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This study assessed contributions of micron-scale topography on clinically relevant titanium (Ti) to differentiation of osteopro-
genitor cells and osteoblasts; the interaction of this effect with 1𝛼,25-dihydroxyvitamin D

3
(1𝛼,25(OH)

2
D
3
); and if the effects are

sex-dependent. Male and female rat bone marrow cells (BMCs) were cultured on acid-etched (A, 𝑅
𝑎
= 0.87 𝜇m), grit-blasted (GB,

𝑅
𝑎
= 3.90 𝜇m), or grit-blasted/acid-etched (SLA, 𝑅

𝑎
= 3.22 𝜇m) Ti. BMCs were sensitive to surface topography and underwent

osteoblast differentiation. This was greatest on SLA; acid etching and grit blasting contributed additively. Primary osteoblasts were
also sensitive to SLA, with less effect from individual structural components, demonstrated by enhanced local factor production.
Sex-dependent responses of BMCs to topography varied with parameter whereas male and female osteoblasts responded similarly
to surface treatment. 1𝛼,25(OH)

2
D
3
enhanced cell responses on all surfaces similarly. Effects were sex-dependent and male cells

grown on a complex microstructured surface were much more sensitive than female cells. These results indicate that effects of the
complex SLA topography are greater than acid etching or grit blasting alone on multipotent BMCs and committed osteoblasts and
that individual parameters are sex-specific. The effect of 1𝛼,25(OH)

2
D
3
was sex dependent. The results also suggest that levels of

1𝛼,25(OH)
2
D
3
in the patient may be important in osseointegration.

1. Introduction

Current dental practice employs implants with a variety of
surface modifications, yielding improved bone-to-implant
contact and patient outcomes. Alterations in surface micro-
topography change the adsorption of proteins to the implant
surface, which also affects cell attachment and differentiation
[1–3]. Many studies, including those from our group, have
shown that surface microroughness influences osteoblast
response [4–6]. A series of studies assessing the role of spe-
cific surface properties using electro-micromachined, acid-
etched, or grit-blasted/acid-etched titanium (Ti) substrates
showed that the greatest osteoblast differentiationwas present

on the more topographically complex surfaces, with both
micron- and submicron-scale features [7–9].

For an implant to become osseointegrated, cells that
migrate to the area must attach to the surface and then
differentiate into mature osteoblasts. Recently, we demon-
strated that commercially available human mesenchymal
stem cells are also sensitive to Ti surface microtopography
and exhibit osteoblast differentiation even in the absence of
media supplements typically used to promote mineralized
bone nodule formation [6]. Wnt5a mediated the effects of
the surface through the noncanonicalWnt signaling pathway
[10]. Stangl et al. [11] showed that a human fetal osteoblast cell
line responded preferentially to changes in microtopography
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of commercially pure Ti surfaces, indicating that progenitor
cells in the osteoblast lineage are affected as well.

Grit blasting and acid etching are widely used in com-
bination to modify titanium implants. Grit blasting imparts
macron- andmicron-scale topographic structures on implant
surfaces, while acid etching creates micron-, submicron-,
and nanoscale topographies. The application of these two
techniques in combination creates implant surfaces with a
complex topography that has been well studied in osseoin-
tegration in vivo [12, 13] and osteoblasts in vitro [14]. These
studies demonstrate that the topographical features of Ti
surfaces affect differentiation of osteoprogenitor cells and
maturation of osteoblast lineage cells. However, less is known
about the individual contributions of these substrate features
to directing osteoblastic differentiation of progenitor cells or
maturation of committed osteoblasts.

