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Background: The prognostic factors of skull base chordoma associated with outcomes
of patients after surgery remain inadequately identified. This study was designed to identify
a novel prognostic factor for patients with skull base chordoma.

Method: Using a proteomic technique, the tumor biomarkers that were upregulated in the
rapid-recurrence group of chordoma were screened and then narrowed down by
bioinformatic analysis. Finally one potential biomarker was chosen for validation by
immunohistochemistry using tissue microarray (TMA). A total of 187 patients included in
TMA were randomly divided into two cohorts, the training cohort included 93 patients and
the validation cohort included 94 patients. Kaplan-Meier survival analysis was used to
assess the patients’ survival. Univariable and multivariable Cox regression analysis were
used to identify prognostic factors predicting recurrence-free survival (RFS). CCK-8 assay,
clonal formation assay and transwell assay were used to test the effect of asparagine
synthetase (ASNS) on the proliferation, migration and invasion in chordoma cell lines.

Results: Among 146 upregulated proteins, ASNS was chosen as a potential prognostic
biomarker after bioinformatics analysis. The H-scores of ASNS ranged from 106.27 to
239.58 in TMA. High expression of ASNS was correlated with shorter RFS in both the
training cohort (p = 0.0093) and validation cohort (p < 0.001). Knockdown of ASNS by
small interfering RNA (siRNA) inhibited the growth, colony formation, migration and
invasion of chordoma cells in vitro.

Conclusion: This study indicates that high expression of ASNS is correlated with poor
prognosis of patients with skull base chordoma. ASNS may be a useful prognostic factor
for patients with skull base chordoma.
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INTRODUCTION

Chordoma, a rare low-grade malignant tumor that comprises 1-
4% of primary bone tumors, arises in the axial bones, and as
much as 35% of chordoma locates in the clivus region (1).
Chordoma is generally recognized that originates from
notochordal remnants (2). The majority of chordoma occurs in
adults, aged between 50 and 60, while less than 5% of chordoma
occurs in children and infants (3). Although chordoma is a slow-
growing and low-grade malignant tumor, effective treatments for
curing chordoma are still lacking. In the clivus region, chordoma
usually locates close to crucial neurovascular structures, and the
tumor can infringe surrounding tissues and vessels, making total
resection difficult to accomplish and causing a high recurrence
rate. Chordoma is generally considered greatly resistant to
conventional chemotherapy and radiotherapy, but recently,
photon radiation, proton therapy and targeted therapy have
been combined as a comprehensive therapy to prevent
chordoma progression (4). However, currently we still have a
poor understanding of the molecular biological characteristics
and tumorigenesis of chordoma.

Proteomics analysis provides the prospect of searching
potential tumor biomarkers and has become a significant
technique in the field of cancer research (5, 6). Proteomics
technique combined with bioinformatics analysis has a decided
advantage in screening and identifying differentially expressed
proteins (7), and is successfully used for discovering diagnostic
biomarkers (8, 9) and prognostic biomarkers (10, 11), also
providing new methods to search therapeutic targets as well as
chances to reveal the molecular mechanisms underlying the
disease (12, 13).

The asparagine synthetase (ASNS) is an enzyme which
catalyzes the conversion of aspartic acid to asparagine (14).
This reaction requires glutamate serving as the nitrogen source
and proceeds in an ATP-dependent manner (14). The protein of
ASNS expresses in different tissues and organs ubiquitously, but
except for the exocrine pancreas, the basal expression of ASNS is
relatively low in normal tissues (15, 16). Previous studies have
reported that ASNS is involved in tumorigenesis in different
cancer types. In human melanoma and breast cancer,
knockdown of ASNS has been demonstrated to suppress cell
growth via inducing cell cycle arrest (17, 18). Upregulation of
ASNS has been reported to be involved in drug-resistance in
prostate cancer and nasopharyngeal carcinoma (19, 20).
Moreover, it has been found that the expression of ASNS is
associated with the prognosis of patients with hepatocellular
carcinoma and ASNS expression is also correlated with the
aggressiveness of glioma (21, 22). However, the expression
level and underlying involvement of ASNS in skull base
chordoma have not been investigated.

