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Platelets are hyperactivated in coronavirus disease 2019 (COVID-19). However, the

mechanisms promoting platelet activation by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) are not well understood. This may be due to inherent

challenges in discriminating the contribution of viral vs host components produced by

infected cells. This is particularly true for enveloped viruses and extracellular vesicles

(EVs), as they are concomitantly released during infection and share biophysical

properties. To study this, we evaluated whether SARS-CoV-2 itself or components derived

from SARS-CoV-2-infected human lung epithelial cells could activate isolated platelets

from healthy donors. Activation was measured by the surface expression of P-selectin

and the activated conformation of integrin aIIbb3, degranulation, aggregation under

flow conditions, and the release of EVs. We find that neither SARS-CoV-2 nor purified

spike activates platelets. In contrast, tissue factor (TF) produced by infected cells was

highly potent at activating platelets. This required trace amounts of plasma containing

the coagulation factors FX, FII, and FVII. Robust platelet activation involved thrombin

and the activation of protease-activated receptor (PAR)-1 and -4 expressed by platelets.

Virions and EVs were identified by electron microscopy. Through size-exclusion

chromatography, TF activity was found to be associated with a virus or EVs, which were

indistinguishable. Increased TF messenger RNA (mRNA) expression and activity were

also found in lungs in a murine model of COVID-19 and plasma of severe COVID-19

patients, respectively. In summary, TF activity from SARS-CoV-2–infected cells activates

thrombin, which signals to PARs on platelets. Blockade of molecules in this pathway may

interfere with platelet activation and the coagulation characteristic of COVID-19.
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Key Points

� Virions and
extracellular vesicles
are concomitantly
released by SARS-
CoV-2–infected cells.

� Host-derived tissue
factor activity, not viral
spike, activates
platelets.
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Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory tract infec-
tion caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2).1 Since the onset of this pandemic, millions of peo-
ple have died.2 Acute respiratory distress syndrome is one of the
main characteristics of severe COVID-19, and its manifestation influ-
ences the outcome of infection.3 A high degree of generalized
inflammation and thrombosis is also reported.1,4-6 Autopsies show
that the formation of microthrombi is common in the lung vascula-
ture and other organs distant from the lungs, suggesting a role for
dysregulated coagulation.7-10 Furthermore, age, hypertension, diabe-
tes, and coronary heart disease, well-known risk factors for thrombo-
sis and associated with chronic inflammation, are the main
determinants of COVID-19 severity and mortality.3,4,11,12

Platelets are anucleated cells at the interface of thrombosis and
inflammation.13-15 They are critical in hemostasis, interact with
pathogens, and can alert other immune cells.14,15 It is notable that
hyperactivated platelets are present in COVID-19.16-22 Hyperactiva-
tion is characterized by high expression of P-selectin (CD62P),
degranulation (release of platelet factor 4 [PF4] and serotonin
[5-HT]), and release of platelet extracellular vesicles (EVs), as well as
increased aggregation and adhesion of platelets to other cells, par-
ticularly monocytes, and changes in platelet gene expression.16-22

Different laboratories have detected SARS-CoV-2 RNA in associa-
tion with platelets in patients.16,17,23 While compelling studies con-
firmed that SARS-CoV-2 could be taken up by platelets, leading to
programmed cell death, platelets failed to activate in these condi-
tions.23 Angiotensin-converting enzyme-2 (ACE2), abundantly
expressed by epithelial cells in the lungs, is the cognate cell receptor
for the SARS-CoV-2 spike protein.24,25 An ACE2-dependent SARS-
CoV-2 and platelet interaction has been suggested as a potential
mechanism for platelet hyperactivation.26 However, platelet expres-
sion of ACE2 could not be conclusively demonstrated,27 and some
studies indicated SARS-CoV-2 interacts with platelets through
ACE2-dependent and independent mechanisms.23,28 Another puta-
tive receptor for a SARS-CoV-2 platelet interaction is CD147.29-31

While evidence of interaction between SARS-CoV-2 and CD147
has been challenged,32 one study suggests that SARS-CoV-2 pseu-
dovirus and recombinant spike proteins activate platelets, character-
ized by the release of HMGB11 EVs and soluble P-selectin, in a
CD147-dependent manner.33 Another study suggests that spike
may engage platelet CD42b, thereby promoting interactions with
monocytes and cytokine production by monocytes.34 However, over-
expression of spike protein (resulting from vaccination) did not result
in platelet activation.35 Thus, there exists conflicting data as to
whether and how SARS-CoV-2 activates platelets.