Several reports have shown surface-dependent differ-
ences of osteoblasts in response to osteotropic hormones
such as 1𝛼,25-dihydroxyvitamin D

3
(1𝛼,25(OH)

2
D
3
) [15–18].

Interestingly, not only are responses to 1𝛼,25(OH)
2
D
3
on

complex microstructured surfaces greater than on smooth
surfaces, but there are sex-specific differences in hormone
responses as well. Our group has demonstrated that calvarial
osteoblasts frommale donors exhibit a more robust response
to 1𝛼,25(OH)

2
D
3
than cells from female donors, increasing

important osteogenic markers as well as soluble factors that
increase the angiogenic and osteogenic microenvironment
[15]. Similarly, sex-specific responses to a variety of stimuli
have been observed in myotubes [19], angiogenesis [20],
spleen, and thymus [21, 22]. These observations suggest
that osteoblast cells may also respond to surface roughness
modifications in a sex-dependent manner.

The aim of the present study was to evaluate the role of
topographic surface features in osteogenic differentiation of
rat bone marrow stromal cells (BMCs) and in the maturation
of rat calvarial osteoblasts and to assess whether the effects of
specific surface treatments, either alone or in combination,
are sex-dependent. In addition, we examine how treatment
with 1𝛼,25(OH)

2
D
3
modifies the responses of male and

female primary cells to these surface topographies.

2. Materials and Methods

2.1. Preparation and Characterization of Ti Disks. Titanium
(Ti) disks were prepared from 1mm thick sheets of grade 2
unalloyed Ti (ASTM F67 “Unalloyed Titanium for Surgical
Implant Applications”) with a 15mm diameter to fit in a 24-
well culture plate as previously described [16, 23, 24]. Briefly,
disks were washed in acetone and processed through a 2%
ammonium fluoride, 2% hydrofluoric acid, and 10% nitric
acid solution at 55∘C for 30 s to pretreat Ti disks. Submicron-
scale rough (A) surfaces were produced by treating pretreated
disks with heated, concentrated acid, resulting in 𝑅

𝑎
of

870 nm. GB surfaces were produced by coarse grit blasting
with 0.25–0.50mm corundum grit at 5 bars until the surface
reached a uniform gray tone pretreatment disks (𝑅

𝑎
=

3.90 𝜇m). To produce disks with a mixed topography (SLA),
grit-blasted disks were acid-etched (𝑅

𝑎
= 3.22 𝜇m). Scanning

electron microscopic images and surface characterization
have been described previously [8, 14].

2.2. Bone Marrow Cell Isolation and Response. Bone marrow
cells (BMCs) were isolated from the tibias and femurs of
100–125 gram male and female Sprague-Dawley rats under
Georgia Institute of Technology Institutional Animal Care
and Use Committee Protocols and following appropriate
guidelines. For each sex, marrow was isolated and pooled
from the tibias and femurs of four animals. Marrow was
flushed from the intramedullary canal of each bone into a
sterile conical tube using a 5mL syringe and 18-gauge needle.
Marrow was briefly incubated with Collagenase IA (Sigma
Aldrich, St. Louis, MO) to release the cells from the matrix.
The cells were pelleted and plated in a flask for expansion.
Cells were cultured inMesenchymal StemCell GrowthMedia
(Lonza Biosciences, Walkersville, MD). At first passage, cells
were plated on tissue culture polystyrene (TCPS) or Ti
surfaces (A, GB, SLA) at 5,000 cells/cm2 (based on a 15mm
diameter smooth surface) and grown to confluence on TCPS,
typically after 7 days. At confluence, media were changed and
cells incubated for an additional 24 hours.

2.3. Rat Osteoblast Cultures. Osteoblasts were isolated from
frontal and parietal (calvaria) bones of 100–125 gram male
and female Sprague-Dawley rats using enzymatic isolation
as described previously [25]. Briefly, rat bones cleaned of
periosteum and soft tissues were cut into 1-2mm2 pieces.
The bone chips were washed three times in Hank’s balanced
salt solution (HBSS, Invitrogen, Carlsbad, CA) containing
3%penicillin-streptomycin (Invitrogen). Afterwashing, bone
chips were digested with an enzymatic cocktail of collagenase
IA and dispase (Invitrogen) in HBSS for 1 hour at 37∘C.
The supernatants of the first two digestions were discarded
to avoid contamination by fibroblasts. The bone chips were
digested three more times using the same method; at each
step, the digestion media were collected and quenched with
Dulbecco’s modification of Eagle’s medium (DMEM, cellgro,
Manassas, VA) supplemented with 10% fetal bovine serum
(Thermo Fisher HyClone, Waltham, MA) and 1% penicillin-
streptomycin (Invitrogen). Calvaria from eight rats per sex
were pooled for each experiment.

