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Abstract: In sport science, athlete tracking and motion analysis are essential for monitoring and
optimizing training programs, with the goal of increasing success in competition and preventing
injury. At present, contact-free, camera-based, multi-athlete detection and tracking have become a
reality, mainly due to the advances in machine learning regarding computer vision and, specifically,
advances in artificial convolutional neural networks (CNN), used for human pose estimation (HPE-
CNN) in image sequences. Sport science in general, as well as coaches and athletes in particular,
would greatly benefit from HPE-CNN-based tracking, but the sheer amount of HPE-CNNs available,
as well as their complexity, pose a hurdle to the adoption of this new technology. It is unclear how
many HPE-CNNs which are available at present are ready to use in out-of-the-box inference to
squash, to what extent they allow motion analysis and if detections can easily be used to provide
insight to coaches and athletes. Therefore, we conducted a systematic investigation of more than
250 HPE-CNNs. After applying our selection criteria of open-source, pre-trained, state-of-the-art
and ready-to-use, five variants of three HPE-CNNs remained, and were evaluated in the context of
motion analysis for the racket sport of squash. Specifically, we are interested in detecting player’s
feet in videos from a single camera and investigated the detection accuracy of all HPE-CNNs. To
that end, we created a ground-truth dataset from publicly available squash videos by developing
our own annotation tool and manually labeling frames and events. We present heatmaps, which
depict the court floor using a color scale and highlight areas according to the relative time for which
a player occupied that location during matchplay. These are used to provide insight into detections.
Finally, we created a decision flow chart to help sport scientists, coaches and athletes to decide which
HPE-CNN is best for player detection and tracking in a given application scenario.

Keywords: racket sports; sports analysis; video tracking; human pose estimation

1. Introduction

Training is an integral part of sports. Well-planned and conscientiously executed adap-
tation mechanisms can lead to improvements in athletes’ performance, and an optimized
training program can ultimately lead to more success in competition, while decreasing
the risk of injury [1]. At present, training quality and effectiveness can be quantitatively
evaluated and measured using different types of sensors. For physiological core measures,
such as fitness and endurance wearable sensors, monitors for heart rate, blood pressure
and oxygen level are available [2]. Likewise, for training aspects generally concerning
movement and game tactics, motion sensors are available to measure velocity, acceleration
and motion trajectories [3]. A classic example can be found in football (soccer), where team
performance and collaboration is paramount and, therefore, individual player on-field
locations, moves and motion paths are analyzed [4,5].
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The SAGIT/Squash, introduced by Pers in 2008 and improved and used by Vuc̆ković
et al. [6], represents an early example of camera-based player-tracking in squash. The
system requires a downward-facing camera mounted on the ceiling, centered above the
court. The SAGIT/Squash system was used for several studies [7–9].

As well as the classic tracking approaches evaluated by van der Kruk and Reijne [3], the
development of convolutional neural networks (CNN) in the field of deep machine learning
for computer vision may offer new approaches for detection and tracking applications in
sport sciences. Classic applications for CNNs are for example recognizing and classifying
images of handwritten digits [10]. Recently, CNNs found wide application in the field
of medical imaging for applications such classification or segmentation [11]. In addition,
deep learning has also been successfully applied in the area network data transmission
and traffic classification technology [12,13]. For handball [14] and football [15] specifically,
CNNs have been used for player detection and tracking.

Due to the increased interest in machine learning, the sheer number of human pose
estimation convolutional neural networks (HPE-CNNs) available and their complexity
pose a hurdle to the adoption and implementation of this new technology. It is unclear how
many are open-source, pre-trained and, out-of-the-box, ready-to-use for player detection
and motion analysis in squash. Therefore, we address the following research questions:

• RQ1: How many HPE-CNNs available today are ready to use for out-of-the-box
inference on squash data for motion analysis?

• RQ2: To what extent and with what accuracy do they allow motion analysis in squash?
• RQ3: Can the data obtained from the HPE-CNNs selected in RQ2 be easily used to

provide insight to coaches and athletes?

To answer the first question, we conducted a systematic investigation of more than 250
HPE-CNNs. After applying our selection criteria of open-source, pre-trained, state-of-the-
art and ready-to-use HPE-CNNs, three of five variants remained. Regarding question two,
we evaluate the detection accuracy of different HPE-CNNs. To evaluate and compare them,
a labeled dataset is required, since no dedicated squash dataset is available. Therefore, we
created a novel ground truth dataset for evaluation by developing and implementing a
labeling tool. We accessed publicly available squash matches with different court conditions
and annotated the athletes’ feet. For the last research question, we present heatmaps that
reflect players’ motion as detected by various HPE-CNNs, as well as players’ true motion,
as obtained from our manually labeled dataset.

1.1. Related Work

The general task of locating one or several objects in a scene over time while keeping
track of their identity is commonly known as object tracking or simply tracking. Tracking
has applications in a wide range of domains, and therefore has been heavily researched in
various communities. For example, in sport sciences, a specific athlete is tracked over time
in a preferably unobtrusive manner during training and competition, thereby collecting
movement data for measuring performance or game tactical aspects.

Different approaches have been developed for tracking athletes and applied to various
sports. Early work dates back to the 1970s, where the movement and work-rates of different
positions in English soccer players were analyzed using a manual notation system [16]. Today,
more sophisticated approaches are available, due to computer technology improving in terms
of computing power, size (miniaturization), energy consumption and affordability.

For example, in their work, Kirkup et al. [17] demonstrate that the localizing of indoor
basketball players can be achieved by their wearing a lightweight combination of an
acceleration sensor and a radio frequency transmitting beacon. With the development of
modern camera technology and its wider and more affordable availability, computer vision
has become an important research field for human motion capture [18] in general, and in
position localization in particular.

A single camera can potentially be used to obtain the essential movement data of sev-
eral athletes simultaneously in an effective and contact-free manner. Different approaches
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such as marker- and non-marker-based methods have been described [19,20]. Additionally,
the broad public interest in various sports and the free-of-charge availability of online
video-sharing platforms, such as YouTube results, in the availability of a considerable
amount of video data, which can be used for retrospective analyses. Apart from the use
of markers, computer-vision-based tracking systems can be classified into either multi-
camera or single-camera systems, where camera technology can be conventional, e.g.,
monochrome, color (RGB), or more advanced, such as depth cameras based on structured
light or time-of-flight measurements.

While it is not possible to perform a full three-dimensional reconstruction of a single
RGB-camera image, due to the lack of depth information, methods using depth-sensitive
cameras have been evaluated for human motion tracking [21,22]. In this regard, Microsoft’s
Kinect v1 and v2 were of special interest. The first, introduced to the gaming market in
2010, utilizes a structured light depth sensor and the second, introduced in 2014, is based
on a time-of-flight depth sensor. In 2013, Choppin and Wheat investigated the Kinect’s
potential for biomechanical sports analysis, including player tracking, and concluded
that the v1 could potentially be used in coaching and education situations [23]. These
findings were confirmed by He et al. for the sport of badminton, where the Kinect v1
is used to guide training, reduce movement intensity and improve the overall training
efficiency [24]. For home-based training, van Diest et al. found that the Kinect System
was able to accurately identify all relevant body features needed for motion capture [25].
Further hardware improvements led to the introduction of the Kinect v2, featuring new
active infrared capabilities, higher resolution camera and new depth sensing. The v2 has
been investigated by Alabbasi et al. regarding its potential for human motion tracking.
The authors found higher accuracy and concluded that the new version is capable of
real-time motion sensing for rehabilitation and physical training exercises [26]. Another
application can be found in balance training for the elderly, where a Kinect System is used
to characterize a person’s ability to maintain static or dynamic balance [27].

