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Abstract 

Cancer cells are heterogeneous, each harboring distinct molecular aberrations and are 

dependent on different genes for their survival and proliferation. While successful 

targeted therapies have been developed based on driver DNA mutations, many patient 

tumors lack druggable mutations and have limited treatment options. Here, we 

hypothesize that new precision oncology targets may be identified through “expression-

driven dependency”, whereby cancer cells with high expression of a targeted gene are 

more vulnerable to the knockout of that gene. We introduce a Bayesian approach, 

BEACON, to identify such targets by jointly analyzing global transcriptomic and 

proteomic profiles with genetic dependency data of cancer cell lines across 17 tissue 

lineages. BEACON identifies known druggable genes, e.g., BCL2, ERBB2, EGFR, 

ESR1, MYC, while revealing new targets confirmed by both mRNA- and protein-

expression driven dependency. Notably, the identified genes show an overall 3.8-fold 

enrichment for approved drug targets and enrich for druggable oncology targets by 7 to 

10-fold. We experimentally validate that the depletion of GRHL2, TP63, and PAX5 

effectively reduce tumor cell growth and survival in their dependent cells. Overall, we 

present the catalog of express-driven dependency targets as a resource for identifying 

novel therapeutic targets in precision oncology. 
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Introduction 

Precision oncology requires accurate identification of molecular aberrations in cancer 

cells that can serve as biomarkers and therapeutic targets. While some tumors harbor 

genomic mutations predictive of cancer vulnerability, a large fraction of cancer cells lack 

such actionable mutations1-3. Large-scale genetic dependency screens, including the 

Cancer Cell Line Encyclopedia (CCLE)4, Cancer Dependency Map (DepMap)5 and 

CancerGD6, have revealed that cancer cells show different vulnerability upon genetic 

knockdown or knockout. Across diverse types of molecular alterations—including 

mutations, copy number alterations and expression—gene expression biomarkers have 

been identified as the top biomarkers of genetic dependency, e.g., in 82% of the 501 

DepMap cell lines in a genome-scale RNAi screen5. We thus reasoned that precision 

oncology targets might be identified through “expression-driven dependency”, whereby 

cancer cells with high expression of the targeted genes are more vulnerable to genetic 

depletion or therapeutic inhibition. 

Multiple studies have used genetic and functional screening data to identify cancer 

vulnerabilities present in a subset of cancer cells, including aneuploid cancer cells7,8, 

pediatric tumor cells9, and multiple myeloma cells10. Notable targets identified include 

the WRN helicase that is essential in cancers with microsatellite instability (MSI) but 

dispensability in microsatellite stable cells11,12, PKMYT1 kinase in CCNE1-amplified 

tumors, and BCAR1 in KRAS mutant pancreatic cancer, where the suppression of 

BCAR1 and TUBB3 sensitizes cancer cells to ERK inhibition by reducing MYC protein 

levels13. Bondeson et al.14 identified phosphate dysregulation as a therapeutic 

vulnerability in ovarian cancer through genome-scale CRISPR-Cas9 screens, 

highlighting the XPR1–KIDINS220 protein complex as crucial for cancer cell survival. 

Another study8 identified the ubiquitin ligase complex UBA6/BIRC6/KCMF1/UBR4 as 

crucial for the survival of aneuploid epithelial tumors. These studies highlight the 

potential of developing a systematic approach to identify drug targets by linking subsets 

of cancer cells to genetic dependency based on their aberrant expression.  

Expression analyses focusing on only the transcriptome assume that high gene mRNA 

expression translates into high protein abundance. However, gene expressions show 
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only moderate correlations with protein expression in cancer cell lines and primary 

tumors15-20, and protein-level analyses may identify new targets3,21-23. Notably, global 

proteomic profiles of 375 cell lines in the CCLE/DepMap were recently generated by 

global mass spectrometry (MS), quantifying a total of 12,399 proteins using multiplexing 

quantification methods24. The combination of these datasets provides unprecedented 

opportunities to identify new protein biomarkers and therapeutic targets across cancer 

types.  

Herein, we integrated global proteomic and transcriptomic profiles of 855 cancer cell 

lines across 17 tissue types from Cancer Dependency Map (DepMap)/Cancer Cell 

Lines Encyclopedia (CCLE)24,25, and the corresponding cancer cell dependency scores 

(Achilles) based on the CRISPR knockout screens25-27. By developing a new Bayesian 

correlation approach, BEACON, we identified the expression-driven cancer cell 

dependencies (ED) for each tissue type at different molecular layers, and revealed new 

potentially actionable targets that are strongly-associated with druggable gene lists28 

(Figure 1). Our analyses identified the known drug targets SOX10 and ESR1 

demonstrating strong gene/protein ED linked to their specified cancer type and revealed 

new potential candidate targets for each cancer type. Experimental validation supported 

the actionability of the new candidate targets TP63, GRHL2, and PAX5, exposing a 

vulnerability in their dependent cancer cells. 

 

Results 

To identify genes showing expression-driven dependency, we first integrated RNA-seq 

data, global mass spectrometry proteomics data, and the cell dependency data 

corresponding to the same cell lines in the DepMap project (Methods). We restricted 

our analyses to lineages where at least 7 cell lines with cancer cell line dependency and 

corresponding mRNA/protein expression data were available to ensure statistical 

robustness (Figure S1A). Overall, 855 cell lines across the 17 lineages shared cancer 

cell dependency scores and corresponding mRNA and protein expressions (N=854 for 

mRNA, N=290 for protein, Figure S1B, Table S1). Based on this limited sample size 

per cell lineage (Figure S1C), we noticed that the basic correlation techniques may lead 
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to spurious correlations, particularly for protein expression (Figure S1B, Figure S2). 

Thus, we developed a Bayesian approach, BEACON (Bayesian EvAluation of 

expression Correlation-driveN dependency), to model expression levels and 

dependency scores as the bivariate Gaussians and used Markov Chain Monte Carlo 

(MCMC) sampling to test the null hypothesis that these two are uncorrelated for each 

given gene (Methods). BEACON offers the unique advantage of utilizing prior 

distributions that are less susceptible to outliers, especially in multiple lineages where 

the number of cell lines. We benchmarked BEACON’s Bayesian correlation vs. Pearson 

correlation by simulating expression and dependency datasets at various correlation 

levels (from -1 to 1, with 0.25 intervals) and sample size (number of cell lines, 10, 20, 

30, 40, 60, 100), with different fraction (0.1, 0.3, 0.5) of samples being outliers (Figure 

S2). Based on these simulations, we observed that the Bayesian method is better than 

Pearson correlation for estimating moderate true correlation (|rho| < 0.75) in small 

sample size, and preferable in noisy data (noise level ≥ 0.3, i.e., 30% or more of the 

samples are corrupted by noise to become outliers), regardless of sample size or true 

correlation level. 

 

Cancer vulnerability targets showing gene expression-driven dependency (GED) 

We first applied BEACON to reveal cancer vulnerabilities that show gene expression-

driven dependencies (GED) at the mRNA level. We first analyzed the pan-lineage GED 

by using mRNA levels and the corresponding dependency scores from 854 cell lines 

with available data across 17 lineages and identified 244 genes showing significant 

association (correlation coefficient, rho < -0.25, FDR < 0.05). The notable genes with 

strong pan-lineage associations (false discovery rate, FDR < 1e-32) include SOX10 

(correlation coefficient, rho = -0.83), IRF4 (rho = -0.82), HNF1B (rho = -0.76), and 

MYOD1 (rho = -0.70) (Table S2).  

Having found many strong GEDs across cancer cells from different tissue types, we 

then applied BEACON to identify tissue-specific GEDs within each lineage (Methods). 