Initiation of the coagulation cascade may also underlie platelet activa-
tion. Coagulation abnormalities have been reported in COVID-19,36

which may be the consequence of extensive tissue damage associ-
ated with SARS-CoV-2 infection and subsequent engagement of the
coagulation cascade. Tissue factor (TF) is the main cellular initiator of
coagulation and a highly potent stimulus that is absent in blood under
physiological conditions.37-39 Active TF in blood activates the extrin-
sic (TF) pathway of coagulation, leading to the conversion of pro-
thrombin to thrombin and subsequent fibrin clot formation. Thrombin
is a highly potent stimulus of platelet activation and has been

previously found to contribute to the H1N1-mediated activation of
platelets.40 Several studies detected TF activity in the blood of
COVID-19 patients.41-43 Moreover, SARS-CoV-2 spike protein pseu-
dotyped viral infection of human monocyte-derived macrophages
induces the expression of active TF in vitro.44 Furthermore, SARS-
CoV-2 infection of endothelial cells or endothelial dysfunction have
been suggested as a potential source of TF.45

SARS-CoV-2 is an enveloped virus that may acquire host molecules
during the budding process.46-51 The propagation of viruses in cell
lines is essential, as viral replication requires a cellular host.52

Infected cell supernatants are thus used as a source of the virus,
but the potential role of concomitantly released host molecules and
EVs must be considered when examining the effects of cell super-
natants on target cells. Supernatants containing viruses may be pel-
leted by centrifugation to reduce the presence of soluble
molecules.53,54 Moreover, polyethylene glycol (PEG) precipitation
can be used to concentrate viruses from supernatants. However,
both centrifugation and PEG precipitation can also enrich EVs.54,55

Given that viruses, protein aggregates, and EVs share biophysical
properties,53,54 they cannot be efficiently separated from each other
using any of these approaches.53,54 Whether SARS-CoV-2 or host-
derived molecules activate platelets has not been studied.

In this study, we examined whether SARS-CoV-2 or components
from infected cells could activate platelets.

Methods

A detailed description is provided in the supplemental Material.

Platelet isolation from human donors

Venous blood from healthy donors was collected into citrate antico-
agulant solution and centrifuged for 10 minutes at 231g. One mL of
platelet-rich plasma (PRP) was transferred to fresh microcentrifuge
tubes, and 250 mL of acid-citrate-dextrose (ACD) and ethylene
diamine tetraacetic acid (10 mM) were added. PRP was centrifuged
(2 minutes at 300g). One mL of the supernatant was transferred to
fresh tubes and centrifuged (5 minutes at 1100g). The supernatant
was aspirated, and the platelet pellet was resuspended in 100 mL
of Tyrode’s buffer (pH, 6.5). Another 900 mL of Tyrode’s buffer (pH,
7.4), 250 mL ACD, and ethylene diamine tetraacetic acid (10 mM)
were added. Platelets were then centrifuged for 5 minutes at
1300g. The supernatant was aspirated, and platelets were recov-
ered (200 3 106/mL) in Tyrode’s buffer (pH, 7.4). All steps were
performed at room temperature.

Propagation of SARS-CoV-2

SARS-CoV-2 (strain LSPQ, B1 lineage) was obtained from the Lab-
oratoire de Sant�e Publique du Qu�ebec. A549-hACE2 cells were
infected at a multiplicity of infection (MOI) of 1 for 1 hour, then
washed twice with phosphate-buffered saline (PBS) before the
addition of new culture media. The virus was harvested from cell-
free media after 4 days and inactivated by the addition of
b-propiolactone as described.56

Platelet activation assay

Blood, collected in a 3.2% citrate anticoagulant solution, was centri-
fuged (2 3 2500g at 15 minutes) to obtain platelet-free plasma
(PFP). PFP was incubated in Tyrode’s buffer (pH, 7.4; 10 mM
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CaCl2) in the presence of stimuli (thrombin, SARS-CoV-2, or con-
trols; 23 concentrated) for 60 minutes. Then, platelets
(100 3 106/mL final concentration) were added. All incubations
were performed at room temperature. Unless indicated otherwise,
platelet activation was assessed after 60 minutes by staining
(20 minutes) with antibodies for CD41, activated integrin aIIbb3*,
and CD62P, and platelets were fixed with paraformaldehyde (1%)
thereafter.

