previous report by Akai et
al. has shown catalytic activity of Bac̈kvall’s Ru complex [Ru]-1
toward the racemization of BINOLs,16g however, [Ru]-1 failed
to promote such CID together with chiral ammonium salt 2a
(Table 1, Entry 6). Other chiral ammonium salts were also
investigated, and no precipitate could be formed with 2b−d
(Table 1, Entries 7−9). Finally, a further detailed survey of
solvents suggested that DCM was the best for the CID system
(Table 1, Entries 10−12). Inspiringly, the isolated yield of the
cocrystal 2a•(R)-1a was further improved to 88% by scaling
up the reaction to 0.5 mmol level (Table 1, Entry 13).
Therefore, CuCl (5 mol %) and L7 (5 mol %), together with
the chiral ammonium salts 2a (1.2 equiv) at room temperature

under open air, were defined as the optimized reaction
conditions for additional study.
Cocrystal of 2a•(R)-1a could be easily decomposed through

acidification to release (R)-1a in 86% yield from rac-1a. Under
the optimized CID conditions, C2-symmetric 2,2′-binaphthols
bearing two methyl, ethyl, chloro, bromo, or methoxyl
substituents at 6- and 6′-positions were successfully derace-
mized in the presence of 2a under copper catalysis, thus
optically active products (R)-1b, (R)-1c, (R)-1d, (R)-1e, and
(R)-1f in 81−99% yields and excellent ees (95−99%) (Scheme
3). The applicability of this method to C1-symmetric 2,2′-
binaphthols has been demonstrated, although racemization
became slightly slower with functional groups, such as bromo
or methoxy groups at 7-positions, probably due to the increase
of steric hindrance during axial rotation. (R)-1g and (R)-1h
were produced with excellent enantioselectivity after HCl-
quenching without further chromatography purification.
Substituents at 6-position on one naphthene ring were found
to be nicely tolerated, e.g., (R)-1i and (R)-1j could also be
obtained in 93% and 83% yield, with 97% and 99% ee,
respectively. Functional groups in monosubstituted BINOLs
could be extended to Cl, Br, CO2Me, CHO, and OMe.
Introducing a bromo group at one 3-position led to a decrease
of enantioselectivity in (R)-1p, due to the fact that
crystallization of rac-BINOL 1p with ammonium salt 2a was
not efficient via molecular recognition; therefore, relatively
lower yield and selectivity were obtained simultaneously. To
our delight, rac-BINOL 1q with two different groups at 6- and
6′-positions also reacted smoothly. Substitution of bromo at
the 4-position failed to undergo CID, which is inactive in the

Table 1. Screening of the Reaction Conditionsa

entry deviations yield of the cocrystal (%)b ee of 1a from the cocrystal (%)c,d ee of 1a in the solution (%)c

1 no CuCl, no L7 47 98, (R) 94, (S)
2 none 75 98, (R) <1
3 no CuCl 45 99, (R) 95, (S)
4 no L7 43 99, (R) 94, (S)
5e [Cu(OH)Cl•TMEDA]2 74 97, (R) 66, (S)
6f [Ru]-1 instead of CuCl/L7 52 99, (R) 95, (S)
7 2b instead of 2a N. P. - -
8 2c instead of 2a N. P. - -
9 2d instead of 2a N. P. - -
10 MeCN:DCM = 1:1 73 94, (R) <1
11 DCE 37 92, (R) <1
12 MeOH 67 86, (R) 30, (S)
13 0.5 mmol scale 88 98, (R) <1

aThe reaction was conducted at room temperature (rt) in solvent (1 mL) with rac-1a (0.1 mmol), 2a (1.2 equiv) in the presence of CuCl (5 mol
%), and ligand (L7) (5 mol %). bIsolated yield. cEnantiomeric excess (ee) was determined by chiral HPLC. dThe ee value of (R)-1a was tested after
quenching the cocrystal of 2a•(R)-1a with HCl (aq., 1 M). e[Cu(OH)Cl•TMEDA]2 (2.5 mol %) was used. fKOtBu (10 mol %) was added. N. P.
= no precipitation.
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cocrystallization process with 2a. It is noteworthy to mention
that CID is not only applicable to BINOL derivatives but also
works for NOBIN and BINAM, where (R)-1s and (R)-1t were,
respectively, released from cocrystals in 71% and 61% yield,
with excellent ees (≥98%). Finally, by using ammonium salt
2d, the CID of rac-1a was successfully realized to provide the
other enantiomer, (S)-1a, in 72% yield, with 97% ee (for
details, see the Supporting Information).
The preparation of chiral products on a large scale with

convenient operations is the focus of industrial production.
Based on this concern, CID of rac-1e on a 5-g scale was
conducted to deliver chiral (R)-1e in 84% yield, with 97% ee
without any chromatography purification, with chiral ammo-
nium salt 2a recovered in 92% yield via simple extraction,

which could be reused in a new CID process (Scheme 4a; for
details, see the Supporting Information). Moreover, since
racemic BINOL was also obtained via the oxidative coupling of
2-naphthol under copper catalysis, this catalytic procedure
might be extended with 2-naphthol as the starting material.
Under the standard conditions, (R)-1a and (R)-1e could be
easily generated in 71% yield from 2-naphthol 3a, and 68%
yield from 2-naphthol 3e respectively, with excellent
enantioselectivity in both reactions. Copper catalyst not only
works for the oxidative coupling to deliver racemic BINOLs,
but also takes responsibility for the dynamic racemization in
CID transformations (Scheme 4b). Furthermore, it is
encouraging to achieve the axial chirality inversion with this
CID procedure, thus, (R)-1a was obtained in 82% yield with

