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Abstract

Diagnosis, treatment, and management of invasive mould infections (IMI) are challenged by several risk

factors, including local epidemiological characteristics, the emergence of fungal resistance and the innate

resistance of emerging pathogens, the use of new immunosuppressants, as well as off-target effects of

new oncological drugs. The presence of specific host genetic variants and the patient’s immune system

status may also influence the establishment of an IMI and the outcome of its therapy. Immunological com-

ponents can thus be expected to play a pivotal role not only in the risk assessment and diagnosis, but

also in the treatment of IMI. Cytokines could improve the reliability of an invasive aspergillosis diagnosis

by serving as biomarkers as do serological and molecular assays, since they can be easily measured, and

the turnaround time is short. The use of immunological markers in the assessment of treatment response

could be helpful to reduce overtreatment in high risk patients and allow prompt escalation of antifungal

treatment. Mould-active prophylaxis could be better targeted to individual host needs, leading to a targeted

prophylaxis in patients with known immunological profiles associated with high susceptibility for IMI, in

particular invasive aspergillosis. The alteration of cellular antifungal immune response through oncologi-

cal drugs and immunosuppressants heavily influences the outcome and may be even more important than

the choice of the antifungal treatment. There is a need for the development of new antifungal strategies,

including individualized approaches for prevention and treatment of IMI that consider genetic traits of the

patients.
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Lay Abstract

Anticancer and immunosuppressive drugs may alter the ability of the immune system to fight invasive

mould infections and may be more important than the choice of the antifungal treatment. Individualized

approaches for prevention and treatment of invasive mold infections are needed.

Key words: invasive pulmonary aspergillosis, immunological status, hematology, hemato-oncological malignancies,
mucormycosis.

Introduction

Managing invasive mould infections (IMI) has proven to be a
daunting task: diagnosis and treatment are, at times, difficult,
and their management also often interferes with the therapy of
the underlying disease. For instance, the often severe and long-
lasting neutropenia as well as genetic host factors, comorbidi-
ties, and exposure to an elevated fungal spore burden are known
risk factors for IMI acquisition in hemato-oncological patients.1

In addition, immunological factors,2 the emergence of resistant
fungal strains,3–5 and the widespread use of novel therapeutic
agents such as tyrosine kinase inhibitors,6 have complicated mat-
ters further. In solid organ transplant (SOT) recipients, immuno-
suppression is often linked to the occurrence of IMI, and toxicity
and interactions of antifungals may lead to graft loss, morbidity,
and death.7

Several guidelines define the diagnostic workup and the treat-
ment to be used when IMI are suspected.8–11 Some authors
have addressed more specifically diagnosis and treatment of
mucormycoses,12–15 for which a specific guideline has recently
been published.16 Recent work has also discussed the use of
(pro)inflammatory parameters for the diagnosis and evaluation
of treatment outcome in IMI,15,17-19 underlining the need for a
multifactorial approach that must include a set of diagnostically
relevant markers20 in addition to the patient’s own clinical char-
acteristics.17

Presently, IMI management is further challenged by new risk
factors, the emergence of fungal resistance in Aspergillus and
other moulds and yeasts, as well as the innate resistance of se-
lected emerging pathogens.21–23 Breakthrough mould infections
after prophylaxis, new immunosuppressants, as well as poten-
tial off-target effects of new anti-cancer drugs that may increase
the risk for IMI in patients previously not considered at risk are
additional challenges. On the other hand, new immune-based di-
agnostic tools as well as the possibility of determining the host’s
genetic risk factors, potentially leading to personalized treatment
approaches, are opportunities that will facilitate individual man-
agement of IMI.

Invasive aspergillosis (IA) is still the main cause of IMI
and is associated with high mortality rates in hematologi-
cal/oncological patients and SOT recipients alike.11 This review
addresses the challenges and chances in the diagnosis and man-

agement of IMI, mainly IA and to a lesser extent mucormycoses,
in cancer patients.