To confirmosteoblastic phenotype of isolated rat calvarial
cells, we also examined cell responses to 24-hour treatment
with the osteotropic hormone 1𝛼,25(OH)

2
D
3
(Enzo Life

Sciences, Plymouth Meeting, PA) after confluence on TCPS.
Both male and female rat cells exhibited dose-dependent
decreases in cell number and increased alkaline phosphatase
specific activity and osteocalcin levels in response to treat-
ment with 10−10M, 10−9M, and 10−8M 1𝛼,25(OH)

2
D
3
(data

not shown).
Validated rat osteoblasts were plated on TCPS or Ti

surfaces at a density of 10,000 cells per cm2. Media were
exchanged at 24 hours and then every 48 hours until
the cells reached confluence on TCPS. At confluence, the
cells were treated with vehicle (0.001% ethanol) or 10−8M
1𝛼,25(OH)

2
D
3
for 24 hours and harvested as described

below.
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Figure 1: Response of rat BMCs to microstructured titanium surfaces. Male and female BMCs were cultured on TCPS, A, GB, or SLA
surfaces and grown to confluence. Cell number (a), alkaline phosphatase specific activity (b), and osteocalcin levels (c) were measured. Data
are displayed as treatment/control of cells on Ti surfaces to cells on TCPS. ∗𝑃 < 0.05 versus TCPS; $𝑃 < 0.05 versus A surface; &𝑃 < 0.05
versus GB; ∙𝑃 < 0.05, female versus male.

2.4. Biochemical and Immunoassays. Cell number was deter-
mined in all cultures 24 hours after cells on TCPS reached
confluence. Cells were released from the surfaces using two
sequential 10m incubations in 0.25% trypsin at 37∘C, to
ensure that any remaining cells were removed from rough Ti
surfaces, and counted using an automatic cell counter (Z1 Par-
ticle Counter, Beckman Coulter, Fullerton, CA). Osteoblast
differentiation and maturation were evaluated using alka-
line phosphatase specific activity as an early marker and
osteocalcin secretion as a later marker [26]. Cellular alkaline
phosphatase specific activity (orthophosphoric monoester
phosphohydrolase, alkaline; E.C. 3.1.3.1) of the cell lysates was
assayed by measuring the release of 𝑝-nitrophenol from 𝑝-
nitrophenylphosphate at pH 10.2 and results were normalized
to total protein content of the cell lysates (Pierce BCA Protein

Assay, Thermo Fisher, Rockford, IL). Levels of osteocalcin
in the conditioned media were measured by immunoassay
(Osteocalcin EIA, Biomedical Technologies, Stoughton,MA).

The conditioned media were also assayed for growth
factors and cytokines. Active TGF-𝛽1 was measured prior
to acidification of the conditioned media, using an enzyme-
linked immunosorbent assay (R&D Systems, Minneapolis,
MN). Total TGF-𝛽1 was measured after acidifying the media
and latent TGF-𝛽1 was defined as total TGF-𝛽1 minus
active TGF-𝛽1. Osteoprotegerin (OPG) was measured using
an ELISA kit (DuoSet, R&D Systems, Minneapolis, MN).
Vascular endothelial growth factor (VEGF) was measured
in the conditioned media of BMCs using an ELISA kit
(R&D Systems). Immunoassays were normalized to total cell
number.
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Figure 2: Response of rat BMCs to microstructured titanium surfaces. Male and female BMCs were cultured on TCPS or Ti disks and
grown to confluence. OPG (a), active TGF-𝛽1 (b), and latent TGF-𝛽1 (c) were measured in the conditioned media. Data are displayed as
treatment/control of cells on Ti surfaces to cells on TCPS. ∗𝑃 < 0.05 versus TCPS; $𝑃 < 0.05 versus A surface; &𝑃 < 0.05 versus GB; ∙𝑃 < 0.05,
female versus male.