Outside of the Kinect, more general approaches do not rely on depth cameras, and
instead use multi-camera systems, which are either marker- or non-marker-based. Here,
multiple-view geometry is applied, which uses point correspondences in several views to
reconstruct depth information [28]. An overview of different systems for different sports
applications is given by van der Kruk and Reijne [3]. All systems are used for a variety
of purposes, from entertainment and training to medical applications. As these systems
provide valuable data on the athlete’s performance in competition or training situations,
they are of particular value for optimizing training and match preparation. Beyond gaining
insight into individual performances, motion tracking can also be used to analyze team
performances [29].

One technology that has gained attention due to its major impact in the field of
machine learning is human pose estimation (HPE). In computer vision, this task is defined
as fitting or finding certain keypoints (joints) of a single person or multiple people and
connecting them (bones) to form a human skeleton. For multi-person HPE, there are
basically two different methods to distinguish between. The top-down approach first tries
to detect all people individually in the image, and then estimates individual poses. For a
bottom-up approach, keypoints are detected individually, and then subsequently grouped
and assigned to individual people. A comprehensive survey of deep-learning-based HPE
is given by Chen et al. [30].

In addition, other algorithms from the field of (deep) machine learning are used,
besides HPE, for different tasks in various sports. Table 1 shows an overview of the
publications, together with the corresponding sports. As can be seen, object and player
segmentation or detection has been explored and applied to a variety of sport applications.
HPE and classification are the main, but not the only, research topics and applications for
machine learning in sports. Moreover, publications are not limited to a single activity, but
are broadly distributed across different sports. As an example, Liang et al. [31] proposed
a K-Shortest Path (KSP) algorithm to track multiple player detections, obtained by a
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CNN, together with a re-identification algorithm based on support vector machines (SVM)
in basketball. In [32], an object detector is used in conjunction with an HPE-CNN to
infer player possession of either a frisbee or a ball. Similarly, for the sport of curling, an
object detector was used for player and curling stone detection [33]. Other HPE-CNN
applications include speed detection in running [34] and player pose analysis in tennis [35].
Other machine learning approaches have been used for the detection and classification
of direction changes in tennis [36] and referee signal recognition in basketball [37]. Other
applications use sensor data instead of images. As an example, Anand et al. [38] proposed
a system for swing detection and shot classification with a CNN and bidirectional long
short-term memory (BLSTM) in racket sports for tennis, badminton and squash, based on
wearable motion sensor data.

Table 1. Related work regarding applications of machine learning in sports.

Year Title and Reference Application

2020
Multi-Player Tracking for Multi-View Sports
Videos with Improved K-Shortest Path
Algorithm [31]

Basketball

2020 Real-Time Possessing Relationship Detection for
Sports Analytics [32] Frisbee & Football (soccer)

2020
Study on Sports Volleyball Tracking Technology
Based on Image Processing and 3D Space
Matching [39]

Volleyball

2020 Detection of Ice Hockey Players and Teams via a
Two-Phase Cascaded CNN Model [40] Ice Hockey

2020 Utilizing Mask R-CNN for Waterline Detection
in Canoe Sprint Video Analysis [41] Canoe

2020 FISHnet: Learning to Segment the Silhouettes of
Swimmers [42] Swimming

2020 Human Pose Estimation based Speed Detection
System for Running on Treadmill [34] Running

2019
Analyzing Basketball Movements and Pass
Relationships Using Realtime Object Tracking
Techniques Based on Deep Learning [29]

Basketball

2019

A machine learning approach for automatic
detection and classification of changes of
direction from player tracking data in
professional tennis [36]

Tennis

2019 YOLO based Intelligent Tracking System for
Curling Sport [33] Curling

2018
Recognition of basketball referee signals from
videos using Histogram of Oriented Gradients
(HOG) and Support Vector Machine (SVM) [37]

Basketball

2018 Player Pose Analysis in Tennis Video based on
Pose Estimation [35] Tennis

2018
Mask R-CNN and Optical Flow Based Method
for Detection and Marking of Handball Actions
[14]

Handball

2017 Wearable Motion Sensor Based Analysis of
Swing Sports [38] Tennis, Badminton, Squash

2012 Recognizing tactic patterns in broadcast
basketball video using player trajectory [43] Basketball

1.2. Organization

Here, we focus on the racket and ball sport of squash, and aim for player localization
and motion tracking by detecting players’ feet using HPE-CNNs in video images. We
evaluated existing HPE-CNNs first, before considering the creation of a new one, and
examined their applicability to the sport of squash. Therefore, our methods section begins
with an outline of our general approach. We then introduce our selection criteria and the
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related selection process necessary for answering RQ1. Then, we introduce our annotation
software, which is used to label feet and event information in squash videos to create
a labeled dataset. After presenting a video selection of which HPE-CNNs performed
inference, our evaluation procedure is introduced, which aggregates HPE-CNN detections
and dataset labels. The evaluation procedure is used to answer RQ2. Finally, we present
our method for visual comparison of HPE-CNN detections and dataset labels to answer
RQ3. Subsequently the results are presented. After the discussion, the paper is concluded,
and closes with our future work.

2. Materials and Methods

Figure 1 illustrates our method, where numbering corresponds to presented sections.
Colors group logical components, necessary for answering the research questions (RQ1–RQ3):
Section 2.1 covers our selection process of including freely available HPE-CNNs for inference
in our analysis (RQ1). Section 2.2 is dedicated to the creation of test data, together with the
correct labels for inference and evaluation. Creating correct labels requires a tool to manually
annotate (label) every frame of all videos. The requirements and implementation are covered
in Section 2.2.1. Data creation also requires the selection of suitable videos (Section 2.2.2) from
freely available squash matches, covering a wide variety of recording scenarios. The labeling
process, where all videos were manually annotated, is covered in Section 2.2.3. In our case,
labeling the data requires finding the correct x-, y-coordinate of the center of each players’ left
and right foot. Section 2.3 is concerned with our procedure for evaluating the performance
of detections obtained by Section 2.1 selected HPE-CNNs based on the test data created in
Section 2.2 (RQ2). Finally, Section 2.4 presents a visualization technique for displaying spatial
distribution of player locations on court (RQ3).

Figure 1. Illustration and example of the different components and their relationship. Left: Section 2.1:
Selecting different pre-trained human pose estimation convolutional neural networks (HPE-CNNs)
and performing inference, results in CNN detections. Section 2.2: Manually creating a labeled squash
dataset by annotating selected videos, results in (ground truth) dataset labels. Section 2.3: Evaluating
detections regarding labels using our evaluation procedure. Section 2.4: Utilizing detections and labels
for heatmap visualizations. Right: Example detections (circles) of a CNN-based connected human body
pose estimator overlaid on the processed video frame.