Risk assessment

Risk factors for IMI in hemato-oncological patients and solid or-
gan transplant recipients have been summarized,24 but the list is
continuously increasing. An emerging risk factor for IMI acqui-
sition is the widespread use of new immunosuppressants, partic-
ularly in older and therefore more comorbid patients. There is
also a lack of well performed epidemiological studies with suffi-
cient sample size, high quality data, and state-of-the-art statisti-
cal analysis to allow weighting and balancing the various, often
strongly interconnected risk factors such as age and comorbidi-
ties against each other. The changing epidemiology of IMI and
the occurrence of resistance in opportunistic pathogens are fac-
tors that heavily influence the diagnostic and therapeutic workup
in patients suspected of being infected by opportunistic fungal
pathogens.

In addition, while the risk ranking so far proposed24 consid-
ers implicitly the patient’s immune status, the complex interac-
tions between the host’s immune system and the fungal pathogen
should receive more attention. Cellular response, with the innate
immune system being probably the most important structure in-
volved,25–27 is key in the host defense to fungal infections, but
interactions between other components of the immune system
and the fungal pathogens are also important and more complex
than so far assumed.

Different receptors play a relevant role in the cellular anti-
fungal immune response and their malfunction can lead to a
higher susceptibility to IMI. For example, the C-type lectin re-
ceptor dectin-1 is present on myelomonocytic cells and mediates
ß-glucan recognition and cytokine production, for example, in-
terleukin (IL)-17 triggering Th-17 differentiation. Mutations in
this receptor, for example, by Y238X early stop codon polymor-
phism, favor IA onset, as it has been shown for patients after al-
logeneic hematopoietic stem cell transplantation (HSCT).28 The
ß-glucan receptor CR3 (CD11b/CD18b) is known to contribute
to the production of polymorphonuclear neutrophils (PMN) re-
active oxygen species (ROS) and formation of neutrophil ex-
tracellular trap (NET).29 It also plays a role in executing PMN
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phagocytosis towards fungal pathogens30 and could thus exert a
negative impact on antifungal defense.

After receptor activation, different signaling pathways are in-
volved in antifungal immune response. Innate immune cells such
as the natural killer cells,31 dendritic cells,32 and innate lymphoid
cells,33 have been shown to influence host response to fungal in-
fections as well. The adaptive immune system (mainly CD4+ T
cells subsets and B cells) contributes also substantially to anti-
fungal defence.34 In particular, type 2 (Th2) and type 17 (Th17)
T-helper cells play a relevant role in coordinating and enhancing
the cellular antifungal defence.34

The signaling pathways mentioned above may also be altered
by immunomodulating drugs, for example, calcineurin/NFAT in-
hibitors35 such as cyclosporine A and tacrolimus, new anticancer
drugs,36 or possibly the antifungals themselves,37–40 leading to
impaired effector functions. For example, calcineurin/nuclear
factor of activated T cell (NFAT) signaling negatively regulates
myeloid lineage development 41 and may influence macrophage
effector functions through the TLR9-BTK signaling pathway
as described in SOT-related IA.42–44 Calcineurin has also been
shown to influence pentraxin-3 (PTX3) expression, resulting
in an impaired antifungal-defense of CD11-expressing PMN
cells and increased susceptibility to Aspergillus fumigatus in-
fections.45 PTX3 acts as an opsonin against conidia, facilitating
their phagocytosis and activating the complement system.46

Mutations in PTX3 genes induce an increased susceptibility to
IMI in knockout mice and in stem cell transplant recipients if
these mutation are present in donor-derived immune cells.47