As expected, several significant pan-lineage GED targets also showed substantial 

tissue-level GED in multiple lineages, including TP63, CCND1, CCND2, and KLF5 (rho 
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≤ -0.61, FDR < 1e-32) (Figure 2A, Figure 2B). TP63 showed significant (rho < -0.25, 

FDR < 0.05) GED across 14 out of 24 lineages of the cancer cell lines. TP63 is a 

member of the p53-family transcription factors that regulates developmental processes 

in several organs and tissues, as well as tumorigenesis and tumor progression29. 

Another transcription factor, KLF5 also showed significant (rho < -0.25, FDR < 0.05) 

GED frequently across half of the cell lineages (12/24). This could be explained by its 

role in the development and progression of various types of cancer, as its expression is 

essential for cell cycle regulation, apoptosis, migration, and differentiation, impacting a 

wide array of target genes such as cyclin D1, cyclin B, PDGFα, and FGF-BP30. 

Since multiple lineages were dependent on the expression of some transcription factors 

such as KLF5 and TP63, targeting these genes may lead to unintended consequences 

across tissue types. To minimize potential off-target effects, we further identified the 

GED targets showing only lineage-specific expression-driven dependency, i.e., 

exhibiting low correlation (more negative rho) within a given lineage’s cell lines and 

relatively smaller (near-zero) correlation in other lineages (Methods, Figure 2A). 

Among such targets, we found MYOD1 for soft tissue, PAX5 for haematopoietic and 

lymphoid tissue, SOX10 for skin, and ESR1 for breast (rho ≤ -0.84, FDR < 1e-32) 

(Table S2, Figure 2A, Figure 2C), the latter of which is an already well-targeted gene 

through hormonal therapy using selective estrogen receptor modulators (SERMs), such 

as tamoxifen, and aromatase inhibitors. We next investigated whether the candidate 

targets showing GED were enriched in distinct molecular pathways. Enrichment 

analyses using Gene Ontology (GO)31 for each lineage GED revealed 38 unique 

pathways enriched across lineages (Figure 2D). Although different pathways showed 

different levels of ED, the two GO terms, (i) “DNA-binding transcription activator activity” 

(GO:0001216) and (ii) “DNA-binding transcription activator activity, RNA polymerase II-

specific” (GO:0001228), were the most frequently-enriched across the lineages (15 out 

of 18 lineages). 

To explore the potential clinical actionability of the identified GEDs, we integrated drug-

gene interaction database (DGIdb)32, and identified 82 druggable factors out of 244 pan-

lineage GEDs (Figure S3A, Table S3). By analyzing dependencies at each tissue, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618926doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618926
http://creativecommons.org/licenses/by-nc-nd/4.0/


identified 951 druggable targets, in total, showing significant (rho < -0.25, FDR < 0.05) 

lineage-specific GEDs, including 132 targets for hematopoietic and lymphoid tissue, 101 

for lung, 81 for soft tissue, 61 for central nervous system, 52 for ovary, 49 for stomach, 

47 for autonomic ganglia, and 44 for breast (Figure S3B).  

The most strongly-associated (rho ≤ -0.78, FDR < 1e-32) tissue-specific GED targets 

include MYOD1 in soft tissue, ESR1 in breast, WT1 in ovary, and SOX10 in skin (Table 

S3). The skin-specific ED observed for SOX10 was also concordant with a recent 

study33, where the mRNA expression of SOX10 was found to be associated with SOX10 

hypomethylation and sensitivity to SOX10 knockdown in melanoma cell lines, while 

other tissue cell lines showed limited SOX10 expression and limited dependency to 

SOX10 for survival. The strong ESR1-driven dependency in breast cancer cell lines 

support the established use of SERMs and aromatase inhibitors in ER(+) breast 

cancers34. Several ED genes already have established targeted therapies, and 

additional gene targets showing strong lineage-specific expression-driven dependencies 

may also have therapeutic potential.  

Based on a set of the most significant GED targets found within lineages (rho < -0.75, 

FDR < 1e-10), clustering analyses (Methods) showed that cancer cells of the pancreas 

and biliary tract tissue lineages showed the most similar expression-driven dependency 

profiles, as well as those of the kidney and urinary tract tissue lineages (Figure S3C).   

We also conducted a clustering analysis to identify GED-nominated drug targets 

showing similar tissue-specificities across tissue lineages. For example, the breast-

specific ESR1 transcription factor is clustered with the other factors FOXA1, SPDEF, 

TBX3, and TRPS1 (Figure S3D). These transcription factors showed the strongest 

GED levels in breast tissue cell lines (rho < -0.6, FDR < 2e-5), where SPDEF showed 

breast-specific GEDs similar to ESR1. FOXA1 and SPDEF are the key drivers of ER+ 

breast cancer risk and have been identified as master regulators of the FGFR2-

mediated cancer risk35. These results identified cross-tissue cancer cells that may share 

similar targets.  
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Cancer vulnerability targets showing protein expression-driven dependency 

(PED) 

Given that gene mRNA expressions show only moderate correlations with protein 

abundance in cancer15-20, we next sought to expand our analyses to identify targets 

showing protein expression-driven dependency (PED). We applied BEACON to 

dependency data and protein expression levels in the subset of 290 cell lines with both 

types of data (Methods). BEACON identified 223 proteins showing significant (rho < -

0.25, FDR < 0.05) pan-lineage protein expression-driven dependency (PED). Among 

the proteins showing pan-lineage PED, just over half (N=123) of the targets also 

showed significant (rho < -0.25, FDR < 0.05) pan-lineage GED, suggesting general 

concordance between mRNA and protein while implicating the importance of 

considering protein expression. ZEB2 was the most strongly-associated PED (rho = -

0.64), followed by FERMT2, GRHL2, KLF5, CDK6, and CCND1 (rho ≤ -0.52), all of 

which also showed significant GED (Table S4, Figure 3A, Figure 3B). The other 100 

PED targets that do not show significant mRNA-level GED included ELMO2, PRDM6, 

FGFR3, RUNX1, VGLL1, TMEM158, and CBFB (rho ≤ -0.39) (Table S4). We identified 

78 druggable proteins that show significant (rho < -0.25, FDR < 0.05) pan-lineage 

expression-driven dependency, including SOX10, MYB, GATA1, MYOD1, CDK6, 

HNF4A, CCND1, and PAX5 (rho ≤ -0.52) (Table S5).  

At the individual tissue level, many of these pan-lineage PED targets also showed high 

ED within multiple lineages (Figure 3A). Targets showing PED exclusive for each 

lineage (rho ≤ -0.83) included PYURF in soft tissue, GTSF1 in central nervous system, 

PAX5 in haematopoietic and lymphoid tissue, TTC7B in kidney, and TMEM208 in bone 

(Figure 3A, Figure 3C, Table S6). To examine potential actionability of the identified 

PED proteins, we integrated DGIdb and identified 170 druggable significant (rho < -0.25, 

FDR < 0.05) lineage-specific PEDs for all lineages; within these, we found a set of very 

strong lineage-specific targets (rho ≤ -0.81), include PAX5 in haematopoietic and 

lymphoid tissue, LAMP1 in stomach, NEK6 in urinary tract, TSPO in kidney, CHKA in 

oesophagus, SERPIND1 in ovary, and SOX10 in central nervous system (Figure S3E, 

Table S6). Enrichment analyses with the PED targets yielded 17 pathways enriched in 
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a more lineage-specific pattern than GED results (Figure 3D, Table S7). DNA-binding 

transcription activator activity (GO:0001216 and GO:0001228) terms were similarly 

significantly enriched showing consistency with the GED results (3 out of 5 lineages). 

 

Concordance between gene and protein expression-driven dependency 

Protein expression evidence can validate molecular targets observed at the mRNA 

level. We thus analyze the concordant and unique gene targets based on their GED and 

PED correlations. We found 123 genes showing consistently significant pan-lineage 

expression-driven dependency in both mRNA and protein levels, most notably SOX10 

(rhoRNA = -0.82, rhoprotein = -0.77), TP63 (rhoRNA = -0.69, rhoprotein = -0.72), IRF4 (rhoRNA 

= -0.82, rhoprotein = -0.73), and MYB (rhoRNA = -0.66, rhoprotein = -0.75) (Figure 4A, Table 

S8). The confirmation of both GED and PED demonstrate the robustness of these 

targets.  