2.5. Statistical Analysis. Data presented are treatment/control
ratios from one of two experiments, both with comparable
results. Responses on TCPS serve as controls. For each
experiment, each variable was tested in six independent
cultures. Datawere first analyzed byANOVA;when statistical
differences were detected, a post hoc analysis of Bonferroni’s
modification of Student’s 𝑡-test was used. 𝑃 values <0.05 were
considered to be significant.

3. Results

BMCs had lower cell number when cultured on Ti substrates
in comparison to TCPS (Figure 1(a)). This effect was signifi-
cantly lower on SLA compared to GB and A and significantly
lower on A than GB. Female cells had higher cell number
on GB and lower cell number on SLA than male cells.

Alkaline phosphatase specific activity was sensitive to surface
topography in a sex-specific manner (Figure 1(b)). Activity
was increased in male cells on A and SLA in comparison
to TCPS. However, in female BMC cultures, activity was
increased only on in cells onGB. Bothmale and female BMCs
exhibited increased osteocalcin in their conditioned media
on all surfaces (SLA > A > GB) (Figure 1(c)). This effect was
comparable in male and female cultures on GB surfaces, but
cells isolated from female rats produced more osteocalcin on
SLA than males.

OPG was increased in male cells by 30–50% on all
surfaces (Figure 2(a)). Female BMCs showed a comparable
increase inOPG onGB and SLA surfaces over levels on TCPS
when compared to males. However, female cells cultured on
A surfaces did not exhibit increased OPG in comparison to
TCPS. Male BMCs produced more active (Figure 2(b)) and
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Figure 3: Response of rat BMCs to microstructured titanium
surfaces. Male and female BMCs were cultured on TCPS or Ti disks
and grown to confluence. VEGF was measured in the conditioned
media. Data are displayed as treatment/control of cells onTi surfaces
to cells on TCPS. ∗𝑃 < 0.05 versus TCPS; $𝑃 < 0.05 versus A surface;
&
𝑃 < 0.05 versus GB; ∙𝑃 < 0.05, female versus male.

latent (Figure 2(c)) TGF-𝛽1 on all Ti substrates (SLA > A >
GB) in comparison to TCPS. Female cells produced similar
levels of active TGF-𝛽1 on A and SLA in comparison to male
cells; however, they secreted less active and latent TGF-𝛽1 on
GB than male cells.

VEGF was also produced in a surface-dependent, sex-
specificmanner by BMC cells (Figure 3). Male cells produced
more VEGF on GB and SLA than on TCPS. In contrast,
female cells producedmore VEGF onA and SLA than onGB.
Female cells produced more VEGF-A on acid-etched A and
SLA surfaces than male cells.

Osteoblasts had reduced cell numbers when cultured
on Ti surfaces when compared to TCPS (Figure 4(a)). This
was less pronounced in cultures grown on GB surfaces
compared to A and SLA surfaces and was most pronounced
on SLA. 1𝛼,25(OH)

2
D
3
enhanced the decreased cell number

of cells grown on SLA surface. In male cells on all surfaces
decreased cell number but only affected female cells on
SLA. Alkaline phosphatase specific activity was greater in
osteoblast cultures grown on Ti substrates in comparison
to TCPS (Figure 4(b)). 1𝛼,25(OH)

2
D
3
increased activity on

all surfaces examined. Alkaline phosphatase specific activity
was significantly stimulated in osteoblasts from male rats
in comparison to female cells. Levels of osteocalcin in the
conditioned media were higher in osteoblast cultures on all
Ti surfaces compared to TCPS (Figure 4(c)). 1𝛼,25(OH)

2
D
3

increased osteocalcin in male and female osteoblast cultures,
but the stimulatory effect was significant andmore than three
times greater in the male cells compared to female cells.
Moreover, the stimulatory effects of 1𝛼,25(OH)

2
D
3
were less

robust on GB than on A or SLA in the male cells.
OPG was also increased in osteoblast cultures on Ti sur-

faces in comparison to TCPS (SLA > A > GB) (Figure 5(a)).