2.1. Selecting CNNs

We conduct a structured search based on the following criteria (C0–C6), which we
identified to answer RQ1:

C0: Multi-Person/Multi-Feet detection;
C1: Published and implemented source code;
C2: Code must be up to date;
C3: Available pre-trained model weights;
C4: Machine-readable output;
C5: Demo/Showcase application;
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C6: Reasonable effort in setting up.

To find a list of publicly available HPE-CNNs, we searched on paperswithcode [44]
(date: 27 April 2020), which is a community-driven project. The community’s goal is to
provide a free resource for everyone, covering various machine learning tasks and linking
them to their available implementations.

As shown in Figure 2, our initial search for “Pose Estimation Algorithms” results in a
total amount of 257 articles, which constitutes the starting point of our selection process.
As these contain pose estimation algorithms for full human body, hand or head and animal
poses, we narrowed our search to the field of Multi-Person Pose Estimation. Multi-Person
in contrast to Single-Person is needed due to the fact that in singles squash two athletes
are visible at a time. After applying criteria (C0) and dropping duplicates in the result,
23 articles remained. Investigating the linked source-code repositories to check if the code is
published and implemented (C1) resulted in dropping another six algorithms. The reasons
are either incomplete implementations or empty repositories where the authors have not
yet published their code. Dropping another algorithm for an outdated code base (C2),
16 algorithms are still under consideration. Next, we limit our search to publications which
provide a pre-trained neural network and therefore the corresponding model weights (C3).
This is needed to skip the time and resource consuming process of training a complex neural
network. The reasons for not meeting the criterion are first missing model weights, second
dead links and finally a broken download archive. Thus, we considered 11 algorithms and
investigated if they provide a machine readable output or offer an export of their estimation
in C4. This is necessary to evaluate the algorithms accuracy and compare them in different
scenarios. While two algorithms could be extended with minimal modifications, six others
could not be extended easily. Reviewing the remaining repositories and looking for a
demo/showcase application, where we can input our custom video/image list (C5), we
had to drop another algorithm. This algorithm’s showcases only allowed for operation on
a predefined training and validation set. Finally, after following the setup instructions for
each algorithm, one did not lead to any results (C6), and was therefore excluded.

Figure 2. The algorithm selection process. Starting with an initial search, n = 257 algorithms are
considered. After applying C0–C6, finally n = 3 papers remain.

All three algorithms differ in their processing speed, as shown in Table 2. For A0, the
authors state a runtime of 220 ms f−1 (4.55 f s−1) on a single core Intel Xeon 2.70 GHz [45].
According to the authors of A1, the runtime depends on two processing phases. The
first one, the person part detection, attains a constant runtime of 99.6 ms f−1, which is
independent of the number of visible people in the image. The second processing step,
which merges the detections, achieves a speed of 0.58 ms f−1 for 9 people. In general, the
authors report a total runtime of 113.64 ms f−1 (8.8 f s−1) for 19 people on a laptop with an
NVIDIA GeForce GTX-1080 GPU [46]. For algorithm A2 we use the TensorFlow.js version,
which is implemented in ml5.js. This implementation’s performance is dependent on
user-definable variables such as the input image scale factor and the output stride, which
affects the internal shape of the network layers. Using the default values provided by the
implementation shows a performance of ≈100 ms f−1 (10 f s−1) on an off-the-shelf laptop.
Every algorithm variant processes all resampled frames for each of the four videos V0–V3.
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Table 2. Resulting three algorithms. A1 comes in three different flavors F0–F2, such that a total of
five algorithms can be compared to each other.

Identifier Name Training Data Architecture Runtime (FPS)

A0 Arttrack [45,47] MPII [48] ResNet-101 4.55
A1F0 OpenPose [46] COCO [49] + Foot [46] VGG-19 8.8
A1F1 OpenPose [46] COCO [49] VGG-19 8.8
A1F2 OpenPose [46] MPII [48] VGG-19 8.8

A2 PoseNet [50,51] COCO [49] MobileNetV1 10.0

All three selected HPE-CNNs differ in terms of their architecture. As shown in Table 2,
A0 shows the deepest architecture using a ResNet-101 [52] with an adapted stride for
the body part detection [45]. A1 is composed of fewer layers by using the first 10 layers
of VGG-19 to initially create feature maps, which are then processed in six two-branch
stages. The first stage stages’ branches consist of each five convolutional layers, while the
remaining five successive stages are composed of seven convolutional layers each. The
flattest network is A2, as the 28 layer deep MobileNetV1 is used.

2.2. Creating a Labeled Squash Dataset

To evaluate the accuracy of the resulting HPE-CNNs, a domain-specific dataset is
required. Datasets containing ground truth information for articulated human body pose
estimation [48] or object detection [49] exist. However, as of today, there is no available
dataset for squash players on the court. In Section 2.2.1, we start by assembling a list of
requirements for a tool to annotate squash video data for feet detection purposes. We then
evaluate existing software tools against these requirements and present our own custom-
developed, dedicated annotation tool. In Section 2.2.2, we then describe our process for
selecting real-world squash videos for inclusion in this study, show their specialties and
describe our applied preprocessing procedure. In the last Section 2.2.3, we show our actual
annotation procedure, which finally leads to the labeled dataset.

2.2.1. Annotation Tool

To evaluate the accuracy of feet positions detected in video data by modern machine
learning algorithms, a dataset with known labels is required. However, as of today, there
is no available dataset for squash players on the court. In order to create the necessary
dataset, a software tool is needed which fulfills the following requirements (R0–R4):

R0: Step through single frames in videos;
R1: Assign identifiers to objects of interest (OOI);
R2: Annotate OOI locations as points in frames;
R3: Annotate events for individual frames;
R4: Export annotations in a machine-readable format.

All requirements are essential in our context of creating spatial labels on players’ feet
in every frame in a video, and evaluating them in our toolkit. Requirement R3 is of special
interest, as it allows for the annotation of additional non-spatial meta information, i.e.,
the start and end of a rally. An online search for existing free tools, which are suitable for
annotation in machine learning, led to PixelAnnotationTool (PAT) [53], LabelMe (LM) [54]
and Computer Vision Annotation Tool (CVAT) [55]. Apart from PAT, these offer the
possibility of processing videos on a frame-by-frame basis and thus match requirement
R0. For PAT, a preceding extraction of single images would be necessary. In addition, PAT
does not completely fulfill requirement R1, since it primarily represents a semantic rather
than an instance classification, while both other tools meet this requirement. As we want to
annotate feet positions as individual points in frames (R2), a tool must be able to annotate
individual points, which is only implemented in CVAT, while PAT and LM are only able
to annotate box/polygon shapes. However, one could interpret the barycenter of the box
or the polygon as the desired point location. Regarding the machine readable export, all
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three tools comply with requirement R4. However, none of them can handle the annotation
of non-spatial events requirement (R3). A complete comparison is shown in Table 3. As
can be seen, neither PAT, LM nor CVAT entirely fulfill our requirements, necessitating the
creation of a custom tool.