Meanwhile, given the moderate correlation between mRNA and protein, protein 

expression-driven dependency may also reveal protein aberrations that arise post-

transcriptionally. We found 85 genes showing significant (rho < -0.25, FDR < 0.05) pan-

lineage GED without a significant PED that may be less robust as potential therapeutic 

targets, including MYCN (rhoRNA = -0.59, rhoprotein = -0.05), OTX2 (rhoRNA = -0.56, 

rhoprotein = -0.14), and EBF1 (rhoRNA = -0.53, rhoprotein = -0.22) (Figure 4A, Table S8). 

On the other hand, we also found 100 proteins showing significant (rho < -0.25, FDR < 

0.05) pan-lineage PED without a significant GED. Some notable targets include ELMO2 

(rhoRNA = -0.2, rhoprotein = -0.47), PRDM6 (rhoRNA = -0.02, rhoprotein = -0.85), FGFR3 

(rhoRNA = -0.12, rhoprotein = -0.6), and RUNX1 (rhoRNA = -0.24, rhoprotein = -0.42) (Figure 

4A, Table S4). 

We next analyzed the consistency between tissue-level GEDs and PEDs for each 

lineage. (Figure 4B, Table S9). In total, we found 121 genes showing significant GED 

and PED (rho < -0.25, FDR < 0.05) within a lineage, which may present as some of the 

strongest targets identified through BEACON. KLF5 showed significant GED and PED 

(rho < -0.47, FDR < 0.045) in the endometrium, liver, and pancreas lineages. SOX2 
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gene showed significant GED and PED (rho < -0.42, FDR < 0.032) in the lung and 

oesophagus lineages. Other lineage-specific targets showing concordance between 

GED and PEDs include FOXA1 in breast, PAX5 in haematopoietic and lymphoid tissue, 

GATA2 in large intestine, MDM2/TP63 in lung, and TFAP2A in skin.   

 

Leveraging expression-driven dependency to enrich for drug targets  

Identification of drug targets is a major goal of genomic studies, yet even by using 

141,456 human DNA-Seq data in gnomAD without phenotype association, known drug 

targets only showed a minor difference in constraints for loss-of-function (LoF) variants 

compared to other genes28. To test whether expression-driven dependency derived by 

BEACON may represent an effective strategy to identify drug targets, we ascertained 

whether the identified genes showing GED/PED are enriched for druggable targets from 

DrugBank and curated by Minikel et al.28. We used the Fisher’s exact test to evaluate 

the association between the druggable gene lists and the pan-lineage GEDs/PEDs we 

identified (Methods). The majority (8 out of 15) of druggable gene lists from DrugBank 

were significantly enriched  (Fisher’s exact test, odds ratio > 2, FDR < 0.05) with 

expression-driven dependency observed in both mRNA and protein level expressions 

(Figure 5A, Table S10). Genes targeted by Antibody was the gene set most enriched 

with GEDs and PEDs (ORRNA = 9.2, ORprotein = 18.9), where the higher enrichment in 

PED align with the mechanism of action of antibody directly binding to proteins. These 

GED/PED genes include Antibody targets (5 out of 23) showing significant levels of both 

GED/PED (rho < -0.25, FDR < 0.05) such as CD19 (rhoRNA = -0.56, rhoprotein = -0.66), 

EGFR (rhoRNA = -0.43, rhoprotein = -0.36), ITGB3 (rhoRNA = -0.41, rhoprotein = -0.36), 

ERBB2 (rhoRNA = -0.41, rhoprotein = -0.34), and PDGFRA (rhoRNA = -0.37, rhoprotein = -

0.26) (Figure 5B, Figure 5C, Table S11). These targets also belong to DrugBank’s 

Approved drug targets (ORRNA = 3.9, ORprotein = 3.9) and Oncology (Cancer) (ORRNA = 

10.1, ORprotein = 7.5) gene lists, both of which were also significantly enriched with GEDs 

and PEDs. The high fold enrichment for druggable genes in the Oncology gene set align 

with our analyses using DepMap cancer cell lines. Well-established targets within 

Approved drug targets and Oncology that show strong GED and PED include BCL2 (for 
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both RNA and protein level EDs, rho < -0.39), PIK3CD (rho < -0.33), and PDGFRB (rho 

< -0.29), suggesting . Additionally among the Drugbank Oncology gene set, PSMB5 

(targeted by proteasome inhibitors bortezomib and carfilzomib for hematologic 

malignancies) and RXRA (targeted by bexarotene, an RXR agonist used in the 

treatment of cutaneous T-cell lymphoma (CTCL)), showing significant levels of 

GED/PED, were among the Oncology gene list, reinforcing the robustness of our 

approach in identifying clinically relevant targets.  

Notably, in addition to enrichment for known Oncology druggable genes, BEACON-

identified GED/PEDs also showed suggestive enrichment for multiple other indication 

categories, including DrugBank gene sets for Skeletomuscular (OR = 4.9, p = 0.0693 for 

GEDs; OR = 3.1, p = 0.29 for PEDs) and Metabolic/Alimentary (OR = 2.2, p = 0.24 for 

GEDs; OR = 4.80, p = 0.030 for PEDs) diseases. The Drugbank Other Indications 

category with more targets and statistical power showed significant enrichment for both 

GEDs (OR = 3.8, FDR =0.022) and PEDs (OR = 3.9, FDR =0.022) for PEDs, 

suggesting there may be a broader utility of these cell-specific targets beyond oncology. 

We next characterized whether GED/PEDs identified by BEACON may be more 

sensitive to identifying genes with specific mode of inheritance or with additional genetic 

effect properties28. GED/PED genes were both enriched for Autosomal Dominant genes 

and haploinsufficient genes as determined by ClinGen, but showed no association with 

Autosomal Recessive genes (Figure S4), suggesting these candidates may capture 

disease genes that are more sensitive to dosage effects. Moreover, GED/PED targets 

were depleted of genes that were Essential In Culture, confirming that BEACON 

identifies cell-specific vulnerabilities rather than house-keeping genes that could have 

off-target effects. Overall, we identified 36 genes in 10 Drugbank/genetic effect lists that 

showed significant (rho < -0.25, FDR < 0.05) pan-lineage expression-driven 

dependency in both mRNA and protein levels (Table S12).  

Additional GED/PED targets identified by BEACON that are not currently druggable 

targets (DrugBank) include SOX10 (rhoRNA = -0.83, rhoprotein = -0.77, also belong to 

ClinGen Haploinsufficient and Autosomal Dominant gene sets) and TP63 (rhoRNA = -

0.69, rhoprotein = -0.72, ClinGen Haploinsufficient) and the Autosomal Dominant genes 
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GRHL2 (rhoRNA = -0.6, rhoprotein = -0.53) and HNF4A (rhoRNA = -0.5, rhoprotein = -0.62) 

(Figure 5B, Figure 5C, Table S11). For genes not in these DrugBank/gene-effect gene 

lists28, BEACON identified 87 targets that showed significant ED (rho < -0.25, FDR < 

0.05) at both mRNA and protein levels that may represent potential therapeutic targets 

for further experimental and clinical development, including IRF4 (for both RNA and 

protein levels, rho < -0.73), MYB (rho < -0.66), GATA1 (rho < -0.52), FERMT2 (rho < -

0.53), KLF5 (rho < -0.54), CCND1 (rho < -0.54), MYOD1 (rho < -0.7), PAX5 (rho < -

0.66), and CCND2 (rho < -0.64) (Table S13). For example, IRF4 knockdown is lethal to 

multiple myeloma cells36. The IRF4 gene is linked to BET protein-mediated 

transcriptional program37 and its dysregulation is also implicated in lymphoid 

malignancies during hematopoietic cell differentiation38. These suggest a therapeutic 

hypothesis where IRF4-expressing melanoma/lymphoid malignant cells may be 

accessible through BET inhibitors (BETi). 