In this article, we used a tandem mass tag (TMT) technique
combined with bioinformatic analysis to search biomarkers for
the prediction of recurrence in skull base chordoma. Proteomic
analysis revealed that ASNS was significantly overexpressed in
the rapid-recurrence group compared with the slow-recurrence
group, and it was confirmed by Western blot assay. We further
assessed the expression level of ASNS in skull base chordoma by
Frontiers in Oncology | www.frontiersin.org 2
immunohistochemistry using tissue microarray (TMA) and then
investigated its correlation with prognosis especially the time to
recurrence after surgery. Our results may provide a novel
biomarker for predicting the recurrence of skull base
chordoma after surgical resection.
MATERIALS AND METHODS

Patients and Specimens
In this study, frozen tissue samples obtained from 17 patients
with skull base chordoma who received surgical resection at
Beijing Tiantan Hospital between March 2015 and December
2018 were subjected to proteomics analysis. These patients were
followed up by radiographical and clinical examinations in
November 2019. Tumor recurrence was confirmed by clinical
and imaging findings or histology analysis of specimens from the
second surgery. The patients whose recurrence-free survival
(RFS) was no more than 6 months and their histopathology
images met one of the following criteria: (1) ≥3 mitotic figures in
10 high-power fields; (2) necrosis was present (23, 24), were
incorporated into the rapid-recurrence group, and the patients
whose RFS was no less than 36 months were incorporated into
the slow-recurrence group. All these patients received no
radiotherapy after surgery. According to this criterion, 9
patients were enrolled in the rapid-recurrence group and the
other 8 patients were enrolled in the slow-recurrence group, the
clinicopathological characteristics of these 17 patients were
shown in Supplementary Table 1. No significant difference
was found in age, sex, bone invasion, and extent of resection
between the rapid-recurrence group and slow-recurrence group.

Paraffin-embedded tissue samples obtained from 187 patients
with primary skull base chordoma who received surgical resection
at Beijing Tiantan Hospital between January 2008 and September
2014 were subjected to tissue microarray (TMA). The follow-up
information of the 187 patients was updated in November 2019.
All patients were randomly divided into two cohorts, the training
cohort included 93 patients and the validation cohort included 94
patients. The mean age ( ± standard deviation) of patients was
40.3 ± 15.9 in the training cohort, and 40.0 ± 14.7 in the validation
cohort. The training cohort included 51 males and 42 females,
and the validation cohort included 47 males and 47 females. For
the extent of resection, the patients with total resection, subtotal
resection, and partial resection are 23, 45, 25, respectively in the
training cohort; the patients with total resection, subtotal
resection, and partial resection are 18, 40, 36, respectively in the
validation cohort. This study was approved by the ethics
committee of Beijing Tiantan Hospital, Capital Medical
University. Informed consent was obtained from all the
enrolled subjects, and the study was performed in compliance
with the principles governed by the Declaration of Helsinki.

Mass Spectrometric Detection and
Proteomic Analysis
Proteins were extracted from 9 cases of chordoma with short
recurrence-free survival and 8 cases of chordoma with long
recurrence-free survival frozen tissue samples. Then trypsin
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digestion was performed, the protein solution was reduced with 5
mM dithiothreitol for 30 min at 56°C and alkylated with 11 mM
iodoacetamide for 15 min at room temperature in darkness. The
protein sample was then diluted by adding 100 mM TEAB to
urea concentration less than 2M. Finally, trypsin was added at
1:50 trypsin-to-protein mass ratio for the first digestion
overnight and 1:100 trypsin-to-protein mass ratio for a second
4 h-digestion. After trypsin digestion, peptides were desalted by
Strata XC18 SPE column (Phenomenex) and vacuum dried.
Peptides were reconstituted in 0.5 M TEAB and processed
according to the manufacturer’s protocol for the TMT 10plex
kit (Cat No: 90406, ThermoFisher). Briefly, one unit of TMT
reagent was thawed and reconstituted in acetonitrile. Equal
amount peptides of all samples were taken to make the mix
prior to TMT labelling. The peptide mixtures were then
incubated for 2 hours at room temperature and pooled,
desalted, and dried by vacuum centrifugation. The labelling
information is as follows:

Group1 A1640 A1652 A1746 A1853 A1999 B1675 B1732 B1775 B1804 Mix
Label 126 127N 127C 128N 128C 129N 129C 130N 130C 131
Group2 A2048 A2227 A2362 A1642 B1822 B1300 B1601 B802 Mix
Label 126 127N 127C 128N 128C 129N 129C 130N 131
Frontiers
 in Onc
ology |
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A1640, A1652, A1746, A1853, A1999, A2048, A2227, A2362,
and A1642 were the Sample ID of samples in the rapid-
recurrence group; B1675, B1732, B1775, B1804, B1822, B1300,
B1601, and B802 were the Sample ID of samples in the slow-
recurrence group.

The peptides were subjected to NSI source followed by
tandem mass spectrometry (MS/MS) in Q Exactive™ Plus
(Thermo) coupled online to the UPLC. The electrospray
voltage applied was 2.0 kV. The m/z scan range was 350 to
1800 for a full scan, and intact peptides were detected in the
Orbitrap at a resolution of 70,000. Peptides were then selected for
MS/MS using NCE setting as 28 and the fragments were detected
in the Orbitrap at a resolution of 17,500. A data-dependent
procedure that alternated between one MS scan followed by 20
MS/MS scans with 15.0s dynamic exclusion. Automatic gain
control (AGC) was set at 5E4. The fixed first mass was set as
100 m/z. The resulting MS/MS data were processed using the
Maxquant search engine (v.1.5.2.8). Tandem mass spectra were
searched against the UniProt database concatenated with reverse
decoy database. Trypsin/P was specified as a cleavage enzyme
allowing up to 2 missed cleavages. The mass tolerance for
precursor ions was set as 20 ppm in the First search and 5 ppm
in the Main search, and the mass tolerance for fragment ions was
set as 0.02 Da. Carbamidomethyl on Cys was specified as fixed
modification and oxidation on Met was specified as variable
modifications. FDR was adjusted to < 1% and the minimum score
for peptides was set > 40. For protein quantification, the ratios of
the TMT reporter ion intensities in MS/MS spectra from raw data
sets were used to calculate fold changes between samples. Only
peptides unique for a given protein were considered for relative
quantitation. For each sample, the quantification was normalized
using the average ratio of all the unique peptides. Then, protein
quantitation was calculated from the median ratio of protein
3

corresponding unique peptides when there were at least two
unique peptides in a protein. The average quantitative value of
each sample in multiple repetitions was calculated, and then the
ratio of the average value between the two cohorts was calculated.
This ratio was used as the final differential expression of the
comparison group. The differential expression significance p
value of the protein in the two cohorts was calculated by
performing log2 logarithmic conversion of the relative
quantitative value of each sample, and then calculating the p
value using the two-sample two-tailed t test method. Two
replicates were performed on UPLC-MS/MS for enhancement
of protein coverage, and quantified proteins were filtered with
manually selected filter exclusion parameters (at least 2 peptides,
p < 0.05 and expression level differed at least 1.2- or 0.8-fold in
the rapid-recurrence group compared to the slow-recurrence
group). Bioinformatic analysis was performed focusing on these
upregulated proteins in the rapid-recurrence group. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD025894.