Results

SARS-CoV-2 activates platelets in a

plasma-dependent manner

SARS-CoV-2 was propagated in ACE2-overexpressing human lung
epithelial A549 cells. Culture supernatant (C.Med) from noninfected
cells used at the same volume as CoV2 was used as a negative
control. For safety reasons and convenience, unless specified
otherwise, we used b-propiolactone–inactivated SARS-CoV-2 or
b-propiolactone–treated C.Med.56 We evaluated the ability of
SARS-CoV-2 to induce platelet activation, as assessed by the fre-
quency of platelets expressing the active conformation of aIIbb3
integrin (aIIbb3*) and CD62P (aIIbb3*CD62P), the expression den-
sity of aIIbb3*, and the liberation of EVs (CD411 EVs). To account
for a potential plasma–SARS-CoV-2 interaction independent of a
direct virus–platelet interaction, we preincubated virus or C.Med in
the presence or absence of recalcified PFP before the addition to
washed platelets. The plasma preparations were obtained from non-
immune donors, as determined by the absence of SARS-CoV-2
antibodies (supplemental Figure 1).

Flow cytometric analyses revealed that the presence of SARS-CoV-2
(1:25 vol/vol; 1.9E105 virus per mL) induced a rapid and significant
increase in the percentage of aIIbb3*CD62P1 platelets (7.5 minutes)
and an increase in expression intensity of aIIbb3* (15 minutes)
(Figure 1A). Following a 60-minute stimulation with SARS-CoV-2, the
vast majority of platelets expressed aIIbb3*CD62P, and the levels of
CD411 EVs were increased (Figure 1A). Platelet activation required
the presence of plasma (0.5%) (Figure 1A). Platelets failed to activate
in response to SARS-CoV-2 (1:25 vol/vol; 1.9E105 virus per mL) in
the absence of plasma or in the presence of C.Med (1:25 vol/vol) in
the presence or absence of plasma (Figure 1A). In contrast, platelets
efficiently responded to thrombin (1 U/mL) in the presence or
absence of plasma (0/0.25/0.5/1%) (supplemental Figure 2).

As aIIbb3* expressed on platelets is a major receptor for platelet
adhesion to fibrinogen, we tested the ability of platelets to adhere
under physiological flow in a fibrinogen-coated microfluidics cham-
ber. Visualization of fluorescently-labeled platelets revealed the for-
mation of large clots induced by SARS-CoV-2 (1:25 vol/vol;
1.9E105 virus per mL), but only when plasma was present. Clots
did not form when platelets were in the presence of C.Med (1:25
vol/vol) and plasma (Figure 1B; supplemental Figure 3).

The response to increasing concentrations of SARS-CoV-2 (1:12.5
to 1:3200 vol/vol; 3.8E105 to 1.5E103 virus per mL) was deter-
mined in the presence of plasma to assess SARS-CoV-2 platelet
activation. Strong platelet activation, based on all measured parame-
ters, was observable with SARS-CoV-2 at 1:12.5 to 1:50 vol/vol
(1.5E103 to 9.5E104 virus per mL) (Figure 1C). With the excep-
tion of CD411 EVs, which were not significantly increased by
SARS-CoV-2 at 1:200 vol/vol dilution (2.4E104 virus per mL), this

lower concentration sufficed to induce the surface expression of
aIIbb3* and CD62P (Figure 1C). In contrast, C.Med did not induce
platelet activation within the tested concentration range (1:12.5 to
1:3200 vol/vol) (Figure 1C).

The possibility that the prominently expressed spike protein of
SARS-CoV-2 may be able to induce plasma-dependent activation
of platelets was examined next. Recombinant full-trimeric SARS-
CoV-2 spike protein, the S1 subunit containing the receptor-binding
domain (RBD), or a recombinant SARS-CoV-2 RBD peptide, were
preincubated in plasma and then added to platelets to assess acti-
vation. No platelet activation was observed in response to any of
the tested proteins (Figure 1D), which contrasted with the profound
platelet activation induced by thrombin (1 U/mL) under the same
conditions (Figure 1D). Thus, the combination of SARS-CoV-2 and
plasma components activated platelets. This is likely independent of
the spike as recombinant SARS-CoV-2 spike proteins failed to acti-
vate platelets.

