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Abstract: Cancer is one of the most dangerous threats to human health. One of the issues is drug resis-
tance action, which leads to side effects after drug treatment. Numerous therapies have endeavored
to relieve the drug resistance action. Recently, anticancer peptides could be a novel and promising an-
ticancer candidate, which can inhibit tumor cell proliferation, migration, and suppress the formation
of tumor blood vessels, with fewer side effects. However, it is costly, laborious and time consuming to
identify anticancer peptides by biological experiments with a high throughput. Therefore, accurately
identifying anti-cancer peptides becomes a key and indispensable step for anticancer peptides therapy.
Although some existing computer methods have been developed to predict anticancer peptides,
the accuracy still needs to be improved. Thus, in this study, we propose a deep learning-based
model, called ACPNet, to distinguish anticancer peptides from non-anticancer peptides (non-ACPs).
ACPNet employs three different types of peptide sequence information, peptide physicochemical
properties and auto-encoding features linking the training process. ACPNet is a hybrid deep learning
network, which fuses fully connected networks and recurrent neural networks. The comparison with
other existing methods on ACPs82 datasets shows that ACPNet not only achieves the improvement of
1.2% Accuracy, 2.0% F1-score, and 7.2% Recall, but also gets balanced performance on the Matthews
correlation coefficient. Meanwhile, ACPNet is verified on an independent dataset, with 20 proven
anticancer peptides, and only one anticancer peptide is predicted as non-ACPs. The comparison
and independent validation experiment indicate that ACPNet can accurately distinguish anticancer
peptides from non-ACPs.

Keywords: anticancer peptides; multi-view information; deep learning

1. Introduction

Currently, cancer is an enormous threat to human health, reported by the International
Agency for Research on Cancer (IARC) [1], leading to rapidly increasing mortality every
year, reaching 18.1 million new cases and 9.6 million cancer deaths in 2018 alone. Moreover,
the type of common cancer is increasing, including lung, breast, prostate, colorectal and
so on. However, the diagnosis and therapy of cancer are challenging, which hinders
the therapy process, such as surgery, radiotherapy, chemotherapy, and targeted therapy.
Furthermore, traditional methods for the treatment of cancer always meet costly and high-
risk problems, accompanied by the risk of tissue death, drug resistance and other serious
side effects [2]. Fortunately, increasing evidence shows that some novel anticancer agents,
for some peptides for instance, become novel and safe for therapy [3]. For example, peptide
p28 is a post-translational, multi-target anticancer agent that preferentially enters a wide
variety of solid tumor cells and binds to both wild-type and mutant p53 protein, inhibiting
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constitutional morphogenic protein 1 (Cop1)-mediated ubiquitination and proteasomal
degradation of p53, which results in increased levels of p53 and induces cell-cycle arrest
at G2/M and eventual apoptosis, which results in tumor cell shrinkage and death [4].
LL-37, a novel anticancer peptide, has a net positive charge and is amphiphilic, and
can eliminate pathogenic microbes directly, via electrostatic attraction towards negatively
charged bacterial membranes. Several studies have shown that LL-37 participates in various
host immune systems, such as inflammatory responses and tissue repair [5]. Peptide-based
therapeutics are more affordable, tolerable and safe, which are considered to be advanced
therapy strategies [6]. Therefore, it is a significant step to rapidly and effectively find useful
anticancer peptides (ACPs). Although there are many experimental methods to identify
ACPs, they are usually laborious, expensive, time consuming and hard to achieve in a
high-throughput manner. Furthermore, with the rapid development of data science, it is
very desirable to design machine learning-based methods to identify ACPs [7].