This was even more evident in female osteoblast cul-
tures. 1𝛼,25(OH)

2
D
3
increased OPG by more than 100% in

osteoblasts on all surfaces (A, SLA > GB) with no difference
between male and female. The response of female osteoblasts
was less robust on A and SLA but was comparable to themale
cells on GB. Active TGF-𝛽1 was increased in male and female
osteoblasts on all surfaces in comparison to control (SLA <
A < GB) (Figure 5(b)). Treatmentwith 1𝛼,25(OH)

2
D
3
caused

significant increases in TGF-𝛽1 inmale and female cells on all
surfaces (GB < A < SLA). In the untreated osteoblasts, there
was no difference between male and female cells in TGF-
𝛽1 levels. However, treatment with 1𝛼,25(OH)

2
D
3
caused a

statistically greater increase in male cells than in female cells
on A and GB surfaces; however, there was no difference
on SLA substrates. Latent TGF-𝛽1 was increased in male
osteoblasts on all surfaces in comparison to control and in
female osteoblasts grown on A and SLA surfaces; female
osteoblasts on GB surfaces were not significantly different
from control (Figure 5(c)). Treatment with 1𝛼,25(OH)

2
D
3

increased latent TGF-𝛽1 in male and female cells on all
surfaces following a similar pattern (GB < A < SLA). Male
cells had significantly higher levels of latent TGF-𝛽1 than
females on all surfaces after treatment with 1𝛼,25(OH)

2
D
3
;

untreated female osteoblasts had lower levels of TGF-𝛽1 on
GB surfaces than male cells.

4. Discussion

This study examined the effects of different clinically relevant
surfaces on osteoprogenitor differentiation and osteoblast
maturation. BMCs grown on Ti surfaces that were acid-
etched, grit-blasted, or grit-blasted and acid-etched exhibited
a similar reduction in cell number and enhancement of
alkaline phosphatase activity and OPG levels. However, the
SLA surface, which is the combination of acid etching and
grit blasting, significantly enhanced in an additive manner
the production of osteocalcin, active and latent TGF-𝛽1, and
VEGF in comparison to the other surfaces. These results
using primary rat BMCs were similar to the effects of SLA on
human mesenchymal stem cells obtained from Lonza that
were described previously [6]. The results also demonstrated
that the effect of the surface was sex-dependent for some
but not all parameters. The clinical importance of this
observation in females needs to be examined.

Osteoblast cultures grown on the same Ti surfaces
showed similar results with respect to proliferation and
maturation as BMCs: reduced proliferation and enhanced
production of osteocalcin, OPG, and active and latent TGF-
𝛽1. The effects of surface topography were enhanced on SLA,
as has been noted previously for the human osteoblast-like
MG63 cell line [5, 16, 27]. Both male and female osteoblasts
respond similarly to the different surfaces, with the exception
of increased levels of OPG in cultures of female cells grown
on SLA. These results may indicate that both sexes can
osseointegrate well with the appropriate surface and that SLA
has a better ability to enhance osteoblastic differentiation
and maturation in comparison to either processing method
alone.