 

Experimental validation of candidate targets showing express-driven dependency 

To experimentally validate GED/PED targets identified by BEACON, we selected two 

types of targets to be tested across two lineages: (1) two targets showing pan-lineage 

expression-driven dependency, GRHL2 and TP63, and (2) one target showing lineage-

specific expression-driven dependency, PAX5. We first confirmed that TP63 and 

GRHL2 mRNA expression were up-regulated in lung squamous (LSCC) tumor tissue 

compared to tumor-adjacent normal tissue in TCGA, and chose cultured LSCC cells to 

conduct validation experiments (Methods)(Figure S5A). After confirming inhibition of 

target gene expression by shRNA using HARA cells with high expression of the 

candidate genes (Figure S5B), cell proliferation and colony-forming ability were 

measured using two types of cells with high dependency (HARA, KNS62) on candidate 

genes and two types of cells with low dependency (H1703, HCC15). In KNS-62 and 

H1703 LSCC cells, the knockdown of TP63 using two shRNA constructs (sh-TP63-1 

and sh-TP63-2) resulted in a significant reduction in colony formation compared to 

controls (p<0.01) (Figure 6A, Figure S5C). Similarly, GRHL2 knockdown using sh-

GRHL2-1 and sh-GRHL2-2 in both cell lines led to a significant decrease in colony 
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formation (p<0.01) (Figure 6B, Figure S5D). TP63 knockdown also resulted in reduced 

colony formation in HARA cell line (Figure S5E). The results showed that the 

knockdown of either gene highly inhibited cell viability and colony formation in LSCC cell 

lines, regardless of the predicted dependence. These results show that pan-lineage 

targets may represent universal vulnerability and their inhibition may lead to undesired 

off-target effects on other cells.  

The lineage-specific target, PAX5, was evaluated for its role in haematopoietic and 

lymphoid tissue. Within the lineage, groups of cells with high and low PAX5 expression 

and low and high PAX5 genetic dependency can be clearly identified by BEACON 

(Figure 6C). We chose two PAX5-low myeloid lineage cell lines (HEL and Kasumi-1) 

and two PAX5-high (REH and SU-DHL4) B-cell lines to conduct PAX5 knockout (KO) 

experiments via CRISPR. Upon confirming successful KO via western blots, we showed 

that PAX5 KO significantly reduced the number of live cells in REH and SU-DHL-4 cell 

lines compared to controls (p<0.05 and p<0.01, respectively). But PAX5 KO did not 

significantly inhibit cell survival for HEL and Kasumi-1 (Figure 6D). Overall, these 

results show that while TP63 and GRHL2 are essential for cell growth across LSCC 

cells, PAX5 is specifically crucial for the growth of PAX5-high B cell lymphoma cells. 

Thus, proteins showing lineage-specific dependencies may present as suitable 

precision oncology targets in the subset of tumors overexpressing the target gene and 

protein.  

 

Discussion 

This study integrates large-scale CRISPR screen in conjunction with transcriptomic and 

proteomic data to identify expression-driven dependencies in cancer cells4,5, providing a 

potential new category of targets in precision oncology, particularly against cancer cells 

without druggable mutations (Figure 1). Our newly developed Bayesian correlation 

approach BEACON identified known drug targets and uncovered new candidate genes, 

demonstrating the utility of expression-driven dependency as a complementary strategy 

to traditional mutation-driven analyses. Functional experiments demonstrated that 

targeting genes with high expression levels could reveal potential vulnerabilities within 
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specific cancer types, e.g., PAX5 in lymphoid tumors. We also identified distinct 

molecular pathways enriched in tissues based on the GED/PEDs, providing insights into 

the biological processes underpinning cancer progression. The concept of expression-

driven dependency expands the scope of actionable targets by focusing on genes 

whose high expression levels selectively contribute to cancer cell survival7-10. This is 

particularly relevant in cases where actionable mutations are absent, thereby 

addressing a significant gap of treatment options in precision oncology1-3.  

 

By integrating CRISPR/transcriptomic data from CCLE/DepMap4,5, and global proteomic 

analyses24, we ensured a robust identification of GED/PEDs. GEDs and PEDs show 

significant correlation (R = 0.54, p < 2e-16) across the cell lines; thus analyzing the 

GED/PED can cross-validate the robustness of candidate vulnerability targets (Figure 

4). Our Bayesian approach BEACON further enhanced the reliability of our findings by 

accommodating variability and limited sample sizes within each tissue lineage (Figure 

S2). The identification of GED/PEDs has significant implications for drug development 

and personalized cancer therapy. By targeting genes with high expression levels, new 

therapeutic avenues can be explored in tumors currently with limited treatment options1-

3. Notably, the strong enrichment of our identified targets with known druggable gene 

sets highlights the translational potential of our findings (Figure 5). While using large 

human genomic cohort without phenotypes fail to enrich for drug targets28, recent 

human cohort studies demonstrate that genetic evidence provided by genome-wide or 

mendelian genetic associations can successfully provide 2 to 5 fold enrichment for drug 

targets39,40. We note that our approach here, based solely on data from cell line 

CRISPR screens, provide an orthogonal approach to refine the drug target search 

space by providing 3.8 fold enrichment for all drug targets and 7-10 fold enrichment for 

oncology targets.  

 

We complemented our computational findings with experimental validation. Knockdown 

of TP63 and GRHL2 genes in lung squamous tumor cell lines demonstrated reduced 

colony-forming ability, and the PAX5 knock-out cell lines from haematopoietic and 
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lymphoid tissue samples showed reduced cell growth, reinforcing the functional 

relevance of the vulnerability targets (Figure 6). Many GED/PED gene targets are 

lineage-specific transcription factors; these agree with recent single-cell studies and 

synthesis that posited the "developmental constraint model of cancer cell states", which 

cancer cell states correspond to and may be constrained by the landscape of 

"developmental map"41. Thus, a cancer cell adopting a specific developmental state 

may require activation of such transcription factors and become genetically dependent. 

While such targets used to be considered undruggable, new drug modalities such as 

proteolysis-targeting chimera (PROTAC) are showing strong promises42-45. 

 

While our study presents a novel approach to identifying cancer dependencies, several 

limitations warrant discussion. The reliance on cell line models, despite their widespread 

use, may not fully capture the complexity of tumor heterogeneity and the tumor 

microenvironment in vivo. Future studies should aim to validate these findings in 

patient-derived xenografts and clinical samples to confirm their translational potential. 

Moreover, our Bayesian approach BEACON, while robust (Figure S2), is constrained 

by the quality and completeness of available data (Figures S1). Expanding proteomic 

and transcriptomic datasets that capture the full array of cancer cell heterogeneity 

across tissue lineages will further improve the reliability of GED/PED identification. 

Additionally, exploring combination therapies targeting both mutation-driven and 

expression-driven dependencies could yield synergistic effects, which could be explored 

in the future. 