Over the past few years, a dozen computational methods have been proposed to iden-
tify ACPs, including k-nearest neighbor (KNN), support vector machine (SVMs), random
forest (RF) and so on. In 2019, Boopathi, V. et al. proposed a machine learning model to
predict ACPs, called mACPpred [7], which uses seven types of encoding features, including
amino acid composition (AAC), dipeptide composition (DPC), composition-transition-
distribution (CTD), quasi-sequence-order (QSO), amino acid index (AAIF), binary profile
(NC5) and conjoint triad (CTF) to represent a peptide sequence and cooperate with an SVM
model to predict ACPs. In 2020, Li Qingwen, et al. employed five types of peptide sequence
features, including amino acid composition (AAC), conjoint triad (CT), pseudo-amino acid
composition (PAAC), grouped amino acid composition (GAAC) and C/T/D, and then
fused multiple machine learning methods, containing SVM, RF, and LibD3C, to identify
ACPs [8]. In 2020, Ge Ruiquan et al. proposed a machine model called EnACP, which
introduces sequence composition, sequence-order, physicochemical properties, etc. to
encode a peptide sequence and input the important feature selected by multiple ensemble
classifiers to an SVM model to predict ACPs [9]. These methods try to find effective and
useful features to represent a peptide and combine a high-performance machine model to
identify ACPs. Another way to identify peptides is by introducing a deep learning model
to identify ACPs from the raw sequence of peptides. In 2019,Yi Haichent et al. proposed a
deep learning long short-term memory (LSTM) neural network model, called ACP-DL [10],
which developed an efficient feature representation approach by integrating binary profile
features, k-mer sparse matrix of the reduced amino acid alphabet and then implemented a
deep LSTM model to identify ACPs. In 2021, Chen Xiangan et al. proposed an ACP predic-
tion model, called ACP-DA [11], which uses data augmentation for insufficient samples and
trains a multilayer perception model to improve the prediction performance. In 2020, Yu
Lezheng et al. found that the recurrent neural network with bidirectional long short-term
memory cells is a superior architecture to identify ACPs and implement a sequence-based
deep learning tool, called DeepACP [12], to accurately predict ACPs.

Although these methods can predict ACPs accurately, the accuracy performance of
existing methods still needs to be improved. It is also a challenge to represent peptide
sequences to numerical vectors and further improve the prediction accuracy of ACPs.
Therefore, in this paper, we propose a hybrid deep learning-based model, called ACPNet,
which employs the raw peptide sequence and carefully selected sequence features as
input, to fit recurrent neural networks, and fully connected network to further improve the
predicting performance.

2. Materials and Methods
2.1. Materials

The sequences of ACP and non-ACP are downloaded from this research used in [12].
Three datasets are introduced including ACPs250, ACPs82, ACPs20. ACPs250 contains
250 ACPs and 250 non-ACPs sequence samples, ACPs82 is made up of 82 ACPs and 82
non-ACPs sequence samples, ACPs20 contains 10 ACP samples and 10 non-ACP samples.
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ACPs250 dataset is split into training dataset and validation dataset with 80% and 20%
respectively. To further validate the performance of ACPNet, we conducted experiments on
an independent test dataset ACPs82. Furthermore, ACPs20, another independent dataset,
is introduced to further prove the performance of ACPNet. These datasets are listed in
Table 1.

Table 1. Datasets for train, test and independent validation of ACPNet.

ACPs
Number

Non-ACPs
Number

Average
Length Max Length Min Length

ACPs250 250 250 27 97 11
ACPs82 82 82 27 207 11
ACPs20 10 10 24 47 13

2.2. Methods
2.2.1. Features Construction

To further improve the prediction accuracy of ACPs, in this work, we employed three
hybrid kinds of features to encode a peptide sequence to a numerical vector, including
peptide sequence features, peptide physicochemical properties and automatic embedding
features, which are listed in Table 2.

Table 2. Three kinds of hybrid features to encode peptide sequences.

Feature Types Feature Name Dimensions

Sequence features
PAAC 30
Length 1

Shannon entropy 1

Peptide physicochemical
properties

Gravy 1
Molecular_weight 1
Charge_at_pH(10) 1

Embedding features Position embedding 50

Sequence Features

The concept of PAAC (pseudo amino acid composition) [13] was introduced to avoid
completely losing the sequence-order information [1]. In contrast with the conventional
amino acid composition (AAC) that contains 20 components, the PAAC contains a set of
greater than 20 discrete factors, where the first 20 represent the components of its conven-
tional amino acid composition while the additional factors incorporate some sequence-order
information via various pseudo components.

PAAC can be represented by P = [p 1, p2, . . . , p20, p20+1, . . . , p20+λ

]T, (λ < L),
where λ is an integrated parameter set by a user with recommended value 10, pu is
calculated by Equation (1)

pu =


fu

20
∑

i=1
fi+w

λ

∑
k=1

τk

, (i ≤ u ≤ 20)

wτu−20
20
∑

i=1
fi+w

λ

∑
k=1

τk

, (21 ≤ u ≤ 20 + λ)
(1)

where fi is the frequency of each amino acid in a protein, w is the weight factor set by a user
with default value 0.05,τk is the k-th tier correlation factor that reflects the sequence order
correlation between all the k-th most contiguous residues as formulated by Equation (2).