Scheme 3. Substrate Scopea
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>99% ee from (S)-1a of >99% ee (Scheme 4c). Finally, diverse
transformations of (R)-1e were set up to exhibit potential
applications of this method in asymmetric catalysis (Scheme
4d). Efficient alkylation, alkynylation, and arylation were
successfully realized to conveniently deliver chiral BINOL
derivatives. Two aryl substituents could also be installed onto
BINOL skeleton at 3,3′-positions after diphenylation of (R)-1e
at 6,6′-positions. To further evaluate the performance of this
CID method, two parallel experiments were conducted under
chiral resolution conditions in the absence of copper catalyst
(CuCl/L7), and the standard CID conditions respectively
(Scheme 4e). To our surprise, only an 18% yield of (R)-1n
with 94% ee was obtained through chiral resolution, while a
remarkably improved yield of 74% was obtained with 99% ee in
the CID process. These outcomes indicate that the significant
yield improvement in CID process is not only simply due to
the push of the theoretical yield limit from 50% in chiral
resolution to 100% by inversing the (S)-BINOL to (R)-
enantiomer, but also contributed by the acceleration of
cocrystal formation by increasing the concentration of
cocomplex [(R)-BINOL•2a] in the solution. Moreover, the
enantioselectivity in CID was also improved. It is noteworthy
to mention that, in chiral resolution of rac-1n, attempts to
increase the cocomplex concentration by simply decreasing the

use of solvent lead to the precipitation of racemic substrate,
thus, dramatically lowers enantioselectivity in the products.

■ DISCUSSION
Initial ligand screening outcomes in Scheme 2b have shown
the significance of substituents in the diamine ligand toward
BINOL racemization (L7 vs L8). Bulky groups endow the
ligand with high catalytic efficiency, while bis-methyl
substituents fail to promote the racemization process. Based
on these observations, we next evaluated two more diamine
ligands bearing two ethyl (L9) and isopropyl (L10) groups,
respectively, in the racemization of (R)-BINOL, and their
steric hindrance should be located between methyl (L8) and
tert-butyl (L7) groups, in principle. As shown in Scheme 5a,
ligand L9 bearing two ethyl groups also exhibits no catalytic
activity, while BINOL racemization could be detected with
L10 to 83% ee in 60 min, by increasing the steric hindrance of
the alkyl substituents from two ethyl to isopropyl groups.
Obviously, the catalytic activity trends could be concluded to
be strongly dependent on the steric hindrance of the bisalkyl
substituents in ligands, and L7 gave the best performance at
the current stage. Bis-hydroxylamine L11 was also investigated,
which fails to promote racemization activity as shown by the
formation of (R)-1a with >99% ee in the presence/absence of
Na2CO3, excluding its intermediacy in BINOL racemization.

22

Scheme 4. Synthetic Transformations
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Further studies on the substituent effect on racemization
activity were carried out with BINOL (R)-1e with two bromo
groups and (R)-1f with two methoxyl groups at 6,6′-positions,
respectively, as shown in Scheme 5b, electron-rich BINOLs
were racemized much faster, thus are more reactive under
copper catalysis. These results imply a pathway of electron
transfer from the BINOL moiety during racemization. The
catalyst of [Ru]-1 activated by KOtBu shows complete no
activity in the racemization of (R)-1e under current conditions.
The dynamic process was almost completely suppressed by
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) or butylated
hydroxytoluene (BHT), suggesting a possible radical pathway
for BINOL racemization (Scheme 5c). The axial structure
stops flipping when removed from an air atmosphere, making
clear that oxygen plays an indispensable role to initiate the
copper catalysis. CuCl2 exhibits equal activity on BINOL
racemization together with L7, implying the intermediacy of
the CuII species. Moreover, oxidized product 3 was produced
in 29% yield, forming an intramolecular C−O bond under the

catalysis of CuCl/L7 with 59% recovery of rac-1a, pointing to
the intermediacy of radical-cation species, forming the C−O
bond via an intramolecular O-nucleophilic attack (Scheme 5d).
Electron paramagnetic resonance (EPR) experiment of (R)-1a
was subsequently conducted with CuCl and L7 to give a
characteristic signal of BINOL O-radical, validating the
generation of the oxy radical during racemization (Scheme 5e).
Based on the reaction outcomes and mechanistic studies, a