 

Overall, our study highlights the potential of expression-driven dependencies as a 

valuable method for identifying novel therapeutic targets in precision oncology. By 

integrating multi-omics and CRISPR screen data, we have expanded the repertoire of 

actionable targets beyond mutated genes for further clinical development, offering new 

possibilities for cancer treatment.  
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Methods 

 

Data Sources 

 

We used the CCLE mRNA expressions data33 and CCLE quantitative proteomics 

data24, and from each dataset we excluded the 26 lineages containing data shared in 

fewer than 7 cell lines, i.e., Adrenal cortex, Autonomic ganglia, Biliary tract, Brain, 

Cervix, Colon, Eye, Fibroblast, Melanoma Eye(Skin), Osteosarcoma, Placenta, Pleura, 

Primary, Prostate, Salivary gland, Skin CJ1(2,3) resistant, Skin FV1(2,3) resistant, 

Small intestine, Testis, Thyroid, and Uvea. We used the DepMap Public 22Q2 data 

release from the Cancer Dependency Map Project (DepMap)5, which contained the 

CRISPR knockout screens (Achilles project25-27) for 19,221 genes in 1840 cell lines, 

including both normal and cancer cell lines, corresponding to 33 primary diseases and 

30 lineages. We used the druggable gene lists curated in Minikel et al.28 The CRISPR 

knockout screens and mRNA expressions datasets were downloaded from depmap 

portal46,47. The proteomics datasets were downloaded from Nusinow et al.24. The 

druggable gene lists were downloaded from the corresponding studies given in Minikel 

et al.,28 and from the DrugBank resource (release 5.1.7). 

 

mRNA expression-driven dependency (GED)  

 

To measure the expression-driven dependency of targets we reviewed correlation-

based methods utilizing the two variables48-50, which are adopted to develop a Bayesian 

approach that we named BEACON. For each gene, BEACON calculated the Bayesian 

correlation between the gene’s expressions and CERES cancer dependency scores25 

across the pan-lineage cell lines. BEACON modeled expression levels and dependency 

scores as the bivariate Gaussians and used Markov Chain Monte Carlo (MCMC) 

sampling to estimate the correlation coefficient rho between them. Given the null 

hypothesis that the uncorrelated expression and dependency of a gene has the 0 rho 

coefficient, we statistically tested each gene’s rho estimate obtained from the MCMC 
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simulation as follows. Assume that the MCMC sampling is carried out for a null gene’s 

expression and dependency, then we expect that the distribution of the rho estimate 

accumulated over the MCMC iterations will be centered at zero. Based on this rationale, 

we computed the z-score of i-th gene as the deviation of the MCMC estimate of rho 

from the expected (null) value (i.e., zero) in terms of the standard deviation observed in 

the simulated distribution, i.e., z(i) = rhoMCMC(i) / SDMCMC(i). Since the z-values, by 

nature, follow a normal distribution with zero-mean and unit-variance, then we 

computed the p-value for each gene’s rho estimate as the probability of observing a 

value as extreme as the computed z-value for that gene. We multi-testing corrected the 

resulting p-values using the BH procedure for FDR. Overall, 4445 genes showed 

significant pan-lineage expression-driven dependency at the FDR of 0.05. We run the 

MCMC simulations in R (v3.6) by using rjags package (v4-10) with JAGS library 

(v4.3.0). 

 

Compared to other methods that quantify the relationship between two variables, the 

Bayesian correlation (rho) yielded more intuitive results in the cases with small sample 

size, while other methods often deviated to spurious correlations imposed by outliers in 

the data. We benchmarked both methods by simulating expression and dependency 

datasets at various correlation levels (from -1 to 1, with 0.25 intervals) and sample size 

(number of cell lines, 10, 20, 30, 40, 60, 100), with different fraction (0.1, 0.3, 0.5) of 

samples being outliers (Figure S2). Through rigorous simulations, we observed that the 

Bayesian method is better than Pearson correlation for estimating moderate true 

correlation (|rho| < 0.75) in small sample size (~10 cell lines). Bayesian method is also 

preferable in noisy data (noise level ≥ 0.3, i.e., 30% or more of the samples are 

corrupted by noise to become outliers), regardless of sample size or true correlation 

level. For large samples (≥60), both methods have similar performance in all settings. 

Pearson method is only better at detecting fewer (≤20 cell lines) and highly-correlated 

samples |rho| ≥ 0.75, when there is less noise (≤0.1) (Figure S2).  

 

For lineage-wise expression-driven dependency analyses, we stratified by lineage the 

gene expressions and cancer dependency scores across cell lines, and for each gene 
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we calculated the Bayesian correlation (and the corresponding P value and FDR as in 

the pan-lineage case) between the gene’s expressions and cancer dependency scores 

over the lineage cell lines. In median, 270 gene expression-driven dependencies were 

significant (FDR < 0.05) per lineage. To further identify the lineage-specific targets, we 

defined a target’s specificity to a given lineage by the difference between the target’s 

ED score computed within that lineage and the target’s average ED score computed in 

other lineages. 

 

Protein expression-driven dependency (PED)  

 

We adopted the aforementioned procedures for analyzing the protein expression-driven 

dependency. For this, we used the MS proteomics data obtained for 375 cell lines and 

22 lineages24. For the pan-lineage analysis, we found 907 proteins showing significant 

expression-driven dependency (FDR < 0.05). For the lineage-wise analyses, we found, 

in median, 70 proteins per lineage showing significant expression-driven dependency 

(FDR < 0.05). 

 

Pathway enrichments from GEDs/PEDs 

 

We used clusterProfiler31 R package (v4.8.3) for functional enrichment analyses of our 

identified GED and PED sets, and reported the enrichment GO categories at the BH-

adjusted p-value cutoff of 0.05.  

 

Association of GEDs/PEDs with drug targets 

 

We tested the association between the drug targets and the genes (proteins) that 

showed significant (rho < -0.25, FDR < 0.05) pan-lineage ED by using the Fisher’s exact 

test of independence (two-sided). More precisely, given a set of druggable genes, a set 

of GEDs (PEDs), and the list of total quantified targets in transcriptome (proteome), we 

calculated the probability of obtaining the observed data and its more extreme 

deviations in the contingency table consisting of (i) the number of drug targets quantified 
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in the transcriptome (proteome), (ii) the number of GEDs (PEDs) quantified in the 

transcriptome (proteome), (iii) the number of drug targets quantified in the transcriptome 

(proteome) that also showed significant ED, and (iv) the remaining number of genes 

(proteins) that were not drug targets nor showed significant ED, under the null 

hypothesis that the relative proportions are the same – that the fractions of genes that 

were drug targets are the same whether the genes show significant ED or not. We 

found that the pan-lineage GEDs (PEDs) were significantly associated (OR > 2, FDR < 

0.05) with the 10 (12) of the druggable gene lists in Minikel at al.28 

 

Methods for the Experimental Validation of TP63 and GRHL2  

 

Cell culture 

The human lung squamous cell carcinoma (LSCC) cell lines, HARA and KNS62 (The 

Japanese Cancer Research Resource Bank; JCRB, Osaka, Japan), NCI-H1703 and 

HCC-15 (kindly provided by Dr. John D Minna) were used. KNS62 was cultured in E-

MEM culture medium (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) 

containing 20% fetal bovine serum (Sigma-Aldrich Japan, Tokyo, Japan) supplemented 

with 100 U/mL penicillin and streptomycin sulfate (FUJIFILM Wako Pure Chemical 

Corporation). The others cell lines were cultured in RPMI-1640 culture medium 

(FUJIFILM Wako Pure Chemical Corporation) containing 10% fetal bovine serum 

(Sigma-Aldrich Japan) supplemented with 100 U/mL penicillin and streptomycin sulfate 

(FUJIFILM Wako Pure Chemical Corporation). All cultured cells were incubated at 37 °C 

in a humidified atmosphere of 5% CO2 and maintained in continuous exponential 

growth by passaging. All cell lines were obtained from the reliable biobanks with 

authentication. Mycoplasma test was performed in regular basis from the first culture of 

the cells to verify the cells to be the same as the cells registered. 

 

Plasmid DNA constructs 

The shRNA-targeted sequences were listed in Table S14. For the constructions of 

plasmids to express shRNA against target genes, double-stranded oligonucleotides 

were cloned into the pLKO.1-TRC vector (Addgene, #10878). A nonsense scrambled 
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oligonucleotide was used as a negative control. All of the inserted DNA fragments were 

confirmed by performing DNA sequencing. 