τk =
1

L− k

L−k

∑
i=1

Ji,i+k (k<L) (2)
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where Ji,i+k can be calculated by Equation (3).

Ji,i+k =
1
Γ

Γ

∑
q=1

[Φ q(R i+k)−Φq(R i)]
2 (3)

where Φq(R i
)

is the q-th function of the amino acid Ri and Γ the total number of functions
considered, such as hydrophobicity value, hydrophilicity value, and side-chain mass of
amino acid.

Another two features are peptide sequence length and Shannon entropy of peptide
sequences [14]. The Shannon entropy of peptide sequences can be obtained by Equation (4).

Shannon entropy(seq) = −
20

∑
i=1

filog(fi) (4)

Peptide Physicochemical Properties

Peptide, a short chain of amino acids, exhibits many similar properties to proteins
and the physicochemical properties have close relations with protein functions. Therefore,
three physicochemical properties of peptides are introduced to represent peptide sequences
including Gravy [15], Molecular_weight [16] and Charge_at_pH [17]. Gravy feature is used
to describe peptide gravy according to Kyte and Doolittle, Molecular_weight is employed
to represent peptide molecular weight, Charge_at_pH is introduced to calculate the charge
number of a protein when given pH set 10.

Embedding Features

A peptide can be seen as a sentence containing ‘word’ as ‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’,
‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’, which represent 20 kinds of amino acids.
To encode a peptide sequence to a numerical vector, a peptide is converted to a numerical
vector by amino acid index with the same length of peptide length such as [1, 2, 4, . . . , 20, 5].
The corresponding map is ′A′ → 1, ′C′ → 2, . . . , ′Y′ → 20 . After a peptide is converted to
a numerical vector, the following step is to map each index to a user-defined dimension
vector. The embedding process is to turn positive integers (indexes) into dense vectors. For
a peptide sequence “ADGF” is an example with a user-defined dimension as three, the
representation process is shown in Figure 1.
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Figure 1. The process to auto-embed a peptide sequence to a matrix.

2.2.2. Model Structure
Overall Workflow

Deep learning technology has obtained numerous achievements in many bioinformat-
ics applications [18–20]. Therefore, in this paper, we propose a hybrid deep learning-based
model, named ACPNet, for predicting ACPs. The overall workflow is shown in Figure 2.
The detailed structure of ACPNet is in Supplementary Figure S1.
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Figure 2. The overall workflow of ACPNet.

The manually selected features and auto-embedding features are fed to a fully con-
nected neural network (Dense Network) and recurrent neural network (RNN) [21] respec-
tively, and then the result of the previous process is merged for the final prediction. Overall,
ACPNet combines Dense Network and RNN to construct a hybrid deep learning-based
model to identify ACPs, which not only consider the importance of manually selected
features but also automatically learn the potential features from raw peptide sequences as
well.

Prediction Model Constructed by RNN and Dense Networks

RNN and Dense network, as the two most significant deep learning models, are widely
applied on time serial and feature independent issues respectively. LSTM [22], a kind of
implementation of RNN, is usually employed to further automatically extract potential
features from the time serial vectors. The kernel process of LSTM can be illustrated by
Equation (5).

ft= σg(W fxt+Ufht−1+bf
)

it= σg(W ixt+Uiht−1+bi
)

ot= σg(W oxt+Uoht−1+bo
)

ct= ft ◦ ct−1+it ◦ σc(W cxt+Ucht−1+bc)
ht= ot ◦ σh(c t)

(5)

where, xt is the input vector, ht is output vector, ct is the cell state vector, W, U and b are
the learning parameters, ft is a forget gate vector to remember old information, it is input
gate vector to acquire new information, ot is output gate vector as output candidate, σg, σc
and σh are three activate functions. LSTM is employed in ACPNet for the belief that the
peptide sequence can be seen as time series data. The dense network processes 1-dimension
data with independent features expertly, therefore a Dense network is employed to process
manual-selected features and the final prediction.