Table 3. Compliance table of requirements R0–R4 for different annotation tools. A tool either fulfills
the requirement completely (+), partially (/) or not at all (–).

Tool R0 R1 R2 R3 R4

LM + + / – +
PAT – / / – +

CVAT + + + – +
Our Tool + + + + +

We developed a tool which is able to perform custom instance labelling of objects
using single points combined with an identifier (ID) for each frame in a video individually.
By using the same ID over multiple frames, the object is tracked through the entire frame-
by-frame sequence. As shown in Figure 3, we additionally implemented eventgroups (EG)
in our tool. An EG (e.g., game state) is basically a set of an arbitrary number of customizable
events (e.g., non-rally, rally) which may occur in frames. Note that events inside a single
EG are disjointed in pairs, as only a single event per EG can occur in a single frame.

Figure 3. Overview and example of the event group annotation system. Event groups EG0 (game
state), EG1 and EG2 are shown as horizontal lines representing time t. Frames with spatial markers
(feet positions) are shown above and numbered f0– f2. In f0 the event E0 (switch to rally) of EG0

occurs. Markers are identified in time by a symbol, here shown as different shapes (e.g., star).

When exporting annotated video data, our tool exports two separate files in JavaScript
Object Notation (JSON), where the first one contains descriptive data (e.g., frame size)
together with the corresponding markers as spatial labels in normalized pixel space. The
other contains only the event groups and actual events, while both use the correspond-
ing frame number as key for image assignment. Thus our tool satisfies all identified
requirements R0–R4, and will therefore be used for annotating videos.

2.2.2. Selecting Videos

To create the necessary labeled dataset for processing and evaluating HPE-CNN
detections in squash matches (RQ2), it is necessary to select video recordings. Since we
intentionally do not use the SAGIT/Squash system, requiring a bird’s eye view of the
court, we are free to choose from a vast number of online available squash matches. For
that purpose, we carried out a search on the most popular video-sharing platform, [56],



Sensors 2021, 21, 4550 9 of 25

for different squash matches. We decided to select four different courts with different
conditions. Figure 4 shows one example frame for each selected video.

Figure 4. Example frames from videos (V0–V3), used to evaluate HPE-CNNs. Each image is
representative of the special aspect of the respective video. (V0) is a standard court situation. (V1)
shows reflections on the side walls (i) and (V2) additionally shows the mirrored audience (ii). In
(V3), a supporting beam (iii) occludes the image. Please note: due to privacy reasons, players were
removed and names, scores and sponsors were blurred.

The first video V0 shows a basic squash court, which can typically can found in a racket
sports center. It shows the well-known white front and side walls with line markings in
red. Only the back wall is made of glass. The court in video V1 is representative of a typical
indoor show court, featuring four glass walls. This results in reflections of both players
during the match. What happens if a glass court is located outside, e.g., for a big world tour
event, is shown in V2. The audience is reflected in the back wall and, additionally, there are
photographers above the tin behind the front wall. The last video V3 is similar to V0, as it
shows a typical indoor court. However, a white supporting beam is located in the middle
of the scene, which leads to players being partially occluded. The back wall is still made
of glass. All show courts typically use different color schemes for glass tint, line and floor
color, as long as they contrast with any other color [57] (10.13).We considered men’s and
women’s matches. Table 4 summarizes the differences between V0–V3 and provides some
more technical information about the videos, such as their spatial and time resolutions.

Table 4. Additional information for videos included in the dataset.

Resolution (w,h) FPS Frames Frames
Resampled Court Aspects

V0 (1920, 1080) 50 94, 285 1886 default
V1 (1920, 1080) 50 43, 435 869 reflective, glass

V2 (1280, 720) 25 3646 146 reflective, glass, mirrored
audience

V3 (1920, 1080) 25 38, 794 1431 default, white support beam

Besides the aforementioned variations, some characteristics are shared by all videos:
all of them are filmed with a single camera located behind the court, providing nearly
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the same perspective as RBG-frames for the entire gameplay. In addition, the camera is
mounted in a stationary position at its location and does not pan, tilt or zoom. Thus, the
provided images are stable and the camera angles do not change.

All of our selected videos were subsequently preprocessed. As can be seen in Table 4
the sum of frames for all videos is 180,160. Assuming that, in each frame, four feet are
visible, and that it takes one second to annotate each foot position with a single click, we
arrive at a minimum of 720,640 s ≈ 200 h, which is not practical. Instead of using all
frames, we performed a temporal resampling of the entire videos while preserving their
corresponding spatial resolutions to reduce the annotation time. For that purpose, we
select one frame for every video second and discard all the others. Additionally, keeping
only a single frame for every second increases the inter-frame variability, while reducing
the temporal resolution. Furthermore, the original video V2 contains recordings from
additional cameras from different angles, which were removed before the resampling
process. Finally, a total amount of 4332 frames remains.

2.2.3. Annotating Videos

In this section, we describe our procedure to obtain the dataset. For that, we use our
software tool, presented in Section 2.2.1 to label the videos selected in Section 2.2.2. For
each input video, the following procedure is applied: First, the resampled, preprocessed
video is loaded into our annotation tool. Second, an initial list of labels for OOI annotation
is created. The list contains identifiers for both players’ feet, where ID = 0, ID = 1 represent
the first player, and ID = 2, ID = 3 the second player’s left and right foot. Next, by stepping
through the video frame-by-frame, markers are re-positioned by hand to match the correct
feet in pixel space in each frame. Beside the markers, we used our custom event system
to distinguish between ball in play and ball in hand. For that, we created an event group
called “game_state”, which contains “rally_start” and “rally_end” events. These were
then assigned to the closest frames in time whenever a sequence of shots began or ended.
After finishing this process, the results were exported and stored to disk. Normalization
of marker positions was carried out by dividing every pixel coordinate with the video
resolution, so that the frame’s origin is located in the top left corner. These files, containing
our labels, are publicly available on GitHub and are ready to serve as the ground truth in
the evaluation procedure described in the next section.

2.3. Evaluation Procedure

Here, we present our evaluation procedure, which is implemented using Python 3.8
with numpy 1.18.1, pandas 1.0.2, scipy 1.4.1, and opencv-python 4.2.0 libraries. It evaluates
the HPE-CNNs’ detections together with the ground truth dataset labels. In Section 2.3.1 we
begin by presenting our procedure for classifying a detection as correct or not, and present
the associated evaluation metrics computed. Subsequently, Section 2.3.2 was dedicated to
grouping options for evaluation.