 

Lentivirus-mediated transient expression of the constructs in LSCCs 

HEK293T cells were transfected with the constructed plasmids along with lentiviral 

packaging plasmids pVSV-G, pMDL/pPRE and pRSV-REV (Addgene) using a calcium 

phosphate method. The lentiviral-containing media were collected 72 h after the 

transfection, filtered through a 0.45 µM filter, then aliquoted and stored at -130°C until 

use. Cultured LSCC cells were infected with packaged lentiviruses to express shRNA 

constructs; after 48 hours of culture, the cells were treated with 2.5 μg/ml (HCC15) or 5 

μg/ml (HARA, KNS-62, H1703) puromycin (Thermo Fisher, # A1113803) and cultured 

for 24 hours (HARA, KNS-62, H1703) or 48 hours (HCC15), and used for transient 

experiments. 

 

RNA extraction and Quantitative PCR analysis 

Gene expression levels were examined by quantitative PCR analysis. Briefly, total RNA 

was isolated from cells using ISOGEN II (Nippon Gene, #311-07361) and purified using 

RNeasy Mini Kit (Qiagen). Total RNA (500 ng) was reverse transcribed to cDNA using 

ReverTra Ace™ (TOYOBO, #FSQ-101). Quantitative PCR was performed using 

primers listed in Table S14, Thunderbird SYBR Green Master Mix (TOYOBO, #QPS-

201) and StepOne Plus Real-Time PCR System (Thermo Fisher). 

 

Cell proliferation and cytotoxic assay 

Cell viability was analyzed using the Cell Counting Kit-8 (CCK-8) (Dojindo Laboratories, 

Kumamoto, Japan: CK04). Cells were seeded 5 x 103/100 μL per well in 96-well plates. 

After 1 h incubation at 37 °C, 10 μL of CCK-8 solution was added to each well and 

incubated at 37 °C for 2 h. The absorbance was detected at 450 nm using a plate 

reader (ThermoFisher Maltiskan FC) according to the manufacturer’s instructions. Cell 

viability was normalized against the sh-negative control after 24 h of transfection and 

the data expressed as a ratio against control after 96 h of transfection. 
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Colony formation assay 

Cells were seeded 1,300-5,000 cells (5,000 cells for HARA, 1,300 cells for KNS-62, 

1,500 cells for H1703, 2,000 cells for HCC15) per well into 12 well plates (3.8 cm², 

Corning Japan, Shizuoka, Japan), and cultured for 10 days with the change of culture 

media every three days. The cells were then washed by PBS twice, fixed and stained in 

0.2% crystal violet dissolved in 20% ethanol, and incubated for 10 minutes at room 

temperature with gentle shaking. After washing by 1 mL of PBS once and by sterilized 

water three times, the plate was air dried and photographed. To quantify the colony 

formation, 1 mL of 50% ethanol (pH 4.2, adjusted by hydrochloric acid) was added into 

each well of 12-well plates, and incubated for 5 minutes at room temperature with slow 

shaking, then measured the absorption at 592 nm using a ThermoFisher Maltiskan FC 

(ThermoFisher). Each experiment was performed with 3 replicate wells. 

 

Statistical analysis 

Data were analyzed using R version 4.0.3 (The R Foundation for Statistical Computing, 

Vienna, Austria) in combination with R studio version 1.2.5033 (R studio, Boston, MA, 

USA). Welch two sample t-test was used to examine statistical difference between two 

groups. 

 

Methods for the Experimental Validation of PAX5  

Tissue culture 

All cell lines used in this study were maintained at 37°C with 5% CO2. HEL and SU-

DHL4 cells were cultured in RPMI 1640 (Corning) supplemented with 10% FetalPlex 

serum (Gemini) 1% L-Glutamine (Corning), and 1% Penicillin Streptomycin (Gibco). 

Kasumi-1 cells were cultured in RPMI 1640 (Corning) supplemented with 15% FetalPlex 

serum (Gemini) 1% L-Glutamine (Corning), and 1% Penicillin Streptomycin (Gibco). 

REH cells were cultured in IMDM (Gibco) supplemented with 10% heat inactivated FBS 

(R&D Systems), 1% L-Glutamine (Corning), and 1% Penicillin Streptomycin (Gibco). 

 

Genome Editing 
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The CRISPR/Cas9 system was used to genetically engineer cell lines via 

ribonucleoprotein (RNP) complex delivery as previously described (Layden et al., 2021).  

Briefly, a crRNA (IDT) targeted to exon 4 of PAX5, CTTTTGTCCGGATGATCCTG, was 

annealed with tracrRNA (IDT). Control RNP complexes were formed without the crRNA. 

Annealed gRNA were incubated with S.p. Cas9 Nuclease (IDT) to form RNP complexes 

and electroporated into 1.25 million cells per condition using the NEON transfection 

system (ThermoFisher). Cells were grown for 72 hours and knockout efficiency was 

assessed by western blot. Electroporations were performed in biological triplicate for 

each condition. 

 

Growth Analysis 

Cells were allowed to recover for 72 hours post electroporation and then were reseeded 

to 0.2-0.5 x 106 depending on cell line. Reseeded cells were incubated for 72 hours at 

37°C with 5% CO2. Cells were mixed with Trypan Blue (Gibco) and counted with a 

hemocytometer. Cells were counted in technical triplicate for each biological replicate. 

Western Blots: 

Protein was isolated from cells lysed with RIPA buffer (50 mM Tris pH 8.0, 150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) and sonicated before 

centrifugation. Protein concentration was quantified using the DC Protein Assay kit 

(BioRad). Equal amounts of protein were boiled in Laemmli buffer and run on SDS-

PAGE gels. Proteins were transferred to a PVDF membrane and membranes were 

blocked in 5% BSA in PBS. Membranes were incubated with the indicated primary 

antibodies diluted in 5% BSA in PBS-T followed by incubation with IRDye 800CW and 

680RD secondary antibodies (LI-COR Biosciences) diluted in PBS-T + 0.01% SDS. 

Blots were imaged using the Odyssey Imaging System (LI-COR Biosciences). The 

following primary antibodies were used at a 1:1000 dilution:  PAX5 (Santa Cruz; A-11) 

and VCL (Santa Cruz; 7F9). All secondary antibodies (IRDye 680 Donkey anti-Rabbit 

and IRDye 800 Donkey anti-Mouse, Licor) were used at a 1:5000 dilution. 

 

Statistics 
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Statistical analyses were performed in R (version 4.1.0). Unpaired two-sample t-tests 

were used to determine significance between conditions. 
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FIGURE LEGENDS 

Figure 1. Study overview. (A) The integration of global proteomic and transcriptomic 

profiles from 375 cancer cell lines across 22 tissue types in the Cancer Cell Lines 

Encyclopedia (CCLE), with cancer cell dependency scores derived from CRISPR 

knockout screens (Achilles). (B) BEACON identifies expression-driven dependency 

(ED) by using a Bayesian estimation of the correlation coefficient between gene/protein 

expression and cancer cell dependency data across the cell lines for a representative 

gene (e.g., TP63). (C) Comparison of gene/protein EDs revealed potential markers 

showing consistency at different molecular levels or arising post-transcriptionally. (D) 

Heatmaps showing pan-cancer expression-driven dependencies, GED (above) and 

PED (below), revealing dependencies that are common across multiple cancer types. 

(E) Heatmaps illustrating cancer-specific expression-driven dependencies, GED (above) 

and PED (below), identifying dependencies unique to specific cancer types. (F) 

Identification of new potentially actionable targets that are strongly associated with 

druggable gene lists catalogued in DrugBank28, highlighting their therapeutic potential.  