SARS-CoV-2 activates platelets in a TF- and

thrombin-dependent manner

We hypothesized that an active component associated with SARS-
CoV-2 might be triggering the coagulation cascade. Thus, we incu-
bated plasma deficient in individual coagulation factors (FXIII, FXII,
FXI, FX, FIX, FVIII, FVII, FV, FII, FI, Protein C, Protein S, and von Wil-
lebrand factor [VWF])57 with SARS-CoV-2 or C.Med, and thereafter
added platelets to assess activation (Figure 2A; supplemental
Figure 4). Strong activation occurred despite the absence of FXIII,
FXII, FXI, FIX, FVIII, FV, FI, Protein C, Protein S, or VWF in plasma
(Figure 2A; supplemental Figure 4). However, in the absence of FX,
FII, and FVII, SARS-CoV-2 failed to activate platelets, as activation
remained at the background level and was not statistically different
from that of the negative control (C.Med) (Figure 2A; supplemental
Figure 4). These observations point to an involvement of the TF
pathway of coagulation.

Coagulation factors in plasma are present as inactive zymogens,
which may become catalytic enzymes when the coagulation cascade
is initiated.38,57 The active form of FX is FXa, which is responsible
for the conversion of prothrombin (FII) to thrombin. Thrombin medi-
ates the formation of a fibrin clot and is a potent physiological stimu-
lus of platelet activation.57 We hypothesized that thrombin is
responsible for the plasma-dependent SARS-CoV-2–mediated plate-
let activation. To test this, we incubated plasma with SARS-CoV-2 in
the presence or absence of the selective and irreversible thrombin
inhibitor D-phenylalanyl-prolyl-arginyl chloromethyl ketone before the
addition of platelets. The activation was completely blocked by
thrombin inhibition (Figure 2B). We further confirmed that SARS-
CoV-2 activation of naïve wild-type mouse platelets critically required
plasma and thrombin activation (supplemental Figure 5). Murine
ACE2 is not recognized by SARS-CoV-2 spike protein,58 and wild-
type mouse platelets do not express FcyRIIA, thereby ruling out that
platelet activation was ACE2- or Fc-receptor dependent.

Similar to the replication-incompetent fixed virus, infectious SARS-
CoV-2 (1:4 or 1:25 vol/vol; 1.2E106 or 1.9E105 virus per mL)
promptly activated platelets, but only in the presence of plasma
(supplemental Figure 6). The activation was blocked by the thrombin
inhibitor, demonstrating that the initiation of coagulation and genera-
tion of thrombin were not due to the virus fixation (supplemental
Figure 6). Moreover, concentrations as high as 1:4/1:25 vol/vol of
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C.Med, b-propiolactone–treated or untreated, failed to activate pla-
telets even after a 60-minute incubation (supplemental Figure 6).
Thus, infectious and fixed SARS-CoV-2 activate platelets in a
plasma- and thrombin-dependent manner.

The main cellular receptors for thrombin are PAR-1 and PAR-4,
which are expressed by human platelets.59 Hence, we tested if the
PAR blockers vorapaxar (PAR-1 blocker) and BMS-9861200

(PAR-4 blocker) could interfere with the activation. Individual recep-
tor blockade by vorapaxar or BMS-9861200 failed to reduce plate-
let activation (Figure 2C). Treating platelets with both vorapaxar
and BMS-9861200 before their addition to plasma-containing
SARS-CoV-2 significantly reduced, but did not fully block, platelet
activation, as seen by a lower frequency of aIIbb3*CD62P-
expressing platelets (46% [standard deviation (SD), 11.42] com-
pared with 72.7% [SD, 15.73]), 2.33 lower expression of aIIbb3*
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Figure 1. SARS-CoV-2 activates platelets in a plasma-dependent manner. Platelet responses to b-propiolactone–inactivated SARS-CoV-2 (CoV2, red) obtained

from human A549 (ACE2) cell infection or conditioned media (C.Med, blue) solution (A549 [ACE2] cell culture supernatant obtained after 4 days of culture and treatment

with b-propiolactone [1:1000 vol/vol]). (A) Platelets were stimulated with C.Med or CoV2 in the presence or absence of PFP (0.5%). Platelets were labeled and fixed after

stimulation for 7.5, 15, 30, or 60 minutes, and platelet activation was determined by flow cytometry. N 5 3. (B) Platelets were stimulated with C.Med or CoV2 (1:25 vol/vol)

in the presence of PFP (0.5%) and injected into a microfluidics system. The images were taken after 15 minutes and show fluorescently-labeled platelets in the

fibrinogen-coated channel. Representative images. N 5 4. (C) Platelets were stimulated with C.Med or CoV2 in the presence of PFP (0.5%). N 5 4. (D) Platelets were

stimulated for 60 minutes with receptor-binding domain (RBD) peptide, S1 subunit of spike, full trimeric spike protein, or thrombin in the presence of platelet-free plasma