2.3.1. Evaluation Metrics

For evaluation, it is important to decide whether or not a detection correctly matches
a label. We intentionally did not use the percentage of correct parts (PCP) or the percentage
of correct keypoints (PCK) for this purpose, because we had not annotated the full human
poses in our dataset, only the feet keypoints. Instead, our task was evaluated similar to
object detection, where we considered the L2-Norm pixel distance of the detection with
respect to labels at different thresholds. If a detected marker fulfilled a required threshold,
it was considered as true positive (TP), and as a false positive (FP) otherwise. In addition,
if no labels were detected, then this was referred to as false negative (FN). True negative
values were not calculated. This is due to the fact that a true negative would be a correctly
undetected label. Based on frame individual TP, FP, and FN values, we then calculated
different evaluation metrics. First, we computed the precision (PPV) as the fraction of
those detected among all as positive classified instances. Second, we calculated the recall
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(TPR) as the fraction of all as correct classified instances, divided by all relevant labels (see
Equation (1). Although both are standalone metrics, it is important and common to place
them in a relationship. To address this, we also reported the threat score TS and, more
importantly, the F1 score, as the harmonic mean of PPV and TPR (Equation (2)):

PPV =
TP

TP + FP
TPR =

TP
TP+FN

(1)

TS =
TP

TP + FP + FN
F1 = 2 · PPV · TPR

PPV + TPR
(2)

Since we evaluated the selected HPE-CNNs using object detection, average precision
(AP) was one of the most common metrics used to determine the accuracy. AP was
calculated by utilizing the prediction scores (confidences), which are usually provided for
each single detection, together with the computed precision and recall values. As well as
these metrics, we computed the spatial information. For this, the normalized and absolute
pixel errors to the closest matched labels were calculated for the detections individually,
and stored on-site with their TP classifications.

2.3.2. Grouping Options for Evaluation

Our evaluation procedure allows for the grouping/observation of results with respect
to different characteristics. By knowing the start- and end-of-shot sequences, by using the
game states as our event labels, we could infer whether or not a frame was part of a rally.
When we observed only frames that were part of a rally, we referred to this as “frames
rally” (FR). When considering only non-rally frames, we used the term “frames non rally”
(FNR). To include both types of frame, “frames all” (FA) was used.

Since we labeled left and right feet separately, and the HPE-CNNs also report them
separately, we differentiated between types used for detection in our evaluation. The first
option is to ignore the players’ feet identifier (i.e., left/right) and match every detection
with all unmatched labels per frame. Thus, no distinction between left and right feet is
made. We refer to this as “match all” (MA). The other possibility is to consider the players’
feet individually, and distinguish between left and right foot detections. For this, we
tried to match every individual left foot detection with all unmatched left foot labels, and
right detections with right labels. When we evaluated this, we referred to it as “match
individually” (MI). For matching, we used the detection that was most similar to our foot
labels. In case of A1F0, this is the body model’s heel detection. For the others, only the
ankle position was detected and used.

2.4. Heatmap Visualizations

In this section, we outline a method and example application of how the detection
results can be utilized (RQ3). If the goal is to implement and evaluate a sport-specific
training procedure, the spatial location distribution of players during a match is of special
interest. Additionally, considering individual player locations may show their strengths
and weaknesses, which may help with coaching during an athlete’s training process. For
this, we will show how we use heatmaps as a graphical representation technique for
marker (label) locations. Heatmaps are a visualization technique using a color scale, which
highlight areas according to the amount of time a player spent at that specific location
during matchplay. As can be seen in Figure 5, we created two types of heatmap. One is seen
from the camera’s perspective, and is used as an overlay image on top of the corresponding
video frame for qualitative analysis. The other represents a virtual bird’s eye view of the
court. For this view, we estimated the players’ on-court location from the image pixel. We
utilized the presence of a well-known calibration object in every frame: the court with
its play lines. Using this, camera calibration can be performed and the resulting camera
parameters allow for the estimation of the projection of any image pixel onto the court floor.
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Figure 5. Synthetic heatmaps illustrating the use of a color scale to encode location and time.
Heatmap overlaid on a video frame (left) and a virtual top-down view (right). (i)–(vi) indicate six
different court locations and, by means of a color scale, the different durations of time for which
a player occupied a location during matchplay. For better visualization, the gaussian kernel was
used to increase the accumulator values, and was parameterized with 127× 127 px and a standard
deviation σ = 15 for this figure only.

2.4.1. Overlay Heatmaps

Overlay heatmaps were computed for A0–A2 separately. Each used a M× N accu-
mulator matrix, where M× N × 3 corresponds to the resolution of the color input video.
Additionally, a 21× 21 normalized gaussian kernel, with a standard deviation σ = 5 along
both axes, was created. For every HPE-CNN detection, the accumulator was increased
by adding the kernel, placed with its center at the detection’s (x, y) image coordinate. In
the process, locations with more detections were valued more highly in the accumulator.
After adding all detections to the accumulator, the actual heatmap was generated by taking
the natural logarithm (after adding one to avoid ln(0)), and normalizing it to the real
interval [0, 1], respectively [0, 255] for one-byte integers. This post-processing was carried
out so that very large values did not dominate very small values. The resulting gray scale
heatmap can then be colorized with any colormap.

2.4.2. Top-Down Heatmaps

For our top-down heatmaps, we used a 975× 640 accumulator, as described in [58].
We selected this shape due to the court’s dimensions (9.75 m ×6.40 m), such that 1 px
corresponds to 1 cm. When adding a detection, the corresponding world location on the
court’s floor is estimated using the camera’s rotation and translation matrices, obtained
from a calibration process using the court dimensions. Subsequently, these are converted to
the accumulator’s image coordinates. We use the same gaussian kernel and post-processing
as described above.

3. Results

This section summarizes our results in three different parts. First, we present basic
statistics which generally characterize our labeled dataset. Then, we investigate and present
the results of our evaluation procedure with respect to the different available metrics and
observations (RQ2). Finally, the results of our heatmap visualization are presented (RQ3).
Reviewing all videos in combination with labels and non-spatial events, we can count
frames with respect to game state and labels (per frame).
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3.1. Dataset Statistics

Table 5 shows an overview of the dataset when combining videos with their cor-
responding labels. The dataset is generally very balanced across the videos, with one
exception. In V2, a clearly higher percentage of rally frames (86.3%) is present. This is due
to the fact that the source video contained perspectives from different cameras, and was
preprocessed by cutting out all unsuitable camera angles. Overall, we report 2347 rally and
1985 non-rally frames, which is 54 % and 46 % of the complete dataset. By inspecting the
labels over all videos, we annotated a total of 16,246 feet, which is 3.75 labels per frame.
Table 5 also shows the number of feet detected by each HPE-CNN.

Table 5. Dataset label and detection statistics. Top: Dataset statistics with respect to game state.
Bottom: Detections per HPE-CNN for all videos.