Small molecule kinase inhibitors (SMI) such as BTK, JAK, and
PI3K inhibitors are increasingly used in hematological cancer
therapy and have been shown to cause immunological off-target
effects that can lead to IMI.36 IMI have been described with a
number of SMI,6,48 in particular ibrutinib.6,36,49,50 IMI during
ibrutinib therapy are caused by several species, Aspergillus spp.
being prominent (80%), and are frequently associated with dis-
semination, brain infections, and poor prognosis for the patients
involved.49,51 It is not clear whether second generation BTK-
inhibitors currently under development (e.g., acalabrutinib)52–54

will be more selective and associated with a lower IFI incidence.
Overall, the incidence of IMI is poorly investigated, and

a comprehensive and effective prophylactic or therapeutic ap-
proach has not yet been defined. Selected patients at risk, how-
ever, might benefit from an antifungal prophylaxis, but the
known interactions of SMI with some triazoles55 in a population
composed mainly of outpatients, sometimes only seen by general
practitioners and only at longer intervals by the hematologist or
oncologist, render it problematic. In addition, the long half-life of
some SMIs and the consequent potentially permanent cell dam-
age need to be taken also into consideration, because stopping
the SMI treatment to fight the underlying IMI may not preclude
the possibility of interactions. Finally, the risk of relapse of the
underlying disease when the SMI treatment is interrupted implies

the need for close monitoring. Reevaluation of existing phase III
trials is thus essential to identify patients at special risk, to se-
lect patients who might profit from prophylaxis, and to define
second-line risk factors.

Breakthrough infections during prophylaxis

Breakthrough fungal infections result from a failure of pro-
phylaxis. They are relatively rare, but they may occur and are
generally associated with a poor outcome.56 In patients with
hematological malignancies, breakthrough fungal infections
under triazoles, in particular posaconazole, 11,57 have been
reported to be less than 5%.57,58 In most studies, mainly dealing
with patients with hematological malignancies,56,57,59–64 fungal
infections were attributable to Aspergillus spp., but they are
quite often also caused by Mucorales, sometimes as mixed
infections with Aspergillus.59,63

Local epidemiology probably determines the spectrum of
species involved in IMI,56–60,62–65 while risk factors such
as the host’s immune status and environmental exposure to
moulds may be the main factors determining their incidence
and prevalence.66 Clinical presentation of IMI is often non-
specific and may reflect the involved fungal pathogens. Necrotic,
disseminated and/or painful skin or nail lesions, fever, and
myalgia should raise suspicion of disseminated fungal infec-
tion, especially fusariosis.67 Fever, cough, hemoptysis, and
sinusitis have often been observed in cases of mucormycoses,
but they can be seen in other IMI as well.56 Mucorales infec-
tions are increasingly frequent in clinical settings, and in one
study their incidence reached 37% of all breakthrough infec-
tions observed in patients treated prophylactically with either
posaconazole or voriconazole,21 two drugs that have variable
efficacy against Mucormycota.16 Real-life data show variable
rates of breakthrough infections,56,59,60,62–64,68,69 with oppor-
tunistic, generally saprophytic fungi such as Hormographiella
aspergillata (Coprinus cinereus) also being recorded.70

Some moulds, for example, A. terreus, A. ustus, and other
rare Aspergillus spp., are intrinsically resistant to selected an-
tifungals,71,72 as are some Mucorales, Lomentospora prolificans
and Fusarium spp.73 It cannot be excluded that intensive prophy-
laxis in patients at risk may cause a shift toward resistant species
and strains. One hypothesis is that antifungal prophylaxis might
create ecological niches for opportunistic fungi.21,72,73 These or-
ganisms are difficult to distinguish in the microbiological rou-
tine laboratory, and clinical data are usually lacking. Based on
current insight, however, the occurrence of breakthrough infec-
tions could be primarily driven by a change in the local spec-
trum of pathogenic opportunistic fungal species rather than the
development of resistant strains in most countries; future study
of the mycobiome present not only in the hospital but also at the
patients’ homes and surroundings may be key to understanding
their insurgence.
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Samples of culture-positive breakthrough infections should
always be sent to reference centers for species identification and
resistance testing. For many breakthrough infections with intrin-
sically resistant or azole-resistant moulds, polyenes are the first
line of treatment, but echinocandins and combination therapy
are important options for selected cases.73 No high-level clini-
cal evidence, however, is yet available to support the use of a
combination therapy as primary treatment option as opposed to
monotherapy.11