(0.5%). N 5 4. Data are represented as mean 6 SD. Statistical analysis: (A, C, D) Ordinary two-way ANOVA followed by Sidak’s multiple comparison test. **P , .01,

***P , .001, and ****P , .0001. ns, not significant.
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and 6.53 lower CD411 EV release (Figure 2C). The data suggest
both PAR receptors are involved. The incomplete blockade indi-
cates that the used inhibitors failed at completely blocking PAR-1
and PAR-4 signaling or that other receptors on platelets, such as
GP1ba (CD42b), may respond to thrombin in addition to PAR-1
and PAR-4.60,61

TF is implicated in SARS-CoV-2–mediated

platelet activation

The role of factors FX, FII, and FVII pointed to the involvement
of the upstream cofactor TF, the primary cellular initiator of

coagulation.57,38 While CoV-2 might bear an intrinsic TF-like activity,
the most probable explanation was the presence of actual TF asso-
ciated with virus production. To assess the contribution of TF, the
specific levels of TF activity in SARS-CoV-2 and C.Med were deter-
mined. To account for potential nonspecific detection of TF activity,
a known confounder in these activity assays,62-64 a specific
TF-blocking antibody (clone HTF-1) was included in the assay (sup-
plemental Figure 7). While significant TF activity (8.62 pM [SD,
2.8]) was found in SARS-CoV-2 preparations, TF activity was unde-
tectable in C.Med (Figure 3A; supplemental Figure 7), suggesting
that (1) CoV-2 infection of cells induced active TF, and (2) SARS-
CoV-2 is associated with active TF.
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Figure 2. SARS-CoV-2 activates platelets in a TF pathway and thrombin-dependent manner. Platelet responses to b-propiolactone–inactivated SARS-CoV-2 (CoV2)

obtained from human A549 (ACE2) cell infection or conditioned media (C.Med) solution (A549 [ACE2] cell culture supernatant obtained after 4 days of culture and treatment with

b-propiolactone [1:1000 vol/vol]). (A) Platelets were stimulated with C.Med or CoV2 (1:25 vol/vol) in the presence of platelet-free plasma (0.5%) deficient in individual coagulation

factors. The heatmap indicates the mean platelet activation by CoV2 stimulation. The statistical significance symbols indicate comparisons of CoV2 with C.Med-stimulated platelets.

N 5 5. (B) Platelet stimulation with CoV2 (1:25 vol/vol) in the presence of PFP (0.5%) and in the presence of D-phenylalanyl-prolyl-arginyl chloromethyl ketone (PPACK) (0/10 mM).

CoV2 was preincubated for 15 minutes with PPACK before incubation with PFP. N 5 4. (C) Platelets were preincubated for 15 minutes with vorapaxar (20 mM) and

BMS-9861200 (20 mM), a PAR-1 and PAR-4 inhibitor, respectively, or DMSO (0.45%). Thereafter, platelets were stimulated with CoV2 (1:25 vol/vol) in the presence of PFP

(0.5%). N 5 5. Data are represented as mean 6 SD. Statistical analysis: (A) Ordinary two-way ANOVA followed by Sidak’s multiple comparison test. (B) Paired t-test.

(C) Ordinary one-way ANOVA followed by Dunnett’s multiple comparison test. *P , .05, **P , .01, ***P , .001, and ****P , .0001. ns, not significant.
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Blockade of TF using an anti-TF antibody completely prevented
platelet activation (Figure 3B) and platelet degranulation measured
by PF4 and serotonin release (Figure 3C-D). These findings were
replicated with a major SARS-CoV-2 variant of concern, as SARS-
CoV-2-D (1:8/1:25 vol/vol; 1.8E104/0.57E104 virus per mL) also
induced platelet activation in the presence of plasma (0.5%) and
was prevented by TF blockade (Figure 3E). These data indicate that
the platelet activation by SARS-CoV-2 was mediated by TF-induced
coagulation.