V0 V1 V2 V3

Rally Frames (%) 1030 (54.6) 385 (44.3) 126 (86.3) 806 (56.3)
Non-Rally Frames (%) 856 (45.4) 484 (55.7) 20 (13.7) 625 (43.7)

Total Frames 1886 869 146 1431
Labels (per frame) 7253 (3.85) 3346 (3.85) 572 (3.92) 5075 (3.55)

Detections by A0 (%) 9078 (125.1) 4207 (125.7) 575 (100.5) 6114 (120.5)
Detections by A1F0 (%) 7225 (99.6) 4404 (131.6) 603 (105.4) 5032 (99.2)
Detections by A1F1 (%) 7203 (99.3) 3979 (118.9) 609 (106.5) 4985 (98.2)
Detections by A1F2 (%) 5703 (78.6) 2757 (82.4) 261 (45.6) 2434 (48.0)

Detections by A2 (%) 6875 (94.8) 3728 (111.4) 969 (169.4) 4523 (89.1)

3.2. HPE-CNN Evaluation Results

As the evaluation procedure allows for the individual observation of, and reports all
metrics for “rally” (FR), “non-rally” (FNR), and “all frames” (FA) separately, robustness
against occlusion can be tested. As rallies contain regularly occurring occlusions induced
by gameplay, and non-rallies are characterized by little or no movement, we calculated the
t-test for the means of two independent samples. Thus, the hypothesis is that there are no
differences in metrics between FR, FNR, and FA. We performed the test for all recorded
metrics individually, and tested them in pairs. The lowest p-value with 0.3 is reported
for the PPV metric of V1, when considering all- against only-rally frames. However, the
highest value is 0.98, which was reported for the TPR metric of V1 when testing rally
against non-rally frames. As all other tested values were within [0.3, 0.98], no significance
can be assumed. Consequently, the hypothesis cannot be rejected, which indicates that
there are no differences between FA, FR and FNR. Thus, we conclude that the investigated
HPE-CNNs provide robust feet detection even during phases where player occlusion
occurs. For this reason, we will consider rally and non-rally frames by using all frames (FA)
in all the following results.

3.2.1. Precision for Both Matching Variants

Precision for matching types In Figure 6, the precision values for all HPE-CNNs A0–A2
and for all videos V0–V3 are shown from top to bottom. On the left side, the matching is
“match all” MA, which represents the matching of all feet labels without any side distinction.
On the right side, however, the matching type results are reported for “match individual”
MI, where a distinction between left and right is made.
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Figure 6. Precisions for all investigated HPE-CNNs and videos at different thresholds with both
matching variants. Detections with all labels (MA) are shown on the left, where MI is shown on the
right. In rows, results for the four different videos are presented from top (V0) to bottom (V3).

It can be seen that precision always increases, together with the threshold for all
HPE-CNNs and videos. The reason for this is that, with an increasing threshold, the range
of true positive classifications also increases. Comparing every HPE-CNN in both matching
variants, the precision is lower for individual matching on the right side. However, A2
shows the lowest precision over all threshold stages in all videos, while A1F0 and A1F2

show the highest end values. From this, it can be concluded that A2 is detecting the wrong
locations, while the detections of A1F0 and A1F2 are correct. Additionally, A1F0 rises faster,
which indicates more correct detections at lower thresholds. Thus, it can be concluded
that A1F0 performs the best correct feet detection at lower thresholds. It is important to
note that precision is a metric for the correctness of the detected labels only, not for their
completeness.

3.2.2. Recall for Both Matching Variants

In Figure 7, the recall metric is shown for all video/HPE-CNN combinations. Similar
to Figure 6, the left side represents “match all”, whereas the right side shows the results for
“individual matching”. This is reported for all videos, from top to bottom.
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Figure 7. Recall for all investigated HPE-CNNs and videos at different thresholds with both matching
variants. Detections with all labels (MA) is shown on the left, whereas MI is shown on the right. In
rows, results for the four different videos are presented from top (V0) to bottom (V3).

Unlike precision, recall is the metric for completeness. It can be seen that the highest
end values are reported for A1F0, which also rises faster at lower thresholds. Thus, it can
be concluded that the detections of A1F0 show a high degree of correctness. Moreover, it
can be concluded that this correctness is attained even at lower pixel thresholds, and thus a
higher accuracy is achieved.

3.2.3. Combination of Precision and Recall

Looking at precision and recall individually provides insights, to a certain extent, into
the classification results. A high recall corresponds to the completeness in finding labels,
whereas a low recall value corresponds to missing labels. A high precision indicates that
the found labels are correct, while a low precision indicates that the detections are false
positives. A system which detects many labels correctly would have a high precision and
a high recall. Therefore, considering them in combination is of particular interest. When
looking at the recall for A1F2 detections in V2, it is particularly notable that the value is
clearly below the other HPE-CNNs for both matching types. However, it still achieves a
high precision on the same video. This combined effect of high precision and low recall
shows that A1F2 is missing detections, but, for the found ones, it has a high fidelity.

The opposite is shown in V2 for A2, which reaches high recall values while staying
low in terms of precision. This combination indicates a high completeness in finding labels,
but, unfortunately, many of the found labels are not classified as correct. Consequently,
looking at V2 at the maximum tolerance threshold of 50 px, A2, with a recall for MA (MI)
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of 0.82 (0.69), is acceptable for finding feet; however, unfortunately, these are often false
positives, as the low precision of 0.49 (0.41) indicates. On the other hand, A1F2 is missing
labels, with a low recall of 0.45 (0.43), but reports a very high precision of 0.99 (0.93) for the
found labels.

As the best values are reported for A1F0, except for precision on V1 and V2, it can be
concluded that A1F0 has a high completeness for correct detection on non-glass courts.
However, the low precision for videos showing glass courts indicates that the found labels
are detected incorrectly. Following this, the conclusion is that the type of court matters.
Player reflections lead to false detections and, therefore, reduce the precision metric.

3.2.4. Balanced Metrics

As mentioned, individual consideration of precision and recall is only possible to a
certain extent. To deal with both types, TS and the harmonic mean of precision and recall
F1 are used. Both metrics show similar results for individual video/HPE-CNN detection
combinations. As Table 6 shows, the values are slightly lower for matching variant MI
compared to MA. The lowest values for these metrics were reported by A2 for all videos
and both matching variants, with one exception: V3 with MA. However, the best values
are shown by A0 and A1F0, apart from V2, where A1F1 is very close in the lead. A1F2 never
reaches the highest accuracy, compared to the others, for balanced metrics.

Table 6. F1 and TS metric results for all video/HPE-CNN combinations at the maximum tolerance
threshold of 50 px. Bold: highest Italic: lowest column values.

V0 V1 V2 V3
Metric MA MI MA MI MA MI MA MI

A0
F1 0.968 0.803 0.946 0.817 0.896 0.781 0.933 0.724
TS 0.937 0.670 0.897 0.691 0.812 0.640 0.874 0.568

A1F0 F1 0.963 0.919 0.836 0.804 0.874 0.837 0.935 0.872
TS 0.928 0.851 0.718 0.672 0.778 0.720 0.878 0.774

A1F1 F1 0.951 0.866 0.875 0.822 0.854 0.788 0.911 0.806
TS 0.906 0.764 0.778 0.697 0.744 0.651 0.837 0.675

A1F2 F1 0.862 0.789 0.883 0.788 0.622 0.586 0.616 0.541
TS 0.757 0.652 0.790 0.650 0.452 0.415 0.445 0.371

A2
F1 0.714 0.556 0.780 0.580 0.613 0.517 0.723 0.516
TS 0.555 0.385 0.639 0.408 0.442 0.349 0.566 0.348

Considering only A0 and A1F0, as they report the highest values, there is a difference
in the matching variant. For individual matching, A0 never outperforms A1F0. The highest
balanced metric for individual matching always shows A1. Furthermore, A1F0 obtained
the best results for individual feet matching (apart from V1). This may be a result of the
additional feet training data, which were used for the A1F0 model (see Table 4). As already
indicated by the precision and recall results, this led to the conclusion that A1F0 can obtain
the most accurate results of the considered HPE-CNNs.