 

Figure 2. Gene Expression-driven Dependency (GED). (A) Heatmap illustrating pan-

lineage and lineage-specific gene expression-driven dependencies (GEDs) across 

various cancer types. Each square represents the correlation (rho) between gene 

expression and dependency (CERES scores) in the respective tissue types. Significant 

dependencies are highlighted with bold outlines (FDR < 0.05 in black, FDR < 0.15 in 

grey).  (B) Scatter plots showing examples of gene expression vs. dependency 

correlations for selected genes (TP63, CCND1, CCND2, KLF5) with significant pan-

lineage dependencies. Data points (cell lines) are colored by tissue type.  (C) Scatter 

plots demonstrating lineage-specific dependencies for selected genes (AUNIP1, CD47, 

SLC4A1, ESR1). Data points are colored by tissue type, highlighting lineage-specific 

associations. (D) Pathway enrichment analysis of lineage-specific GEDs, visualized as 

a heatmap. Each cell indicates the ED score of a particular pathway gene (column) in a 

specific tissue type (row), with genes grouped (colored) by functional pathways. 
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Figure 3. Protein Expression-driven Dependency (PED). (A) Heatmap illustrating 

pan-lineage and lineage-specific protein expression-driven dependencies (PEDs) 

across various cancer types. Each square represents the correlation (rho) between 

protein expression and dependency (CERES scores) in the respective tissue types. 

Significant dependencies are highlighted with bold outlines (FDR < 0.05 in black, FDR < 

0.15 in grey).  (B) Scatter plots showing examples of protein expression vs. dependency 

correlations for selected genes (CCND1, KLF5, ELMO2, IRS2) with significant pan-

lineage dependencies. Data points (cell lines) are colored by tissue type.  (C) Scatter 

plots demonstrating lineage-specific dependencies for selected genes (TMEM208, 

GALNT14, GTSF1, PAX5). Data points are colored by tissue type, highlighting lineage-

specific associations.  (D) Pathway enrichment analysis of lineage-specific PEDs, 

visualized as a heatmap. Each cell indicates the ED score of a particular pathway gene 

(column) in a specific tissue type (row), with genes grouped (colored) by functional 

pathways. 

 

Figure 4. mRNA vs Protein expression-driven dependency. (A) Heatmap illustrating 

the correlation between pan-lineage GEDs and PEDs across genes. Genes with 

consistent significant pan-lineage dependencies at both mRNA and protein levels are 

highlighted, including SOX10, TP63, IRF4, and MYB. Additional significant pan-lineage 

GEDs without corresponding PEDs (e.g., MYCN, OTX2, EBF1) and PEDs without 

corresponding GEDs (e.g., ELMO2, PRDM6, FGFR3) are also indicated. (B) Scatter 

plots showing the correlation between tissue-level GEDs and PEDs within specific 

lineages. 

 

Figure 5. Leveraging Expression-Driven Dependency to Enrich for Drug Targets. 

(A) Enrichment (Fisher’s exact test) results demonstrating the enrichment of identified 

GEDs and PEDs in druggable gene lists curated by DrugBank, including all approved 

drug targets, drug targets by indication, and by drug modality. (B-C) The density plots of 

ED scores from drug targets versus other genes, highlighting the top significant targets 

identified at (B) mRNA and (C) protein levels. (D) Scatter plots of expression vs. 

dependency correlations for top drug targets and other genes, showing significant pan-
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lineage ED at both mRNA and protein levels (e.g., SOX10, TP63, IRF4, CCND1). Data 

points (cell lines) are colored by tissue type. 

 

Figure 6. Functional validation of expression-driven dependency targets, TP63, 

GRHL2, and PAX5, in lung squamous cancer cell and hematopoietic cell lines. (A) 

Colony formation assay in LSCC cell lines (KNS-62 and H1703) upon knockdown of 

TP63 using two shRNA constructs (sh-TP63-1 and sh-TP63-2). Significant reduction in 

colony formation was observed compared to sh-negative control cells (p<0.01). ns: non-

significance between control and sh-negative cells. (B) Colony formation assay in LSCC 

cell lines (KNS-62 and H1703) upon knockdown of GRHL2 using two shRNA constructs 

(sh-GRHL2-1 and sh-GRHL2-2). Significant decrease in colony formation was seen 

compared to sh-negative control cells (p<0.01). (C) PAX5 mRNA and protein expression 

levels in myeloid (HEL, Kasumi-1) and B-cell (REH, SU-DHL4) lineage cell lines, 

including . PAX5 showed lineage-specific expression-driven dependency. (D) Effect of 

PAX5 knockout (KO) via CRISPR on cell viability in PAX5-high B-cell lines (REH, SU-

DHL4) and PAX5-low myeloid lines (HEL, Kasumi-1). PAX5 KO significantly reduced 

live cell numbers in REH and SU-DHL4 (p<0.05 and p<0.01, respectively), but not in 

HEL and Kasumi-1. In (D) left, protein levels were assessed by anti-PAX5 72 hours 

after electroporation. VCL serves as a loading control. In (D) right, cells were 

electroporated with RNP complexes with (KO) or without (ng) PAX5 crRNA and allowed 

to recover for 72 hours. After recovery ng and KO cells were reseeded at equal 

densities and live cells were counted by trypan blue exclusion after 72 hours.   

 

Supplementary Figure Legends 

Figure S1. Data overview. (A) Analyses were restricted to lineages with at least 7 cell 

lines having cancer cell line dependency and corresponding mRNA/protein expression 

data to ensure statistical robustness. (B) 855 cell lines across 17 lineages were 

analyzed, sharing cancer cell dependency scores and corresponding mRNA and protein 

expressions. The limited sample size per cell lineage may lead to spurious correlations, 

especially for protein expression. (C) The distribution of protein quantification per cell 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618926doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618926
http://creativecommons.org/licenses/by-nc-nd/4.0/


line. Over 12,000 proteins (in total) were quantified across all samples, where a majority 

of the samples reached a quantification level of over 9,000 proteins24. 

Figure S2. Benchmarking of Bayesian correlation vs Pearson’s method. The 

performance are measured by mean squared-error (MSE, y-axis) for the same data sets 

randomly simulated for various true correlation levels (rho, x-axis), under different 

conditions of noise interference (columns, 0.1, 0.3, 0.5) and sample size (rows, 10, 20, 

30, 40, 60, 100). 

Figure S3. Analysis of Druggable Gene Expression Dependencies (GEDs) and 

Protein Expression Dependencies (PEDs). (A) Heatmap illustrating pan-lineage and 

lineage-specific druggable gene expression-driven dependencies (GEDs) across 

various cancer types. Each square represents the correlation (rho) between gene 

expression and dependency (CERES scores) in the respective tissue types. Significant 

dependencies are highlighted with bold outlines (FDR < 0.05 in black, FDR < 0.15 in 

grey). Integration of the drug-gene interaction database (DGIdb) identified 82 druggable 

factors showing pan-lineage GED and 951 tissue-specific druggable targets, in total, 

showing significant GED across all lineages. (B) Analysis of tissue-specific expression-

driven dependencies across tissues revealed 951 significant druggable targets, 

including 132 for hematopoietic and lymphoid tissue, and 101 for lung. (C) Clustering 

GED measures of druggable genes across tissue types showed that pancreatic and 

biliary tract cancer cells, as well as kidney and urinary tract cancer cells, have similar 

druggable profiles. (D) The breast-specific ESR1 transcription factor clustered with other 

factors such as FOXA1, SPDEF, TBX3, and TRPS1, showing strong GED levels in 

breast tissue cell lines. (E) Integration of DGIdb for PEDs identified 170 significant 

lineage-specific PEDs, with notable targets including PAX5 in hematopoietic and 

lymphoid tissue, and SOX10 in the central nervous system.  

Figure S4. Enrichment (Fisher’s exact test) results demonstrating the enrichment 

of identified GEDs and PEDs in druggable gene lists based on DrugBank (likely 

mechanism of action) and genetic effect gene lists as described in Methods.  