TF is usually indirectly detected by the assessment of its cofactor
activity and ability to stimulate coagulation. Femtomolar amounts of
TF activity suffice to accelerate blood coagulation37 and, therefore,
promote platelet activation. Indeed, we found that stimulating plate-
lets with plasma incubated with TF (lipoprotein) at concentrations as
low as 18.8 fM led to increased expression of aIIbb3* and CD62P
(93.03% [SD, 1.7]), while 75 fM sufficed to induce the release of
CD411 EVs (90.7E106 mL [SD, 29]) (supplemental Figure 8).
This suggests that even extremely low concentrations of active TF in
plasma are sufficient to trigger full activation of platelets.

SARS-CoV-2 and EVs, but not soluble proteins, are

coisolated with TF activity

While electron microscopy (EM) has been successfully used to
characterize SARS-CoV-2 viral architecture,65,66 the presence of
EVs in virus preparations has been overlooked so far. Using cryo-
EM, we confirm the presence of heterogeneous populations of EVs
in releasates of SARS-CoV2–infected cells (Figure 4). Most EVs
ranged in size from 80 nm to 500 nm and were either isolated or
associated in small clusters. The presence of a population of EVs
exposing the procoagulant lipid phosphatidylserine was demon-
strated by specific binding of annexin-V conjugated with gold par-
ticles67 (Figure 4B). Phosphatidylserine-positive EVs constitute
more than half of isolated EVs. In addition, a homogenous popula-
tion of spherical particles was observed, characterized by their nar-
row size range (80-130 nm), their typical granular density, likely
corresponding to the protein and genome package of SARS-CoV-2,
and the presence of extended proteins protruding from the particle
surface, most likely representing spike projections (Figure 4C). Thus,
virus preparations contained both SARS-CoV-2 and EVs.
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Figure 3. SARS-CoV-2 activates platelets in a TF-dependent manner. Platelet responses to b-propiolactone–inactivated SARS-CoV-2 (CoV2) obtained from human

A549 (ACE2) cell infection or conditioned media (C.Med) solution (A549 [ACE2] cell culture supernatant obtained after 4 days of culture and treatment with

b-propiolactone [1:1000 vol/vol]). (A) TF activity was assessed by TF/FVII-mediated conversion of FX to FXa and subsequent conversion of FXa substrate. TF activity was

measured in an undiluted sample. The specific TF activity indicated is calculated as total TF activity measured in the presence of control Ig minus the total TF activity

measured in the presence of anti-TF antibody HTF-1. Samples were preincubated for 15 minutes with control Ig or HTF-1. The numbers above bars indicate the estimated

TF activity in pM. N 5 4 (replicates measured in 4 separate assays). n.d. 5 not detected. (B) Platelet stimulation with CoV2 (1:25 vol/vol) in the presence of control Ig (con-
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EVs and viruses share many biophysical features, and enveloped
viruses may acquire host proteins during the budding pro-
cess.46-51,53,54 TF is primarily expressed as a membrane-bound pro-
tein that may be associated with EVs, although a soluble isoform
exists.38,39 As direct detection of TF at these concentrations is not
technically achievable,62,68 whether TF activity specifically associ-
ated with EVs, viruses, or soluble proteins was investigated through
fractionation by size-exclusion chromatography (SEC).

Concentrated SARS-CoV-2 in A549-hACE2 cell culture superna-
tant was subjected to SEC, and elution fractions were collected
(Figure 5A). The majority of EVs (71.23%) were found in fractions 3
to 5, with fraction 4 (41.70%) containing most EVs, whereas solu-
ble proteins (91.25%) were found in fractions 9 to 20 (Figure 5B).
Consistent with quantifications of EVs, the highest levels of 18S
rRNA (as a marker for host-derived EV content69) were found in
fractions 3 to 5 (supplemental Figure 9). The highest concentration
of particles expressing SARS-CoV-2 spike protein and SARS-CoV-
2 RNA was found in fraction 4 (Figure 5C; supplemental Figure 10).
SARS-CoV-2 RNA was particularly enriched compared with 18S
rRNA in fraction 4 (threefold, 6SD 0.12), indicating a higher quantity
of particles carrying viral content compared with host cell EVs. Thus,
EVs and SARS-CoV-2 are indistinguishable using SEC.