3.2.5. Average Precision

We report the average precisions (AP) results for the selected HPE-CNNs, except for
A0. This is due to the lack of necessary prediction scores (confidences) during the detection.
We investigated individual matching, where left and right feet are distinguished, as this is
more restrictive compared to matching all feet detections with all labels. The results are
reported at different threshold levels as APpx. Although all AP values are available in our
data repository, Table 7 shows an excerpt of the AP values starting from 25 px.
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Table 7. Average precisions at different thresholds for MI. Bold: First algorithm’s AP ≥ 0.9.

AP25 AP30 AP35 AP40 AP45 AP50

V0

A1F0 0.849 0.916 0.947 0.968 0.975 0.979
A1F1 0.610 0.771 0.871 0.923 0.951 0.962
A1F2 0.518 0.679 0.802 0.878 0.913 0.932

A2 0.240 0.329 0.422 0.509 0.589 0.652

V1

A1F0 0.858 0.925 0.952 0.969 0.975 0.978
A1F1 0.638 0.777 0.866 0.910 0.935 0.950
A1F2 0.643 0.749 0.836 0.874 0.902 0.914

A2 0.224 0.299 0.387 0.473 0.552 0.638

V2

A1F0 0.936 0.948 0.963 0.966 0.967 0.969
A1F1 0.812 0.907 0.936 0.951 0.954 0.957
A1F2 0.819 0.906 0.938 0.945 0.952 0.952

A2 0.454 0.542 0.645 0.720 0.777 0.821

V3

A1F0 0.857 0.917 0.947 0.964 0.972 0.976
A1F1 0.577 0.732 0.823 0.877 0.905 0.921
A1F2 0.524 0.674 0.775 0.847 0.888 0.911

A2 0.223 0.310 0.415 0.502 0.580 0.646

For all videos, A1F0 first reaches an AP of at least 0.9. The required threshold for this
is 30 px, except for V2, where it is only 25 px. The other variants of A1 also achieve an AP
of at least 0.9, but at higher thresholds. For all videos and thresholds, A2 never reaches an
AP of 0.9 on our dataset, even when considering the less restrictive matching type MA.
The highest AP ever reached by A2 is 0.89 on V2, with the less restrictive MA. Therefore, it
can be concluded that, in terms of AP, A1F0 performs best, as it was trained on additional
foot data.

3.3. Heatmap Visualization

Figure 8 shows our heatmap visualization method for all combinations of ground truth
(GT), HPE-CNNs and videos. To facilitate a visual comparison, each column represents one
of the four input videos V0–V3. The first row presents heatmaps generated from annotated
labels, which served as the ground truth during evaluation. The other rows show heatmaps
obtained from the HPE-CNNs, and include each single-foot detection for both players. For
a better comparison, we colorized the logarithmic transformed gray-scale heatmaps using
the perceptually uniform magma colormap. Regarding video V0, all HPE-CNNs show
visually convincing detection results, similar to the ground truth heatmap. Although they
reach different intensities, high values representing high detection density appear in the
same heatmap locations across all HPE-CNNs. In V1, dense spots of false detection can
be seen for A1F0 and A1F1 at the front wall’s right corner (i). Furthermore, the glass court
seems to lead to false detections of the players’ reflections (ii). The same problem is present
in V2, with the mirrored audience (iii). It appears that A1F2 is the most robust HPE-CNN
when looking at the players’ reflections in V1, and the mirrored audience in V2. However,
the support beam in V3 seems to disrupt the detections for A1F2, as detections only appear
below that object (iv). Of all the HPE-CNNs, the heatmaps obtained from A0 detections
show the highest visual similarity with respect to the heatmaps obtained from labels.
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Figure 8. Heatmap visualization reveals differences between HPE-CNN detections and ground truth
labels. Each column shows one video V0–V3. The first row depicts the ground truth obtained from
labels. Rows 2–6 show detection results for every HPE-CNN evaluated on every video. Heatmaps
show labels, and the respective detections for both players. False detections (i)–(iii) result in color
differences with respect to the same location in the ground truth heatmap. Reflections of players (ii)
and audience (iii) are challenges, specific to glass courts. For A1F2, the support beam in video V3

disrupts detections.

3.3.1. Heatmap Post-Processing

To address the issue of false detections in reflective glass courts, we show the results
after applying a domain-specific post-processing step. As only locations on the court
should be included in our heatmaps, each detection is checked with respect to a bounding
constraint. For that, we utilize the court’s dimensions as domain-specific knowledge and,
therefore, we are able to exclude unwanted detections outside the court. Figure 9 visualizes
the process exemplary for a single result, whereas many false detections are present on
the court’s glass walls and in the front in (Figure 9A). When applying post-processing,
all unwanted detections shown in (Figure 9B) are filtered, which results in the improved
visualization seen in (Figure 9C).

Figure 9. Domain-specific filtering enhances heatmap visualizations by excluding unwanted reflec-
tions. In (A), the generated heatmap for A1F0 and V1 detections shows reflections and false detections
outside the court’s boundaries. Filtering the unwanted detections shown in (B) results in a more
convincing visualization, as shown in (C).



Sensors 2021, 21, 4550 19 of 25

Since most false detections are reflections of athletes or the mirrored audience on glass
surfaces, it can be concluded that the positive effect of post-processing is the best for glass
courts to visually improve heatmap results. As a prerequisite for this, knowledge of the
scene, in our case, the court, is needed.

3.3.2. Processing Speed

As we investigated trained HPE-CNN models only, we performed no training process
using our dataset. Instead, we used it for evaluation during inference to detect athletes’
feet. For the HPE-CNNs we considered, we can confirm the processing speeds relative
to each other, as stated by the authors. Here, A2 showed the fastest inference by using a
MobileNet architecture, which has the least depth among the CNNs considered in this
work. The computation of heatmaps is an iterative process and can be done in real-time,
since the algorithm performs a basic accumulation of values in an allocated memory block.
Heatmap formation can be visualized after each frame, but can also be done once at the
end, which would reduce computation cost. In summary, the limiting factor for heatmap
visualization is not their computation but the inference time needed to obtain detections.

4. Discussion

Based on the obtained results, we can answer the research questions:

• RQ1: We found that three different HPE-CNNs out of five variants are ready to use
for out-of-the-box inference on squash data for motion analysis;

• RQ2: Overall, our evaluation procedure has shown sufficient accuracy for the identi-
fied HPE-CNNs on a domain-specific squash dataset;

• RQ3: Our heatmap visualization technique has been shown to technically be able to
present detections or labels for visual assessment.