Implementation of ACPNet

ACPNet is implemented by Tensorflow 2.5.0 and all scripts are written by Python 3.8.
ACPNet is running on a personal computer with 4.3 GHz, 8 core CPU, and 64 GB RAM
under an open Linux operating system.
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2.2.3. Performance Evaluation of ACPNet

ACPNet is evaluated by the widely used standard performance metrics, which are
Accuracy, F1-score, Recall, Precision and Matthews correlation coefficient (MCC). These
evaluation metrics are defined as follows:

Accuracy = TP+TN
TP+TN+FP+FN

F1− score = 2TP
2TP+FP+FN

Recall = TP
TP+FN

Precision = TP
TP+FP

Matthews Correlation coefficient (MCC)
= TP∗TN−FP∗FN√

(TP+FN)∗(TP+FP)∗(TN+FP)∗(TN+FN)

where TP, FP, TN and FN represent the true positives, false positives, true negatives and
false negatives, respectively. We also plot the receiver operating characteristic curves (ROC)
and computed Area Under the Curve (AUC) to show the performance of ACPNet.

3. Results
3.1. The Effects of Feature Combination

To explore the effect of the combination of manually selected features and automatic
learning features, the performances conducted by three types of combination are compared
on ACPs250 (as training dataset), and ACPs82 (as test dataset). The compared results are
listed in Table 3, and we found that the hybrid-fused features model shows better perfor-
mance on multiple metrics. Note, in terms of MCC, the feature-fused model surpasses the
manually selected feature model by more than 16%, and on other metrics, the feature-fused
model shows advanced performance as well. The results indicate that the combination of
two types of features play a positive and reinforced role in distinguishing between ACPs
and non-ACPs.

Table 3. The performance results compared by three types of combinations on ACPs82.

TP TN FP FN Accuracy F1-Score Recall Precise MCC AUC PRAUC

MS 65 68 14 17 81.0 80.7 79.2 82.2 0.622 0.841 0.832
AE 67 73 9 15 85.3 84.8 81.7 88.1 0.709 0.867 0.878

MS + AE 72 75 7 10 89.6 89.4 87.8 90.1 0.793 0.945 0.947

MS means manually selected features, AE means automatic learning features.

3.2. Manually Selected Features Importance Rank

To further show the importance of each manually selected feature, CatBoost [23], an
ensemble machine learning framework, was introduced to calculate the importance score
of each feature. Figure 3 shows the importance score of each manually selected feature.
Length, Gravy, MW (Molecular_weight), and SH (Shannon entropy) obtained a relatively
high score and surpassed the majority of PAAC’s features. The PAAC features also show a
positive contribution. The PAAC features get the best score at the 14th feature and show
not particularly important contributions at the 18th feature. Besides, each PAAC feature
provides different contributions to identify ACP. Overall, the manually selected features
contribute to the classification of ACPs and non-ACPs.
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3.3. Feature Visualization

We use Uniform Manifold Approximation and Projection (UMAP) [24] to visualize
the distribution of ACPs and non-ACPs by media vector, generated on the ACPNet inner
layer into two-dimensional space. Figure 4 illustrates that ACPs and non-ACPs in the
training and test dataset can be easily classified by these features, which reconfirms that
the constructed features contribute to the identification of ACPs and non-ACPs.
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3.4. Performance Comparison of Models on Independent Datasets

To show the advance of ACPNet, traditional machine learning- and deep learning-
based methods are employed as comparisons. For a fair comparison, the same training
dataset, ACP250s, and independent test dataset, ACP82s, were used to train and test all
methods. For traditional machine learning, SVM, RF, and CatBoost are introduced for the
comparisons. Note, the auto embedding features are replaced by the index encoding for
peptide sequence because the auto embedding links the training process. Therefore, the
index encoding method and manually selected features are employed to encode a peptide
for traditional machine learning. The comparison results of traditional machine learning
are listed in Table 4.
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Table 4. Comparing results with traditional machine learning.

TP TN FP FN Accuracy F1-Score Recall Precision MCC AUC PRAUC

SVM 60 63 22 19 75.0 75.5 73.1 75.9 0.500 0.775 0.763
RF 81 28 1 54 66.4 74.6 98.7 60.0 0.431 0.704 0.697

CatBoost 64 77 18 5 85.9 84.7 78.0 92.7 0.728 0.883 0.891
ACPNet 72 75 7 10 89.6 89.4 87.8 91.1 0.793 0.945 0.947