Tissue Microarray
Paraffin-embedded chordoma tissue samples from all 187
patients were assayed by TMA using the Tissue Array
MiniCore (ALPHELYS, Plaisir, France). Three pathologists
viewed the hematoxylin-eosin stained slides, and the two most
representative 2 mm cores from every tissue slide were selected
and removed to a new slide to build the TMA. The 4 mm sections
from the TMA were cut using Leica RM 2135 Rotary Microtome
(Rankin, Wetzlar, Germany) for immunohistochemical staining.

Immunohistochemistry (IHC)
The slides were placed in the BOND-III instrument
manufactured by Leica Biosystems. Default IHC protocol was
chosen, and 20 min with epitope retrieval was set as the heat-
induced epitope retrieval (HIER) parameter. The Bond™

Polymer Refine Detection (DS9800, Leica Biosystems,
Germany) was used for the detection of the primary antibody
(anti-ASNS antibody, sc-365809, Santa Cruz, USA). The slides
were scanned using Aperio AT2 (Leica Biosystems, Germany)
and the digital pictures were viewed using digital slide viewing
software in Aperio AT2. The staining intensity was stratified on a
scale of 0-3+ (0 = no staining, 1+ = weak, 2+ = moderate and
3+ = strong). An H-score was obtained by multiplying the
staining intensity with a constant to adjust the mean to the
strongest staining [H-score = 1 × (percent of 1+ cell) + 2 ×
(percent of 2+ cell) + 3 × (percent of 3+ cell)] to give a score
ranging from 0-300. We chose the median of the H-score as the
cut-off value for separating patients into two groups: high ASNS
expression or low ASNS expression.

Cell Culture and Small Interfering
RNA Transfection
The human chordoma cell line UM-Chor1 was purchased from
the American Type Culture Collection (ATCC), another human
chordoma cell line MUG-Chor1 was donated by the Chordoma
Foundation. Cells were cultured in Iscove’s Modified Dulbecco’s
September 2021 | Volume 11 | Article 698497
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Medium (IMDM, 30-2005, ATCC, USA) supplemented with
18% RPMI-1640 Medium (30-2001, ATCC, USA) and 10% fetal
bovine serum (10099-141, Gibco, USA) in a humidified
incubator at 37°C in 5% CO2. The culture medium was
replaced every other day. ASNS small interfering RNA
(siRNA) (GGGTAGAGATACATATGGA) and unspecific
scrambled siRNA were synthesized by RiboBio Medical
Biotechnology (Guangzhou, China). Both UM-Chor1 and
MUG-Chor1 cells were adherent cells, the cells were detached
from the bottom of the culture flask using trypsin digestion, and
this reaction was terminated by adding culture medium, then the
cell suspension was centrifuged for 5 minutes at room
temperature to collect the cells, finally, the cell pellets were
resuspended using culture medium. After counting, 1 × 105 of
UM-Chor1 cells and 3 × 105 of MUG-Chor1 cells were seeded in
6-well plates. The cells were transfected with ASNS-siRNA or
scrambled siRNA using Lipofectamine 3000 reagent (Invitrogen,
USA) and 50 mM of siRNA per well according to the
manufacturer’s instructions. After transfecting siRNA,
interference efficiency was validated by Quantitative Real-
time PCR.

Cell Growth and Colony Formation Assay
A quantity of transfected cells was seeded into 96-well plates with
2.5 × 103 of UM-Chor1 cells or 6 × 103 of MUG-Chor1 cells per
well. Ten microliters of CCK-8 (CK04, Dojindo, Japan) was then
added to the plates and incubated for 24, 48, 72 and 96 hours.
Upon addition of CCK-8 solution, the plates were incubated at
37°C for 2 hours, and the absorbance was detected at 450 nm
using a multimode microplate reader (Tecan, Männedorf,
Switzerland). 2 × 103 of transfected UM-Chor1 or MUG-
Chor1 cells were inoculated into 6-well plates and incubated at
37°C, 5% CO2 for 14 days. Afterwards, the cell colonies in 6-well
plates were fixed with 4% paraformaldehyde and stained using
crystal violet solution.