6 BioMed Research International

0.0

0.5

1.0

1.5

A GB SLA

Tr
ea

tm
en

t/c
on

tro
l

Cell number

∗

∗ #
∗

•
&
$
∗

&
$
∗

∗

#
$
∗

$
∗

•
∗ #

&
∗

&
∗

•
$
∗

Surface

(a)

0.0

1.0

2.0

3.0

4.0

A GB SLA

Tr
ea

tm
en

t/c
on

tro
l

Alkaline phosphatase specific activity

∗
∗

#
∗

#
•
&
$
∗

∗
∗

#
∗

∗

#•
∗

#
∗

∗

#
∗

Surface

(b)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

A GB SLA

Tr
ea

tm
en

t/c
on

tro
l

Osteocalcin levels

∗
∗

#
∗

#•
&
$
∗

&
∗

∗

#
∗

∗

#•
∗

#
&
∗

&
∗

#•
∗

Surface

Male + 0M 1,25D3
Male +10−8 M 1,25D3

Female + 0M 1,25D3
Female +10−8 M 1,25D3

(c)

Figure 4: Effect of Ti surface topography with or without 1𝛼,25(OH)
2
D
3
on osteoblast differentiation of rat calvarial osteoblasts. Male and

female calvarial osteoblasts were cultured on TCPS or Ti disks. At confluence, cells were treated for 24 hours with 10−8M 1𝛼,25(OH)
2
D
3
. Cell

number (a), alkaline phosphatase specific activity (b), and osteocalcin levels (c) were measured. Data are displayed as treatment/control of
cells on Ti surfaces to cells on TCPS. ∗𝑃 < 0.05 versus TCPS; $𝑃 < 0.05 versus A surface; &𝑃 < 0.05 versus GB; ∙𝑃 < 0.05, female versus male;
#
𝑃 < 0.05 versus 0M 1𝛼,25(OH)

2
D
3
.

Establishment of a healthy vasculature is critical for
implant osseointegration [28]. Both male and female cells
increased levels of VEGF in response to Ti surfaces, indi-
cating the cells have begun to signal for new vasculature
in response to the surface. However, while male BMCs
showed a greater increase in VEGF on GB and SLA surfaces,
female BMCs increased VEGF production in response to
the submicron-scale topographic features induced by acid
etching. Similar studies using human alveolar osteoblasts
have shown that VEGF production is increased in cells
grown on A and SLA surfaces [29], and previous studies
from our group showed that VEGF levels also increased in
human mesenchymal stem cells and MG63 cells in response
to surface topography [6, 30]. Additionally, in vitro studies
have shown that androgen induced a sex-dependent effect on
angiogenesis in a Matrigel assay [20].

Previously we demonstrated that fetal rat calvarial osteo-
blasts are more sensitive to treatment with 1𝛼,25(OH)

2
D
3

when cultured on Ti substrates [31]. In the present study, we
sought to decouple the topographic features that enhanced
osteoblast response to 1𝛼,25(OH)

2
D
3

using adult rat
osteoblasts. The rat osteoblasts cultured on Ti respond to
1𝛼,25(OH)

2
D
3
with decreased cell number and increased

alkaline phosphatase specific activity and osteocalcin pro-
duction in comparison to cells cultured on TCPS. In contrast,
this differential response to the vitamin D metabolite may be
due to an increased maturation state of the cells grown on Ti
substrates at the time of treatment, as has been demonstrated
in other studies [31–33].

The effects of 1𝛼,25(OH)
2
D
3
on the rat osteoblasts were

sex-dependent. Treatment with 1𝛼,25(OH)
2
D
3

increased
OPG protein levels in both male and female osteoblasts,
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Figure 5: Effect of Ti surface topography with or without 1𝛼,25(OH)
2
D
3
on osteoblast differentiation of rat calvarial osteoblasts. Male and

female calvarial osteoblasts were cultured on TCPS or Ti disks. At confluence, cells were treated for 24 hours with 10−8M 1𝛼,25(OH)
2
D
3
. OPG

(a), active TGF-𝛽1 (b), and latent TGF-𝛽1 (c) were measured in the conditioned media. Data are displayed as treatment/control of cells on Ti
surfaces to cells on TCPS. ∗𝑃 < 0.05 versus TCPS; $𝑃 < 0.05 versus A surface; &𝑃 < 0.05 versus GB; ∙𝑃 < 0.05, female versus male; #𝑃 < 0.05
versus 0M 1𝛼,25(OH)
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although this effect was greater in males. This confirms pre-
vious results in our laboratory demonstrating upregulation
of OPG mRNA expression and protein levels after treatment
with 1𝛼,25(OH)