Emerging and innate resistance

in Aspergillus species

The last decade has seen an abrupt increase in the isolation
of azole-resistant Aspergilli.4,74,75 In one study in The Nether-
lands, 19% of all isolated strains were azole resistant, with an
excess overall mortality of 21% at day 42 and 25% at day
90 as compared to nonresistant strains.76 The prevalence in
other countries is much lower: in Germany, for instance, it
reached 6.4% in acute myeloid leukemia and 3.8% in acute
lymphocytic leukaemia.77 Overall, cases have occurred in many
countries with varying prevalence,78-84 and infections are often
observed in patients without prior azole exposure.3 A low
prevalence has been reported from the USA,81 France,85 and
Germany,77,79,86 but higher rates of resistant strains have been
reported from countries (The Netherlands, Denmark, Colombia)
with extensive flower cultivation.87–89 Occurrence of resistant
strains seem also to be tightly linked to the local epidemiology:
in The Netherlands, a gradient has been observed that seems
to be correlated with the extent of flower cultivation,89 thus
supporting the hypothesis that azole resistance in Aspergillus is
correlated with fungicide use in agriculture.5

Azole resistance seems to be mainly determined by the
TR34/TR46 mutations in CYP51A,75,90–92 but other mutations
in the same gene have also been reported.74,81 Azole resistance
in A. fumigatus develops mainly during exposure of the fungus
to azoles in the natural environment and not in the patient,5

but resistance is also apparently associated with the use of long-
term azole therapy and switching between antifungal azoles in
patients with chronic pulmonary aspergillosis.93

The impact of the occurrence of azole resistant Aspergillus
isolates on the patient outcome is not yet entirely clear, but
high mortality rates, up to 2.7 times higher than in nonresis-
tant IA, have been reported.94 Identification of azole resistant
Aspergillus strains at the time of diagnosis helps predict azole
treatment failure,95 and should prompt an immediate switch to
an appropriate therapy. No clinical data on the best therapeutic
approach are available, and there may be a need to develop new
treatment strategies, considering that echinocandins might not
be sufficiently effective in patients with continued immunosup-
pression.96–99 The use of upfront azoles in combination with
liposomal AmB (L-AmB) or an echinocandin if local resistance

rates exceed 10%100 has been suggested, but no clinical evidence
exists to support this recommendation. A guideline from The
Netherlands101 recommends the use of voriconazole combined
with L-AmB or an echinocandin as first line therapy until resis-
tance has been excluded (Recommendation 12), but clinical data
on efficacy and safety of these combinations are limited. Until
additional data are available, azole monotherapy remains the
treatment of choice, and there is no agreed threshold for local
resistance rates to define an alternative. In cases of reasonable
doubt, such as an increase in the local epidemiology of resistance,
real-time phenotypic and polymerase chain reaction (PCR)-
based detection of the most frequent CYP51A resistance asso-
ciated mutation patterns TR34/L98H and TR46/T289A/Y121F
(the latter directly on bronchoalveolar lavage fluid) should
be performed to rule out resistance as early as possible. In
such cases, existing international guidelines list liposomal am-
photericin B (L-AmB) as an alternative to isavuconazole and
voriconazole for treatment of IA,10,11 thus L-AmB monotherapy
is also an accepted option when triazoles cannot be used.