Migration and Invasion Assay
3 × 104 UM-Chor1 cells or 1 × 105 MUG-Chor1 cells transfected
with ASNS-siRNA or scrambled siRNA were seeded into the
upper chamber of the transwell chambers with 100 ml serum-free
medium (CLS3464, Corning, USA), while the following wells
were filled with 600 ml complete culture medium containing 10%
FBS as a function of chemoattractant which can induce the cells
in the upper chamber to the lower one. After incubation for 48
hours, non-invaded cells were rubbed away using the cotton
swab carefully, while cells that invaded the lower chamber were
fixed with 4% paraformaldehyde and stained using crystal violet
solution. We observed the cells that invaded the lower chamber
in at least five separate fields of vision using a microscope. The
invasion assay was similar to the migration assay but the upper
chamber was coated with Matrigel (Corning, USA).

Protein Extraction and Western Blot Assay
Chordoma tissue samples or cells were lysed using RIPA lysis
buffer (C1050, Applygen, China) with a protease inhibitor
cocktail (P1265, Applygen, China) and a phosphatase inhibitor
cocktail (P1260, Applygen, China). The total protein
Frontiers in Oncology | www.frontiersin.org 4
concentration was determined using a BCA Protein Assay Kit
(SK258437, ThermoFisher, USA). Equal amounts of total
proteins were separated by SDS-PAGE (10% gels) for ASNS
detection. GAPDH was used as the protein loading control. After
SDS-PAGE, the proteins on the gels were transferred to BioTrace
nitrocellulose membranes (66485, Pall, USA), blocked with 5%
skim milk in Tris-buffered saline (TBS, pH 7.4; 20 mM Tris-HCl,
150 mM NaCl), and then incubated with anti-ASNS antibody
(1:600, sc-365809, Santa Cruz, USA) overnight at 4°C. The
following day, the membranes were incubated with IRDye-
labeled goat anti-mouse IgG at room temperature for 1 hour.
Finally, the protein bands were scanned using a Li-COR Odyssey
system (Li-COR Biosciences, USA). At least three independent
experiments were performed and a representative result
is shown.

Statistical Analysis
Statistical analyses were performed using SPSS v24.0 software
(IBM Corporation, USA). Variables were analyzed by the chi-
square test, Fisher’s exact test, unpaired Student’s t test, or
Mann-Whitney U test for comparison between two groups.
Kaplan-Meier curves and the log-rank test were applied for
univariable survival analysis. Statistically significant variables
were further analyzed by multivariable Cox regression analysis.
A nomogram was constructed based on the results of
multivariate Cox regression analysis in the training cohort. The
nomogram and calibration plots were calculated with the rms
package of R software (version 4.2.0). For all statistical analyses, a
p value less than 0.05 was considered statistically significant.
RESULTS

Screening and Identifying the Differentially
Expressed Proteins in the Rapid-
Recurrence Group and Slow-Recurrence
Group of Skull Base Chordoma
To identify proteins that were differentially expressed in the
rapid-recurrence group and slow-recurrence group of skull base
chordoma, a TMT mass-spectrometric technique was used. 3667
and 3737 proteins were quantified by each technical replicate,
respectively, 4286 proteins were quantified from the two
technical replicates and subsequently filtered with manually
selected filter exclusion parameters. Finally, 258 proteins were
screened out, including 146 proteins upregulated and 112
proteins downregulated in the rapid-recurrence group
(Figures 1A, B). The lists of differentially expressed proteins
are shown in Supplementary Table 5. Afterwards, 146
upregulated proteins were selected for bioinformatics analysis.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis revealed that alanine, aspartate and glutamate
metabolism was mainly involved in the rapid-recurrence group
(Figure 1C and Supplementary Table 2). Gene ontology (GO)
classification also showed that a significant role of glutamine
metabolism (glutamine family amino acid metabolic process,
glutamine metabolic process) was involved in the rapid-
September 2021 | Volume 11 | Article 698497
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recurrence group (Supplementary Table 3). After literature
review, ASNS was chosen for validation using Western blot
assay. Western blot analysis indicated that the expression of
ASNS was significantly upregulated in the rapid-recurrence
Frontiers in Oncology | www.frontiersin.org 5
group (Figure 1D), which was consistent with the result of
TMT mass spectrometric detection. Thus, we selected ASNS as a
tumor marker for IHC to further evaluate its prognosis value in
skull base chordoma.
A