Next, specific TF activity was uniquely detected in fractions 3
through 5 (Figure 5D; supplemental Figure 11), demonstrating that
TF activity is coisolated with EVs and SARS-CoV-2. Accordingly,
strong and significant platelet activation (aIIbb3*CD62P expression)
was induced by fraction 4 (1:25 vol/vol) (Figure 5D), thereby coin-
ciding with the fraction containing the highest level of TF activity
and both EVs and virus. In sum, EV fractions are enriched in SARS-
CoV-2, and these fractions (and not soluble proteins) contain the TF
activity responsible for platelet activation.

TF expression is induced during

SARS-CoV-2 infection

As TF is the trigger for coagulation and platelet activation, we deter-
mined whether TF is associated with SARS-CoV-2 infection. The

presence of RNA coding for TF (F3) was investigated in naïve and
infected A549-hACE2 cells. Quantitative transcriptomic analyses
revealed a 4.57-fold (SD, 2.5) increase in TF mRNA 36 hours post-
infection, at a time of robust infection in the absence of apparent
cell death and destruction, in comparison with uninfected cells
(Figure 6A).

The kinetics of infection of K18-hACE2tgn mice by CoV-2 are well
described.70-72 We thus infected these mice with SARS-CoV-2.
Transcriptomic analysis of RNA isolated from lung tissues revealed
that TF gene expression was upregulated starting on day 3 (3.27-
fold; P adj 5 2.20E-17) postinfection and remained elevated on day
5 (3.24-fold; P adj 5 8.31E-17) and Day 7 (3.59-fold; P adj 5
5.13E-20) postinfection relative to uninfected mice (Figure 6B).

The presence of specific TF activity was investigated in the blood of
COVID-19 individuals with nonsevere disease (n 5 25), severe dis-
ease (n 5 25), and healthy donors (n 5 15) (supplemental Table
2). TF activity was assessed by TF/FVII-mediated conversion of FX
to FXa and subsequent conversion of FXa substrate. To specifically
attribute activity to TF,62-64 plasma samples were preincubated with
a TF-blocking antibody or a control antibody (supplemental Figure
12). Compared with healthy donors, TF activity was increased in
both patient groups, although activity was only significantly higher in
patients with severe disease (Figure 6C). These data indicate that
SARS-CoV-2 infection induces TF expression and activity, which
may be a mechanism for platelet activation by SARS-CoV-2.

Discussion

We found that supernatants from SARS-CoV-22infected cells
induced platelet activation, as seen by the expression of classical
activation markers, degranulation, the release of EVs, and aggrega-
tion under flow conditions. This activation was not mediated by
SARS-CoV-2 spike proteins and was critically dependent on coagu-
lation factors provided by plasma. We identified thrombin as the
ligand for platelet activation and TF activity associated with SARS-
CoV-2 as the trigger. This suggests that platelet hyperactivation
observed in COVID-19 may be mediated by TF activity induced by

A B C

Figure 4. Cryo-electron microscopy of releasate from SARS-CoV-2–infected cells. (A) A set of EVs, ranging in size from 100 to 500 nm. Some EVs contain smaller

EVs, as frequently observed in EV samples from various origins. (B) Two EVs side-by-side. One EV is specifically labeled with Anx5 gold particles, thus exposing the

procoagulant lipid phosphatidylserine; the other one is unlabeled, thus does not expose phosphatidylserine. (C) A group of virus particles, characterized by their

homogenous granularity and the presence of long protein protrusions (white arrows) corresponding most likely to spike proteins. (A-C) The white stars indicate thin threads

of the carbon support film.
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SARS-CoV-2 infection rather than direct SARS-CoV-2 platelet inter-
action. This finding may explain some of the reported coagulation
abnormalities in COVID-19 and provide a rationale to specifically
target TF, thrombin, and/or PARs when developing treatments for
COVID-19. These findings are recapitulated in Figure 7.