Studies are currently underway to define a sensible threshold
when primary monotherapy with an azole is no longer accept-
able and to determine an appropriate diagnostic and therapeutic
scheme in the presence of high azole resistance prevalence.102

Additional, pragmatic trials using overall and attributable
mortality as endpoints are needed to help shed light on this
increasingly important issue, and algorithms must be developed
and evaluated to handle complexity in the context of increasing
azole resistance. New drugs currently under development103–105

may also become an option but, so far, only limited data with
regard to safety and efficacy of these new compounds in patients
are available.

Diagnostics

IMI diagnosis relies on the use of imaging, biomarkers (e.g.,
galactomannan and PCR), and culture.106–111 The methods used
for IA, in particular culture, imaging, and PCR, are applica-
ble also to suspected mucormycoses and rare mould infec-
tions.10,11,14,112–114 The diagnosis of Mucorales and other rare
IMI caused by moulds remains challenging because phenotypic
identification is not always possible as cultures can remain neg-
ative and their evaluation is often possible only after a compar-
atively long time.

The GM test has been shown to be a reliable diagnostic tool
in a number of clinical trials,106,111,115–118 although a recent
study has reported a high rate of false positives in BAL samples
of hematological and SOT patients using the standard cut-off
value of 0.5.119 Another problem with the use of galactoman-
nan testing on serum is its low sensitivity, in particular in non-
neutropenic patients.120,121 PCR has the advantage to provide
a reliable species identification in a relatively short time, but its
sensitivity is limited when used on serum or plasma and, even
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on galactomannan positive BAL fluid, the sensitivity is not op-
timal. After its introduction as a diagnostic test, 1-3-ß-glucan
(BDG) has received considerable attention, but based on disap-
pointing sensitivity, high workload and costs, and many false
positives, it has not become a generally recommended test for
IMI detection.116,117,122

IMI patients have been shown to have increased levels of
mould-reactive Aspergillus- or Mucorales-specific CD4+ cells
compared to healthy controls,123 but scant data are available
on Mucorales-reactive T cells, with only a small patients cohort
studied so far.124–126 Mucorales-reactive T cells producing IL-10
and IL-4 have been detected at high rates in patients with mu-
cormycosis124,125 and are currently evaluated as potential surro-
gate diagnostic markers in the diagnosis of mucormycoses.

Immune parameters for potentially more specific diagnoses
have so far been given little consideration but they are likely to
provide directions about diagnosis, when a decision needs to be
made regarding the use of a mould-active prophylaxis, the start
of empirical antifungal treatment, early escalation, or switch
to a more appropriate antifungal agent. Several cytokines may
allow improving IMI diagnosis. Serum C-reactive protein (CRP)
and IL-6 levels are increased at the time of diagnosis and decline
in case of response to antifungal treatment.127 IL-1β, IL-6,
IL-8, IL-17A, IL-23, and tumor necrosis factor (TNF)α were
significantly increased among patients with IPA, confirming that
the combination of specific cytokines with other biomarkers
such as GM may not only facilitate diagnosis but also improve
the ability to predict the disease outcome.128

The use of lateral-flow immunoassays has shown promis-
ing results in patients with a suspected IA,129 and a similar
immunoassay is currently under development also for Muco-
rales.112 Compared to conventional GM testing on serum with
the Platelia assay, these tests can be done on demand on patient
samples and lead to results in 1–2 hours instead of the typical
sampling to result time of several days for diagnostic tests that
are typically pooled and performed only 2 or 3 times a week and
in dedicated laboratories only. A combination of serum IL-8 lev-
els with the BAL Aspergillus lateral-flow device test or BAL PCR
may also allow differentiating specifically IA from non-IA pul-
monary infections in hematological malignancy patients.130,131

The effects of genetic variants of risk-associated factors on
the cytokine levels are still unknown and additional prospective
studies are needed to understand the relationship between cy-
tokine levels and the mechanisms underlying IA, including the
role of immunomodulation in IA therapy.132

New immunological assays are under development to quickly
and reliably diagnose IMI, and Aspergillus spp. and Mucorales-
reactive T cells have also the potential to become interesting
markers, but many confounders probably influence rare cell
analysis. Published data are scant, and further work is needed to
show whether these assays might be useful as alternative, nonin-
vasive diagnostic markers, particularly for mucormycosis.