C

D

B

FIGURE 1 | The screening process for proteins upregulated in the rapid-recurrence group of chordoma. (A) Volcano plots. The negative log of p value (base 10)
was plotted on the Y-axis, and the log of fold change (base 2) was plotted on the X-axis. Fold change > 1.25 or fold change < 0.8, p < 0.05. A: rapid-recurrence
group; B: slow-recurrence group. (B) There were 146 proteins upregulated and 112 proteins downregulated in the rapid-recurrence group of chordoma. A: rapid-
recurrence group; B: slow-recurrence group. (C) KEGG pathway analysis showed that alanine, aspartate and glutamate metabolism was mainly involved in the rapid-
recurrence group of chordoma. (D) The expression level of ASNS protein in all 17 chordoma tissue samples was quantified by Western blot assay.
September 2021 | Volume 11 | Article 698497
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Relationship Between ASNS Expression
and Tumor Recurrence
ASNS protein was expressed in the cytoplasm and the H-scores
of ASNS ranged from 106.27 to 239.58 (median 165.84)
(Figures 2A, B). For survival analysis, recurrence-free survival
(RFS) was defined as the period from the first surgical resection
to the date of recurrence or last follow-up. In the training cohort,
Frontiers in Oncology | www.frontiersin.org 6
the median RFS was 32.5 months, and the median RFS in the low
ASNS expression group was 59 months, which was 2.4 times as
long as that in the high ASNS expression group (24.5 months).
Obviously, patients with high expression of ASNS had shorter
RFS (median RFS: 24.5 months, 95% CI: 15-49.5 months)
compared with patients with low expression of ASNS (median
RFS: 59 months, 95% CI: 29.5-68 months), with a p = 0.0093
A

C

D

B

FIGURE 2 | Representative images of ASNS immunohistochemical stain in skull base chordoma and analysis of recurrence-free survival (RFS) using Kaplan-Meier
survival curves. (A) High expression of ASNS. Magnification: left ×200, right ×400. (B) Low expression of ASNS. Magnification: left ×200, right ×400. (C) High
expression of ASNS was correlated with shorter RFS in the training cohort. (D) High expression of ASNS was correlated with shorter RFS in the validation cohort.
September 2021 | Volume 11 | Article 698497
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(Figure 2C). To further verify the relationship between ASNS
expression and RFS, we performed univariate and multivariate
Cox regression analysis for RFS in this cohort, and the results
revealed that ASNS was an independent prognostic factor for
RFS (p = 0.042) (Table 1). In the validation cohort, the median
RFS was 18 months, and the median RFS in the low ASNS
expression group was 43 months, which was 3.6 times as long as
that in the high ASNS expression group (12 months). Distinctly,
patients with high expression of ASNS had shorter RFS (median
RFS: 12 months, 95% CI: 9-30 months) compared with patients
with low expression of ASNS (median RFS: 43 months, 95% CI:
24-73 months), with a p value less than 0.001 (Figure 2D). To
further verify the relationship between ASNS expression and
RFS, we performed univariate and multivariate Cox regression
analysis for RFS in this cohort, and the results also revealed that
ASNS was an independent prognostic factor for RFS (p < 0.001)
(Supplementary Table 4).