We have investigated open-source and pre-trained CNNs for human body pose
estimation (HPE-CNNs). We found three HPE-CNNs that fit our selection criteria (RQ1),
and evaluated a total of five variants on our newly created squash dataset to detect and
localize player’s feet positions. Our findings on the game state weakly suggest that the
rallies and the short breaks in-between are evenly distributed. As we rely on a standard
camera perspective, used to broadcast from behind the court, player occlusions occur
frequently in rally situations. In non-rally situations, there are fewer occlusions, due to
the fact that both players move towards their respective service boxes. The HPE-CNN
performance investigations into differences in rallies and non-rallies revealed that all
algorithms are robust against occlusions (RQ2). Heatmap visualization can be used to
visually assess the quality of HPE-CNN detections with respect to ground truth labels
and, therefore, is technically able to serve as a visual inspection tool for coaches and
athletes. (RQ3)

4.1. HPE-CNN Evaluation

Comparing different matching types on different thresholds reveals differences regard-
ing our evaluation metrics. When presented with no difference between left and right feet,
the results are slightly better. Thus, the performance can be improved when no distinction
is necessary in the application at hand. In general, all metrics have a better performance
with an increasing detection threshold. This is to be expected, as the consideration radius
is increased. Comparing precision and recall for different variants of A1 shows that A1F2

reaches high precision values, while these remain relatively low for recall. Consequently,
this shows that this variant has too many detections. This does seem to depend more on
the training process and training data, as this variant is the only one of A1 which utilizes
the MPII dataset. However, A2 seems to confirm this finding, since it used the same dataset
during its training process. When selecting a HPE-CNN for plain-foot detection, without
any distinction between left and right, we would suggest choosing A0. This is because
the balanced metrics show, in three out of four cases, the best results for A0 when no
left/right foot distinction is made. On the other hand, A1 is preferred if a distinction
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between individual feet is necessary, as it shows the best balanced metric results of all the
videos. However, in this scenario, the best results are achieved when using A1F0. The
reason for this is probably the additional training data used. This is further confirmed, as
A1F0 always outperforms the other algorithms in terms of average precision (RQ2).

Since the HPE-CNNs do not differentiate between reflections, it is actually advan-
tageous for one to recognize them. However, since reflections are unwanted artifacts in
our context, they had to be evaluated as false positives. We have shown a simple and
effective way to eliminate these unwanted reflections in a real-world application. Thus
false detections can reduced by implementing a subsequent, domain-specific filtering of the
HPE-CNN detections by a bounding constraint. We demonstrated that filtering out false
detections can be performed simply and visually improves the heatmaps and respective
player-position visualizations.

4.2. Decision Flow Chart for HPE-CNN Selection

There is no simple answer to the question of which HPE-CNN is the best for a given
application scenario, as different scenarios have special conditions, and are additionally
restricted in terms of the use of hard- or software. Computational complexity may also
be a factor to consider. Since all selected HPE-CNNs are based on finding keypoints and
constructing poses from those keypoints, there is not much difference in their computational
complexity. As stated in [51], computational cost is highly dependent on the CNN feature
extraction. This is also reported in [46], where it is stated that CNN processing is the
limiting factor. Therefore, we created a flow chart, shown in Figure 10, which can be
consulted during the selection process and used for decision support.

Figure 10. Decision support flow chart for choosing between the five HPE-CNNs. Start with the
circle in the top left corner. Diamonds represent decisions and must be answered with [Y]es or [N]o
(∗, with implemented post-processing).

At the beginning, the decision has to be made as to whether a distinction between left
and right feet is essential for the user application, or whether a pure, side-independent
detection is sufficient. If a distinction between feet is not relevant, our results show that A0
is the best choice. The next step is to check hardware availability, i.e., GPU accessibility.
If there is no GPU in the user’s setup, a trade-off must be made between performance
and accuracy, which leads either to A0 (↓ performance, ↑ accuracy) or A2 (↑ performance,
↓ accuracy). The choice must be made carefully, because when A0 is chosen, left/right
distinction is not sufficient. In addition, A2 is the method of choice if a GPU is available
and a solution running in a javascript-based application is required. If this is not the
case, A1 is the method of choice, whether or not a reflective scene is present. However,
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in case of a non-reflective setup, A1F0 should be used, whereas A1F2 should be chosen
for reflective scenes. Additionally, A1F1, with the presented post-processing, may also be
used. A1F0 was trained on the most detailed foot model, which should be considered in
any case. Furthermore, when selecting a method, it should be considered that A2 is capable
of running in a web browser, with some loss of accuracy.

5. Conclusions

The general aim of our work is data-driven video analysis for sports applications,
using squash as model sport. To this end, we investigated the usability, accuracy, and
applicability of pre-trained, state-of-the-art HPE-CNN models in detecting players’ feet
in real-world squash videos. Our contributions are sixfold: First, we present a tool which
allows for the annotation of arbitrary event and object instances on image sequences. As
well as our specific use case of determining “ball in play” game states, this could be used
for other applications, for example, winning or losing a rally, shot types (e.g., straight
drive, cross-court drive, drop-shot, boast) or referee decisions (e.g., let, no let, stroke,
out-of-court). Moreover, this tool is neither limited to squash nor is it limited to sports
applications in general. As it processes videos in general, the number of applications
is unlimited. Second, we use this labeling tool, together with the squash videos which
are readily available on the internet, to create a squash-specific dataset with manually
defined labels for player-feet locations and game-state events. Third, we surveyed 257
CNNs for their suitability for use in squash motion analysis. Fourth, out of those, five
HPE-CNN models (RQ1) were applied to real-world squash data, and their detection
accuracy was evaluated (RQ2) using the labeled dataset. Fifth, we offer decision-making
support for selecting one of the presented HPE-CNNs for a specific scenario. Finally, we
implemented and used a heatmap visualization technique to visually compare detections
with their corresponding labels (RQ3). By applying a bounding which is constrained during
domain-specific post-processing, we reduce possible false detections induced by mirrored
athlete appearances on glass courts. Therefore, we conclude that the type of court matters
when analyzing recorded squash matches using HPE-CNNs. In addition, this shows that
basic traditional post-processing can improve the detection results in visualizations. Our
findings support the work of other researchers, who have used CNN technology in a
variety of sports, including basketball and tennis. In conclusion, the sport of squash can
highly benefit from applications based on general-purpose HPE-CNNs (RQ2). In general,
CNN-based HPE technology is capable of transforming the fields of sport sciences, training
science and training design. It offers new possibilities for contact-free athlete tracking
and motion analysis, and therefore opens up new avenues for data-driven insights into
sport applications.

Future Work

In the future, other sports and sports-related scenarios could be investigated. This
could lead to practical applications for training design or quantitative performance as-
sessments. Another exciting area is exploring the feasibility of using this technology for
individual training optimization and match preparation. As well as the training aspects,
injury prevention and rehabilitation are other important topics. For example, HPE-CNNs
could be investigated with regard to their potential for measuring individual movement
after (sports) injuries or for replacing classic approaches to collecting motion data in reha-
bilitation research [59]. Additionally, HPE-CNNs can be investigated for use in smart-home
environments [60], where it may be exciting to use heatmap representations as input fea-
tures for other neural networks. Furthermore, multimodal approaches, as proposed for
mobile traffic classification [61], including additional sensors, may be investigated for their
higher classification of match play strategies and analysis, as shown in human activity
recognition [62].

Since we have shown their technical feasibility, in future work we will apply inference
and use our heatmap visualization on individuals, and present the results to trainers
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and athletes for further insight. We also plan further improvements to our visualization,
including quantitative analysis and the ability to derive athletes’ individual metrics by
tracking their individual motion data. The results will provide a tool for squash coaches to
evaluate the data and monitor athletes’ training progress over time.
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