Assessment of treatment response

Predictors of treatment outcome for IA include imaging,133, GM
baseline levels and kinetics,133–141 inflammatory parameters and
pro-inflammatory cytokines.18,127,142 PCR is apparently of lim-
ited utility as a predictor of outcome.17. A recent meta-analysis12

has not provided additional information on treatment outcome.
In this analysis, HSCT and Rhizopus infection were predictors
of adverse outcome; surgery combined with antifungal therapy
(mostly conventional or liposomal AmB) was associated with a
reduction in overall mortality.12

On the other hand, changes in the levels of selected cytokines
seem to provide useful information on IMI progression and res-
olution. High initial IL-8 and persistently high IL-6, IL-8, and
CRP level have been described as predictors of adverse outcome
in IA.127 Haptoglobin, CRP, and annexin A1, three host proteins,
have also been shown to have predictive values in an animal IMI
model,18 and this has been confirmed also in IA patients,19 but
the usefulness of these biomarkers in the clinical routine is not
yet established.

Overall, the evaluation of response to antifungal treatment
has to rely on the observation of a combination of parameters
that include clinical course and the current immunological status
of the patient, imaging and kinetics of biomarkers and possibly
cytokines.17

Discussion

IMI onset is dependent on several factors, which include also lo-
cal epidemiological characteristics and the increased use of new
anticancer drugs targeting the immune system. The presence of
specific genetic variants and the immune system status of a pa-
tient may also influence the establishment of an IMI and, to-
gether with the potential emergence of resistant strains among
the pathogens, the outcome of the antifungal therapy.

Immunological components can thus be expected to play a
pivotal role not only as biomarkers in the risk assessment and
diagnosis but also in the treatment of IMI. Recent work, in fact,
has suggested that fungus-specific T cells could be used for cel-
lular therapeutic approaches to IMI.143,144

Immunological biomarkers may facilitate clinical decision
making in different scenarios. They could improve the reli-
ability of IA diagnosis by serving as biomarkers as do GM
or PCR, because cytokines can be easily measured, and the
turnaround time is quite short. Their use as immunologi-
cal markers in the assessment of treatment response could
be helpful to reduce overtreatment in high-risk patients and
on the other hand allow prompt escalation of antifungal
treatment, for example, in the case of persistently high IL-6
levels.145 Mould-active prophylaxis could be better targeted
to the individual host characteristics, leading to a targeted
prophylaxis (as opposed to universal antifungal prophylaxis)
in patients with known immunological profiles associated



98 Medical Mycology, 2021, Vol. 59, No. 1

with high susceptibility for IA (e.g., PTX3, TLR or dectin-1
deficiencies).

In cancer patients, the drugs used to treat the underlying and
concomitant diseases may have considerable off-target effects
on the immune system. In leukemia patients undergoing SMI
treatment, no well-designed studies exist that investigate the
complex interactions among SMIs and the immune system.
Interactions of antifungals such as Amphotericin B with the
immune system have also been reported37,40 and need also
to be studied in more detail. The alteration of the cellular
antifungal immune response through drugs (anticancer drugs,
immunosuppressants, or even antifungals) influences heavily the
outcome and may be even more important than the choice of the
antifungal treatment. With regard to these complex interactions,
there is a need for the development of new antifungal strate-
gies, including individualized approaches for prevention and
treatment of IFI that consider also genetic traits of the patients.
This means that the diagnostic and therapeutic workup must
include expert consultation, in particular by infectious disease
specialists.146 Multidisciplinary teams with extensive knowledge
of fungal epidemiology and antifungal treatment options will
be instrumental to optimize care for patients and implement
antifungal stewardship programmes.147–149
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