Predicting Recurrence by a Nomogram
To provide clinicians with a mensurable approach to predict
recurrence of skull base chordoma, a nomogram (C-index: 0.720,
95% CI: 0.644-0.797) was constructed using the training cohort
data (Figure 3A). The calibration plots demonstrated that the
nomogram predicted recurrence efficaciously compared with an
ideal model in the training cohort (Figures 3B–D) and validation
cohort (Figures 3E–G) at 1-, 3-, and 5-year recurrence.

Knockdown of ASNS Inhibited Cell
Growth, Colony Formation, Migration,
and Invasion of Chordoma Cells
Based on the clinical data, it seemed that ASNS could affect the
proliferation and aggressiveness of chordoma cells. ASNS
expression was knocked down in UM-Chor1 and MUG-Chor1
cells by siRNA, the interference efficiency was confirmed at mRNA
level by Quantitative Real-time PCR (Supplementary Figure 1A) as
well as at protein level byWestern blot (Supplementary Figure 1B).
As expected, knockdown of ASNS significantly decreased the
growth of UM-Chor1 and MUG-Chor1 cells, as revealed by cell
proliferation assay (Figure 4A) and colony formation assay
(Figure 4B). Furthermore, knockdown of ASNS significantly
inhibited migration and invasion of UM-Chor1 and MUG-Chor1
Frontiers in Oncology | www.frontiersin.org 7
cells (Figures 4C, D). These findings may explain the above-
mentioned TMA results (high ASNS expression in the rapid-
recurrence group).
DISCUSSION

Chordoma is an infrequent, slow-growing, and low-grade
malignancy that arises from notochordal remnants, and the
annual incidence of chordoma is about 1/1,000,000 (25). Total
surgical resection together with adjuvant radiation therapy has
been reported to lengthen patients’ survival (26). Using targeted
therapies such as imatinib or cetuximab to treat chordoma has
been more frequent for the past few years, though these have not
involved large amounts of patients with chordoma. The patients
have quite poor prognoses for local recurrence and distant
metastasis despite comprehensive therapy (3). Consequently, it
is in urgent need of exploring the specific molecular mechanisms
underlying tumorigenesis of chordoma, searching for novel
prognostic factors, and optimizing the existing therapeutic
strategies to improve the survival of patients with chordoma.

In this study, chordoma biomarkers were screened using
TMT mass-spectrometric technique and bioinformatics
analysis. After screening for upregulated proteins in the rapid-
recurrence group, a novel prognostic factor was discovered, we
found that high expression of ASNS in skull base chordoma was
associated with shorter RFS and the results of multivariable Cox
regression analysis showed that ASNS was an independent
prognostic factor of skull base chordoma for predicting
recurrence. In vitro investigations have revealed the cancerous
function of ASNS in several other tumor types. For example, the
ASNS gene has been found to be mutated in human colonic
epithelial cells and suggested to be implicated in the initiation of
colorectal cancer (27). Additionally, overexpression of ASNS has
been reported to be correlated with enhanced aggressiveness in
glioma (22). Downregulation of ASNS induces cell cycle arrest in
breast cancer cells and inhibits the proliferation (18).
Furthermore, a previous study reports that knockdown of
ASNS by lentivirus-mediated RNA interference inhibits cell
growth in epidermoid carcinoma cells and melanoma cells
(17). These results indicate that ASNS plays an important role
TABLE 1 | Univariate and multivariate Cox regression analysis for RFS in the training cohort.