2
D
3
in human osteoblast and MG63 cells

cultured on SLA surfaces [15, 34]. Interestingly, treatment of
male osteoblasts with 1𝛼,25(OH)

2
D
3
increased latent TGF-𝛽1

more than active TGF-𝛽1; in female osteoblasts, the greatest
response was in active TGF-𝛽1. Previous studies indicate
that active TGF-𝛽1 increases in response to 1𝛼,25(OH)

2
D
3

treatment, possibly due to activation of latent TGF-𝛽1 [35,
36]. However, the dimorphism in the response suggests that
in female osteoblasts 1𝛼,25(OH)

2
D
3
shifts TGF-𝛽1 levels

towards the active form to inhibit bone remodeling [37],
while in male cells there is more latent TGF-𝛽1 to allow
cells to progress towards terminal osteoblast differentiation
[32].

1𝛼,25(OH)
2
D
3

enhanced osteoblast maturation and
inhibited osteoblast proliferation on all surfaces. When
calculated as fold increase, this effect was similar on all
surfaces examined. These results indicate that each of these
surfaces affects the osteoblast phenotype and makes cells
more sensitive to the hormone effect.

The effect of 1𝛼,25(OH)
2
D
3
on osteoblast cells grown on

rough surfaces was sex-dependent since the enhancement
of all the parameters examined was significantly higher
in male cells in comparison to female cells. These results
are in agreement with other studies that have found that
femoral neck osteoblasts from males have larger increases
in osteocalcin secretion in response to 1𝛼,25(OH)

2
D
3
than

female cells [38]. Clinically, vitamin D deficiency has been
correlated with decreased bone mineral density in male, but
not female, patients [39]. These results may indicate that
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males are more sensitive to vitamin D levels and suggest
that if we would like to achieve maximum osseointegration
clinically, especially in compromised cases, we could examine
the patient’s vitamin D levels and supplement as needed if
levels are outside the normal range.

The results of the present study indicate that BMCs, the
first cells to recognize the surface in vivo, are sensitive to sur-
face topography and can undergo osteogenic differentiation
in response to surface cues.The effect was mainly in response
to the complex SLA topography and the surface treatments
(acid etching and grit blasting) contribute additively to this
effect. BMC response to the topographies in this study
exhibited sex dependence in some parameters, indicating
that they are differentially regulated by both substrate struc-
tural elements and cell sex. Primary osteoblasts were also
sensitive mainly to the complex SLA topography, with less
effect of the individual structural components. Osteoblast
response to topography was not sex-dependent to the extent
seen in the BMCs. Treatment with 1𝛼,25(OH)

2
D
3
enhanced

osteoblast response to the surfaces examined, with a similar
fold increase on all surfaces. The response of osteoblasts to
1𝛼,25(OH)

2
D
3
is sex-dependent and male cells grown on

a complex microstructure surface are much more sensitive
1𝛼,25(OH)

2
D
3
treatment.

5. Conclusions

These results demonstrate that both surface roughness and
systemic hormones can affect bone formation at the implant
site. While males and females have similar responses to
surface roughness, they differ in production of local factors
regulating bone resorption and in the magnitude of the
response 1𝛼,25(OH)

2
D
3
.These factors are important as future

modifications are made to tailor implants to sex-specific dif-
ferences to improve osseointegration and long-term implant
life.
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[38] M. Naves, D. Álvarez-Hernández, J. L. Fernández-Mart́ın et al.,

“Effect of VDR gene polymorphisms on osteocalcin secretion in
calcitriol-stimulated human osteoblasts,” Kidney International,
Supplement, vol. 63, no. 85, pp. S23–S27, 2003.

[39] J. S. Lim,K.M.Kim,Y. Rhee, and S.-K. Lim, “Gender-dependent
skeletal effects of vitaminD deficiency in a younger generation,”
Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 6,
pp. 1995–2004, 2012.