Figure S5. Dependencies of GRHL2 and TP63 in lung squamous cell carcinoma 

(LSCC) cell lines. (A) mRNA expression levels of GRHL2 and TP63 in TCGA LUSC 
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tumor vs. normal tissues in TCGA, where both genes show elevated expression in 

LSCC compared to normal adjacent normal lung tissue. (B) Scatter plots showing the 

relationship between TP63 mRNA and protein expression levels vs. gene dependency 

(CERES score) across various cell lines. (C) CCK-8 cell proliferation assays in LSCC 

cell lines (KNS-62 and H1703) upon knockdown of TP63 using two shRNA constructs 

(sh-TP63-1 and sh-TP63-2). Proliferation is shown as a ratio to the average of day 1. 

(D) CCK-8 cell proliferation assays in LSCC cell lines (KNS-62 and H1703) upon 

knockdown of GRHL2 using two shRNA constructs (sh-GRHL2-1 and sh-GRHL2-2). 

Proliferation is shown as a ratio to the average of day 1. (E) Colony formation assay in 

HARA LSCC cells upon TP63 knockdown. Significant reduction in colony formation is 

observed compared to control. 

 

Supplementary Data. Spreadsheets containing the supplementary tables (S1-S14), 

including the related data used for plotting main figures and supplementary figures. 

Table S1. Data availability for all lineage cell lines.  

Table S2. BEACON results of pan-lineage GEDs (tissue-specific GEDs – sheet2).  

Table S3. BEACON results of pan-lineage druggable GEDs (tissue-specific druggable 

GEDs – sheet2).  

Table S4. Proteins showing significant (rho < -0.25, FDR < 0.05) pan-lineage PED with 

significant GED (without a significant GED – sheet2). 

Table S5. BEACON results of pan-lineage druggable PEDs.  

Table S6. BEACON results of tissue-specific PEDs (tissue-specific druggable PEDs – 

sheet2). 

Table S7. Gene ontology enrichment analysis for the tissue-specific PEDs.  

Table S8. Genes showing consistently significant (rho < -0.25, FDR < 0.05)  pan-

lineage expression-driven dependency in both mRNA and protein levels (in only mRNA 

levels – sheet2).  

Table S9. Table showing consistency between tissue-level GEDs and PEDs for each 

lineage.  

Table S10. Results of Fisher’s exact test evaluating the association between the 

druggable gene lists and the pan-lineage GEDs/PEDs.  
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Table S11. GEDs/PEDs enriched for druggable targets curated by the DrugBank.  

Table S12. Druggable genes significantly enriched with expression-driven dependency 

observed in both mRNA and protein level expressions.  

Table S13. Other genes (not drug targets) significantly enriched with expression-driven 

dependency observed in both mRNA and protein level expressions  

Table S14. The shRNA-targeted sequences and primers used for LSCC experiments.  

 

DATA AND SOFTWARE AVAILABILITY 

Data Availability 

Data for DepMap/CCLE genetic screens and mRNA/protein expressions can be found 

on DepMap data portal: https://depmap.org/portal/.  

Code Availability 

The source code for BEACON is available at https://github.com/Huang-lab/BEACON.  
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Figure 2. Gene Expression-driven Dependency (GED). (A) Heatmap illustrating pan-lineage and lineage-specific gene
expression-driven dependencies (GEDs) across various cancer types. Each square represents the correlation (rho) between
gene expression and dependency (CERES scores) in the respective tissue types. Significant dependencies are highlighted
with bold outlines (FDR < 0.05 in black, FDR < 0.15 in grey). (B) Scatter plots showing examples of gene expression vs.
dependency correlations for selected genes (TP63, CCND1, CCND2, KLF5) with significant pan-lineage dependencies. Data
points (cell lines) are colored by tissue type. (C) Scatter plots demonstrating lineage-specific dependencies for selected genes
(AUNIP1, CD47, SLC4A1, ESR1). Data points are colored by tissue type, highlighting lineage-specific associations. (D)
Pathway enrichment analysis of lineage-specific GEDs, visualized as a heatmap. Each cell indicates the ED score of a
particular pathway gene (column) in a specific tissue type (row), with genes grouped (colored) by functional pathways.
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Figure 3. Protein Expression-driven Dependency (PED). (A) Heatmap illustrating pan-lineage and lineage-specific protein 
expression-driven dependencies (PEDs) across various cancer types. Each square represents the correlation (rho) between protein 
expression and dependency (CERES scores) in the respective tissue types. Significant dependencies are highlighted with bold outlines 
(FDR < 0.05 in black, FDR < 0.15 in grey).  (B) Scatter plots showing examples of protein expression vs. dependency correlations for 
selected genes (CCND1, KLF5, ELMO2, IRS2) with significant pan-lineage dependencies. Data points (cell lines) are colored by tissue 
type.  (C) Scatter plots demonstrating lineage-specific dependencies for selected genes (TMEM208, GALNT14, GTSF1, PAX5). Data 
points are colored by tissue type, highlighting lineage-specific associations.  (D) Pathway enrichment analysis of lineage-specific PEDs, 
visualized as a heatmap. Each cell indicates the ED score of a particular pathway gene (column) in a specific tissue type (row), with 
genes grouped (colored) by functional pathways.
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Figure 4. mRNA vs Protein expression-driven dependency. (A) Heatmap illustrating the correlation between pan-lineage GEDs 
and PEDs across genes. Genes with consistent significant pan-lineage dependencies at both mRNA and protein levels are 
highlighted, including SOX10, TP63, IRF4, and MYB. Additional significant pan-lineage GEDs without corresponding PEDs (e.g., 
MYCN, OTX2, EBF1) and PEDs without corresponding GEDs (e.g., ELMO2, PRDM6, FGFR3) are also indicated. (B) Scatter plots 
showing the correlation between tissue-level GEDs and PEDs within specific lineages.
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Figure 5. Leveraging Expression-Driven Dependency to Enrich for Drug Targets. (A) Enrichment (Fisher’s exact test) results demonstrating the 
enrichment of identified GEDs and PEDs in druggable gene lists curated by DrugBank, including all approved drug targets, drug targets by 
indication, and by drug modality. (B-C) The density plots of ED scores from drug targets (DrugBank approved targets) versus other genes, 
highlighting the top significant targets identified at (B) mRNA and (C) protein levels. (D) Scatter plots of expression vs. dependency correlations for 
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points (cell lines) are colored by tissue type.
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Figure 6. Functional validation of expression-driven dependency targets, TP63, GRHL2, and PAX5, in lung squamous cancer 
cell and hematopoietic cell lines. (A) Colony formation assay in LSCC cell lines (KNS-62 and H1703) upon knockdown of TP63 using 
two shRNA constructs (sh-TP63-1 and sh-TP63-2). Significant reduction in colony formation was observed compared to sh-negative 
control cells (p<0.01). ns: non-significance between control and sh-negative cells. (B) Colony formation assay in LSCC cell lines (KNS-
62 and H1703) upon knockdown of GRHL2 using two shRNA constructs (sh-GRHL2-1 and sh-GRHL2-2). Significant decrease in colony 
formation was seen compared to sh-negative control cells (p<0.01). (C) PAX5 mRNA and protein expression levels in myeloid (HEL, 
Kasumi-1) and B-cell (REH, SU-DHL4) lineage cell lines, including . PAX5 showed lineage-specific expression-driven dependency. (D) 
Effect of PAX5 knockout (KO) via CRISPR on cell viability in PAX5-high B-cell lines (REH, SU-DHL4) and PAX5-low myeloid lines (HEL, 
Kasumi-1). PAX5 KO significantly reduced live cell numbers in REH and SU-DHL4 (p<0.05 and p<0.01, respectively), but not in HEL and 
Kasumi-1. In (D) left, protein levels were assessed by anti-PAX5 72 hours after electroporation. VCL serves as a loading control. In (D) 
right, cells were electroporated with RNP complexes with (KO) or without (ng) PAX5 crRNA and allowed to recover for 72 hours. After 
recovery ng and KO cells were reseeded at equal densities and live cells were counted by trypan blue exclusion after 72 hours.  
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