SARS-CoV-2 RNA in association with platelets was reported in
patients,16,17,23 and viremia in plasma has been detected in 27% of
patients hospitalized with COVID-19.73 Increased viral load may be
associated with disease severity.73 However, the SARS-CoV-2 viral
RNA copy number in blood was in the range of 63 to 6310 copies
per mL of blood.73 In contrast, the concentration of platelets is

1.50E108 to 4.50E108 per mL of blood in healthy adults. There-
fore, the estimated virus-to-platelets ratio ranges from 1 virus per
23800 (MOI, 4.2E-5) to 7.14E106 (MOI, 1.4E-7) platelets per mL
of blood in individuals with detectable viremia.73 We found that pla-
telets were activated in the presence of SARS-CoV-2 in the range
of up to 1 virus per 4200 platelets (23805 PFU per 100E106 pla-
telets; MOI, 2.38E-4) and only in the presence of plasma. In con-
trast, lower concentrations of SARS-CoV-2 (similar to those
reported in vivo73) were insufficient. Moreover, while other viruses,
such as dengue virus74 and human immunodeficiency virus,75

infect,74,75 and replicate74 in platelets, only uptake and degradation
by platelets have been demonstrated by electron microscopy for
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SARS-CoV-2.23 Even at high viral concentrations (1 virus per 10
platelets; MOI, 0.1), no platelet activation was observed in the
absence of plasma.23 We cannot exclude that lung megakaryocytes,
rather than platelets, may directly interact with SARS-CoV-2,22,76,77

but overall, these observations suggest that direct platelet–SARS-
CoV-2 interactions in the blood may be rare and may not explain
platelet hyperactivation in COVID-19.

Although more work is needed to address whether and how the
mechanism revealed herein is clinically relevant in patients, we
found TF activity associated with SARS-CoV-2 infection and
that a TF-blocking antibody completely prevented plasma-
dependent activation of platelets by SARS-CoV-2 in vitro.
Active TF is absent from blood under normal conditions, and
even small increases in TF activity have a marked effect.37,39

Several studies reported increased TF expression in COVID-
19.41,43,78-81 We estimated that the level of TF activity associ-
ated with SARS-CoV-2 that was required to induce platelet acti-
vation was as low as 43 fM (based on Figure 1C and Figure 3A),
which was comparable to the activity of recombinant TF required for
platelet stimulation (supplemental Figure 8). Guervilly and col-
leagues41 report that TF activity levels of 78.3 fM and higher in the
circulation correlate with disease severity and mortality in COVID-
19,41 indicating that such low levels of TF activity in the circulation
may be clinically relevant. We also observed that TF expression can
be induced in vitro and in vivo in a K18-ACE2tgn murine model of
infection. In accordance with other reports, we observed that TF
activity in plasma was increased in COVID-19, particularly in individu-
als with severe disease. TF-activity associated with SARS-CoV-2
infection may thereby present a mode of platelet activation even

though the low concentrations of SARS-CoV-2 in the circulation
make direct virus–platelet interactions unlikely.

TF is primarily expressed as a membrane-bound protein, although a
soluble isoform exists.38,39 However, the soluble form of TF is less
procoagulant,38 and efficient propagation of coagulation requires
the presence of lipid membranes,38 particularly those exposing
phosphatidylserine.38,39 Thus, high levels of TF activity may be asso-
ciated with phosphatidylserine-exposing cells or EVs.38,39 Intrigu-
ingly, SARS-CoV-2 spike protein pseudotyped viral infection of
human monocyte-derived macrophage cells can induce the release
of EVs with associated TF activity that critically required the decryp-
tion (activation) of TF by sphingomyelinase.44,82 It is currently not
known whether this novel mechanism of TF decryption is responsi-
ble for increased TF activity observed in the plasma of patients with
COVID-19.82 While the mechanism of TF upregulation is unknown,
it is interesting to consider that TF is structurally related to interferon
receptors83 and increases in TF activity, or expression seems to be
common in viral infections.84 Furthermore, through the budding pro-
cess of enveloped viruses, host-derived membrane proteins may be
acquired.46-51 Thus, other than in association with EVs, TF might be
acquired during the maturation process of SARS-CoV-2. We char-
acterized supernatants of infected cells by electron microscopy and
found that these contained both SARS-CoV-2 virions and EVs,
which could not be separated from each other by SEC. SEC, how-
ever, enabled us to establish the particulate nature of the TF activity.
As direct detection of TF protein and separation of virions from EVs
are not possible,53,54,62,68 it remains unknown whether TF protein
was inherited by virions and/or EVs. However, as both enveloped
viruses and EVs comprise host cell membranes, there is currently
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no rationale for excluding the possibility that TF may be expressed
by both EVs and SARS-CoV-2.

In conclusion, we describe a potential mechanism for SARS-CoV-
2–mediated platelet hyperactivation and highlight the importance of
distinguishing host-derived from viral components when studying
the biological activity of viruses. The study suggests further direc-
tions for the development of new therapeutic approaches for the
treatment of COVID-19.
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