For the comparison with the deep learning-based model, seven existing models are
employed as the comparisons, which include AntiCP [25], Hajisharifi [26], iACP [27] and
ACPred-FL [28], CNN (Convolutional Neural Network) [29], CNN+RNN, DeepACP [12].
AntiCP contains two models, which are AntiCP_ACC and Anticp_DPC, both based on
SVM. AntiCP_ACC is built by amino acid composition features, while Anticp_DPC is
constructed by dipeptide composition features. Hajisharifi combines two integrative
SVM-based classification models for the prediction of anticancer peptides on the base of
local alignment kernel and PAAC parameters. Further, iACP employs g-gap dipeptide
components and SVM to predict ACPs. CNN is fed one-hot encoding matrixes to identify
ACPs. For the CNN+RNN model, the input is the same as the CNN model, but after the
CNN part, an RNN model links the following process. DeepACP, an end-to-end method,
tries to fuse the peptide sequence encoding and training process to identify the ACPs. In the
same way as the comparison with traditional machine learning, the ACP250s dataset and
independent test dataset, ACP82s, are used to train and test all methods. The comparison
results of deep learning-based methods are listed in Table 5. From Table 5, we can find that
ACPNet shows better performance compared with the other seven methods in multiple
metrics. In terms of precision, ACPNet is slightly lower than ACPred-FL, but shows nearly
7% improvement in Recall and achieves a more balanced performance. For other methods,
except ACPred-FL, ACPNet obtained more than 6%, 6%, 10%, 3.5%, and 12% improvement,
in terms of accuracy, F1-score, recall, precision and MCC. Overall, ACPNet shows higher
performance compared with existing methods.

Table 5. Performance comparisons of ACPNet with the existing methods.

TP TN FP FN Accuracy F1-Score Recall Precision MCC AUC PRAUC

AntiCP_ACC 56 71 26 11 77.4 75.2 68.3 83.6 0.558 0.805 0.793
Anticp_DPC 61 69 21 13 79.3 78.2 74.4 82.4 0.588 0.816 0.883
Hajisharifi 55 71 27 11 76.8 74.3 67.1 83.3 0.547 0.779 0.752

IACP 56 66 26 16 74.4 72.7 68.3 78.8 0.491 0.752 0.723
ACPred-FL 66 79 16 3 88.4 87.4 80.5 95.7 0.778 0.906 0.886
CNN-RNN 59 67 23 15 76.8 75.6 72.0 79.7 0.539 0.785 0.758

CNN 64 65 18 17 78.6 78.5 78.0 79.0 0.573 0.823 0.845
DeepACP 64 72 18 10 82.9 82.0 78.0 86.5 0.662 0.859 0.800
ACPNet 72 75 7 10 89.6 89.4 87.8 91.13 0.793 0.945 0.947

Furthermore, we also plot the receiver operating characteristic curves (ROC) to further
show the performance of ACPNet, shown in Figure 5, with AUC at 0.945 and PRAUC
(Area Under the Precision–Recall Curve) [30] at 0.947, respectively. Figure 5 indicates that
ACPNet shows better performance both on AUC and PRAUC.
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3.5. Independent Validation

Furthermore, ACPNet is verified on an independent dataset, with 10 ACPs and 10
non-ACPs, and only one proven ACP is predicted as non-ACP, while all non-ACPs are
predicted as non-ACPs. The independent validation results are listed in Table 6. Most
ACPs obtained a higher score, large than 0.7. If the predicting score is larger than 0.5,
the corresponding peptide will be treated as an ACP. The independent validation results
indicate that ACPNet can accurately predict ACPs.

Table 6. The independent validation results of ACPNet.

Id Sequence Score Label

1 KLWKKIEKLIKKLLTSIR 0.9999 ACP
2 YIWARAERVWLWWGKFLSL 0.9994 ACP
3 DLFKQLQRLFLGILYCLYKIW 0.8732 ACP
4 AIKKFGPLAKIVAKV 0.7043 ACP
5 RWNGRIIKGFYNLVKIWKDLKG 0.9620 ACP
6 KVWKIKKNIRRLLHGIKRGWKG 0.9993 ACP
7 GFWARIGKVFAAVKNL 0.9988 ACP
8 AFLYRLTRQIRPWWRWLYKW 0.4979 Non-ACP
9 RIWGKHSRYIKIVKRLIQ 0.9993 ACP
10 QIWHKIRKLWQIIKDGF 0.9997 ACP
11 CGESCVWIPCVTSIFNCKCKENKVCYHDKIP 0.0001 Non-ACP
12 SDEKASPDKHHRFSLSRYAKLANRLANPKLLETFLSKWIGDRGNRSV 0.2383 Non-ACP
13 DVKGMKKAIKGILDCVIEKGYDKLAAKLKKVIQQLWE 0.4986 Non-ACP
14 AGWGSIFKHIFKAGKFIHGAIQAHND 0.011 Non-ACP
15 ATCDLASGFGVGSSLCAAHCIARRYRGGYCNSKAVCVCRN 0.0032 Non-ACP
16 GWKIGKKLEHHGQNIRDGLISAGPAVFAVGQAATIYAAAK 0.0015 Non-ACP
17 FLGALIKGAIHGGRFIHGMIQNHH 0.4750 Non-ACP
18 FLPAIAGILSQLF 0.1818 Non-ACP
19 ALWMTLLKKVLKAAAKALNAVLVGANA 0.0052 Non-ACP
20 EGGGPQWAVGHFM 0.1243 Non-ACP