possible radical mechanism23 for the dynamic racemization of
BINOL is proposed in Scheme 5f. After being oxidized to CuII

under an air atmosphere in the presence of bidentate ligand
L7, binuclear coordination of (R)- or (S)-BINOL to the CuII

center leads to the formation of tetrahedral copper(II)
complexes, Int-1 and Int-1′, respectively. Single-electron
oxidation7,24 of BINOL moiety by copper(II) would generate
radical-cation species Int-2 or Int-2′, in which rotation barrier
can be significantly decreased by calculations. Alternative
description is that bond isomerization subsequently produces
copper(I)-radical species Int-3, which is a delocalized radical

Scheme 5. Reaction Mechanism
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allowing the axial rotation.25 Compared with the coordination
effect in Int-1 or Int-1′, oxygen from the carbonyl group in Int-
3 becomes weakly bonded to the copper center, resulting in a
substantial decrease of the rotation barrier and the consequent
inversion of the axial element of chirality. Isomerization of Int-
3 to Int-3′ occurs simultaneously, which further releases a
BINOL radical as determined by EPR experiments. Ligand has
been demonstrated as a crucial factor for the efficient
racemization of BINOL, as shown in Scheme 5a, and the
two tBu groups in L7 enhanced its steric hindrance to ensure
the reversible coordination of the copper complex with BINOL
substrate, other than forming a stable ternary copper
complex.20c

■ CONCLUSIONS
In summary, an efficient crystallization-induced deracemization
(CID) of various biaryls has been developed with a chiral
ammonium salt under copper catalysis, including BINOL,
NOBIN, and BINAM derivatives. The bidentate diamine
ligand plays a crucial role in racemizing biaryl skeletons, and
bulky alkyl substitution (tBu) in the ligand was an
indispensable element to endow the racemization with high
efficiency and selectivity. In contrast with chiral resolution,
CID not only significantly improved the reaction yield but also
enhanced the enantioselectivity in the product. The CID
process is easily scalable and exhibits an abroad substrate scope
without chromatographic purification, with chiral ammonium
salt nicely recoverable. Moreover, this CID method could also
be extended with 2-naphthol as the starting material.26 At this
stage, copper catalysis promotes oxidative coupling reactions of
2-naphthol to produce racemic BINOLs. Besides, it performs
as the racemization catalyst for the CID of axially chiral
skeletons. Mechanistic studies show that racemization of
biaryls probably proceeds via a radical-cation intermediate,
further allowing axial rotation by forming a delocalized radical.
The key BINOL O-radical was detected by EPR analysis under
CuCl/L7. Further studies of the mechanism and its synthetic
applications are currently ongoing in our laboratory.

■ METHODS

Representative Procedure for the CID of rac-1
Under an air atmosphere, to a 10 mL reaction tube charged with a
magnetic stirring bar were added rac-1 (0.5 mmol) and the indicated
solvent. A solution of N-benzylcinchonidinium chloride (2a, 0.6
mmol) in the indicated solvent was dropwise added with rapid
stirring. Then, CuCl (0.025 mmol) and N,N′-di-tert-butylethane-1,2-
diamine (0.025 mmol) were sequentially added to the reaction
mixture. After that, the reaction tube was sealed with a rubber septum,
and the reaction mixture was stirred at room temperature for 24 h.
The resulting precipitate was isolated through filter paper by using a
Buchner funnel and washed with cold CH3CN. The precipitated
complex was fully dissolved in a mixture of HCl (aq., 1 M, 20 mL)
and EtOAc (20 mL). The organic phase was separated, and the
aqueous phase was further extracted with EtOAc (20 mL × 2). The
combined organic phases were dried in anhydrous Na2SO4 and
concentrated under reduced pressure to afford (R)-1.
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Kürti, L.; Zhao, Y. Practical Access to Axially Chiral Sulfonamides and
Biaryl Amino Phenols via Organocatalytic Atroposelective N-
Alkylation. Nat. Commun. 2019, 10, 3061. (e) Feng, X.; Wang, Y.;
Feng, W.; Peng, Y. Development of BINOL-Si complexes with large
stokes shifts and their application as chemodosimeters for nerve agent.
Chin. Chem. Lett. 2020, 31, 2960−2964. (f) Ye, C.-X.; Chen, S.; Han,
F.; Xie, X.; Ivlev, S.; Houk, K. N.; Meggers, E. Atroposelective
Synthesis of Axially Chiral N-Arylpyrroles by Chiralat- Rhodium
Catalysis. Angew. Chem., Int. Ed. 2020, 59, 13552−13556. (g) Zhang,
Y.; Wang, J.; Chen, H.; Lin, M. 1,1’-Binaphthol annulated perylene
diimides: Aggregation-induced emission enhancement and chirality
inversion. Chin. Chem. Lett. 2022, 33, 2473−2476.
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