Variables Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age (>55 versus ≤55years) 1.398 0.706-2.770 0.337
Gender (female versus male) 1.101 0.656-1.848 0.717
Tumor volume (>20 cm3 versus ≤20 cm3) 1.949 1.151-3.300 0.013* 1.312 0.749-2.298 0.343
Tumor texture (tough/moderate versus soft) 1.588 0.871-2.896 0.131
Blood supply (poor/moderate versus abundant) 0.475 0.269-0.836 0.010* 0.495 0.277-0.885 0.018*
Pathology (classical versus chondroid) 1.120 0.641-1.957 0.691
Extent of resection (non-total versus total resection) 3.740 1.687-8.289 0.001* 3.290 1.410-7.676 0.006*
ASNS (high versus low) 1.960 1.164-3.301 0.011* 1.730 1.020-2.934 0.042*
September 202
1 | Volume 11 | Article
*indicate p < 0.05.
RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval.
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in oncogenesis, and the results of cytological experiments in our
study demonstrate the oncogenic function of ASNS in skull
base chordoma.

There are some potential mechanisms by which ASNS causes
tumorigenesis. Due to the much higher metabolic requirements in
tumor cells and as they are usually grown in the nutrient-deficient
environment, transcription and translation of ASNS are activated
through some different mechanisms to protect cell survival. For
instance, it has been found that mutant p53 binds to the promoter
region of the ASNS gene and transactivates its transcription (28).
Also, it has been reported that ASNS is upregulated after glucose
deprivation and protects pancreatic cancer cells from apoptosis (29).
Frontiers in Oncology | www.frontiersin.org 8
Thus, inhibition of ASNS expression and consequent consumption
of asparagine may reduce the proliferative capability of tumor cells.
In addition, ASNS has been shown to change the expression of
proteins participating in cell cycle progression (30). Cyclin-
dependent kinases (CDKs) and cyclins are two kinds of pivotal
cell cycle regulatory factors. Cyclin D1, CDK6, and CDK4 are
significantly downregulated in human melanoma cells after ASNS
depletion while p21, a CDK inhibitor, is obviously upregulated in
response to ASNS knockdown (17). Therefore, downregulation of
ASNS may impact the cell cycle, resulting in attenuated cell
proliferation. Our proteomic data also support this point of view.
In our data, we find that CDK18, a cyclin-dependent kinase which
A

C DB

F GE

FIGURE 3 | The nomogram for patients with skull base chordoma after surgical resection and the Calibration plots for predicting patient recurrence from the training
cohort and validation cohort. (A) A nomogram for predicting the probability of recurrence. The calibration curve for predicting recurrence from the training cohort at
(B) 1 year, (C) 3 years, (D) 5 years. The calibration curve for predicting recurrence from the validation cohort at (E) 1 year, (F) 3 years, (G) 5 years. Nomogram
predicted probability of time-dependent recurrence was plotted on the X-axis; actual recurrence at 1, 3, 5 years was plotted on the Y-axis.
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plays a role in signal transduction cascades, is upregulated in the
rapid-recurrence group, and CDKN1B, a CDK inhibitor, is
downregulated in the rapid-recurrence group (Supplementary
Table 5). However, these detailed mechanisms remain to be
further investigated.

Until now, there has been no study of ASNS expression in
chordoma. In the present study, we investigate ASNS expression
Frontiers in Oncology | www.frontiersin.org
 9
in 187 patients with skull base chordoma by immunohisto-
chemistry, and our results demonstrate for the first time that
higher ASNS expression in skull base chordoma might indicate a
higher recurrence rate. However, further research is necessary on
the transcriptional regulation mechanisms of ASNS, also its effect
on glutamine metabolism, and its correlation with tumor
recurrence and metastasis need to be figured out.
A

C

D

B

FIGURE 4 | Knockdown of ASNS inhibited cell growth, colony formation, migration, and invasion of chordoma cells in vitro. Knockdown of ASNS led to a significant
inhibition of (A) cell growth, (B) colony formation ability, (C) migration, (D) invasion of UM-Chor1 and MUG-Chor1 cells. Magnification: ×100. Bars represent the
mean of the respective individual ratios ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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CONCLUSION

Our study reveals that high ASNS expression in skull base
chordoma is correlated with shorter recurrence-free survival,
which supports that ASNS is a novel prognostic factor for
predicting the recurrence of patients with skull base chordoma.
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