Note: the independent validation peptide sequences (1–10, ACP) and (11–20, non-ACP) source from [31,32]
respectively.

4. Discussion

Cancer is one of the most dangerous threats to human health. Anticancer peptides
could be novel agents for the therapy of cancers [33]. Therefore, accurately identifying
anticancer peptides is a key step for the therapy. Nowadays, although deep neural network
models have been developed to predict ACP, the accuracy still needs to improve. Thus,
in this study, we proposed a hybrid deep learning-based model, called ACPNet, to dis-
tinguish ACPs from non-ACPs. For the feature construction, three types of features were
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introduced. The first type of features are manually selected features, which include PAAC,
Length, and Shannon entropy, calculated from peptide sequence information. The second
type of features are Molecular_weight, Charge_at_pH, Gravy, which source from peptide
physicochemical properties. The third type of features are autoencoding features, which
link the training process by encoding each amino acid index to a vector. In part 3.3, the
performance of the combination of three types of features is compared. The comparison
results show that the combination of three types of features play a positive role in identify-
ing ACPs. Each manually selected feature, including sequence information and peptide
physicochemical properties features, is relatively independent, so a fully connected neural
network is employed to train the manually selected features. Autoencoding features of
peptides can be seen as time serial data, which fit the learning pattern of BiLSTM. There-
fore, Sequence information and peptide physicochemical properties are merged to feed
fully connected networks. Autoencoding features are input into a BiLSTM network [34].
After passing the two types of networks, the media vectors are merged to feed a fully
connected network for the final prediction. ACPNet is a hybrid deep learning network,
which fuses the advance of two types of networks to build the neural network structure
and full use of three kinds of information features as inputs, to improve the prediction
accuracy of ACPs. For a comparison with other existing methods, ACPNet not only shows
higher performance in multiple metrics, including Accuracy, F1-score, Recall, Precision
and MCC, but also shows balanced performance metrics. This means that ACPNet may
show better robustness for future identification. Furthermore, media vectors generated on
the ACPNet inner layer are compressed into two dimensions, to further show the entire
performance directly. The visualization results indicate that three different types of features
of peptides and hybrid deep learning-based models can accurately distinguish ACPs from
non-ACPs. Furthermore, ACPNet is verified on an independent dataset, with 10 ACPs and
10 non-ACPs. Only one proven ACP was predicted as a non-ACP, and all the non-ACPs
were predicted as non-ACPs. The independent validation results indicate that ACPNet can
accurately distinguish ACPs from non-ACPs. The learning pattern of ACPNet also fits other
peptide-related works, which may provide a useful clue in solving these problems. ACPNet
also meets some limitations. For example, ACPNet does not provide a user-friendly web
server, which may make it difficult for some people who don’t know how to program.
Furthermore, ACPNet does not consider the different types of cancer, which may generate
bias. In the future, we will try to build a new ACP prediction model, based on the different
types of cancer, and provide a user-friendly web server to the public.

5. Conclusions

In this work, we proposed a deep learning-based method, ACPNet, to identify ACPs,
by combining a hybrid deep learning-based model with manually selected features and
automatic encoding features as the input. For the feature construction, three types of
features were introduced, namely, peptide sequence component information features,
peptide physicochemical properties and auto-encoding features. Three different types of
features play a positive role in distinguishing ACPs and non-ACPs. A fully connected
network and recurrent neural network were introduced to process the constructed features.
Compared with existing methods, ACPNet shows better and more balanced performance,
with 1.2% accuracy, 2.0% F1-score, and 7.2% Recall improvement. On a three-part dataset,
with 10 ACPs and 10 non-ACPs, ACPNet accurately predicts nine in ten ACPs. The series
experiments show that ACPNet can accurately distinguish ACPs from non-ACPs.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
detailed structure of ACPNet.
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