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Theory has emphasized the importance of both intrinsic factors such as host immunity and
extrinsic drivers such as climate in determining disease dynamics. In particular, seasonality
may lead to multi-annual cycles in prevalence, but the likelihood of this depends on the
role of acquired immunity. Some diseases including malaria have immunity that falls between
the classic susceptible–infectious–removed and susceptible–infectious–susceptible models.
Here, we investigate the general conditions promoting the subharmonic resonance behaviour
that may lead to multi-annual cycles in a general malaria dynamical model. Utilizing two
complementary approaches to bifurcation analyses, we show that resonance is promoted by
processes shortening the length of the infectious period and that subharmonic cycles are
favoured in situations with strong seasonality in transmission but at intermediate levels of
endemicity. We discuss the implications of our results for understanding prevalence patterns
in long-term malaria datasets from Kenya that show multi-annual cycles and one from
Thailand that does not and discuss the possible implications of treatment.
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1. INTRODUCTION

Understanding the mechanisms that underpin the
dynamics of important human diseases remains a key
challenge for epidemiologists. Perhaps the most impor-
tant intrinsic driver of infectious disease epidemiology
is the immune interaction (Anderson & May 1991;
Grassly et al. 2005). It is well known that the unforced
susceptible–infectious–removed (SIR) model can
exhibit damped oscillations in the presence of host
immunity (recovery), because susceptible numbers
take time to build up following an epidemic. In the
face of weak environmental variation or demographic
stochasticity, resonance ensures that such fluctuations
are sustained at a characteristic natural period ( p0).
In contrast, models of the susceptible–infectious–
susceptible (SIS) variety, without acquired immunity,
are much less prone to oscillatory dynamics under
comparable conditions. However, many important dis-
eases have more complex immune interactions than
the two extremes of SIR and SIS. For example, a key
characteristic of malaria is that substantial immunity
is achieved after multiple infections and that this immu-
nity may be maintained in the face of repeated exposure
to infection, a phenomenon occasionally referred to as
immune boosting (Struik & Riley 2004). Malaria there-
fore lies somewhere between the two extremes of the
SIR and SIS, because boosting ensures that the flow
orrespondence (d.childs@sheffield.ac.uk).
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of susceptible individuals back from the recovered
class depends upon the level of disease transmission.

Recently, there has been a growing interest in the
development of predictive modelling tools that are
able to link climate determinants of vector abundance
to malaria transmission and ultimately to disease
burden (Rogers et al. 2002). In order to be effective,
these early-warning systems may need to incorporate
intrinsic drivers of epidemiological dynamics such as
host immunity, in addition to extrinsic drivers such as
climate. Recent work on measles (Earn et al. 2000;
Grenfell et al. 2002), syphilis (Grassly et al. 2005) and
cholera (Koelle & Pascual 2004; Koelle et al. 2005)
has emphasized the importance of these intrinsic drivers
and further highlighted the important role of mechanis-
tic models for understanding the epidemiology of
infectious disease. Malaria caused by Plasmodium falci-
parum is one of the largest causes of morbidity and
mortality in the developing world and creates an enor-
mous barrier to economic and social development
(Sachs & Malaney 2002). A clear understanding of the
underlying mechanisms that drive malaria epidemiol-
ogy is therefore vital if we are to effectively predict
and manage outbreaks and reduce levels of infection.
Our aim is to use the mechanistic approach to gain a
better general understanding of the drivers of malaria
dynamics.

One factor limiting our understanding of malaria is a
paucity of long-term detailed time-series data. However,
an analysis of the periodicity of malaria hospital
This journal is q 2009 The Royal Society
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admission data from the Kericho region of Kenya found
clear evidence for a multi-annual cycle in prevalence,
with a mean of approximately 3 years (Hay et al.
2000, 2001). Most of the variance in the contempora-
neous climate data was associated with cycles of a
year or less, suggesting that intrinsic rather than extrin-
sic factors might be important in generating the
observed cycles. Another analysis of these data again
suggested that longer term multi-annual cycles were
likely to be driven by intrinsic disease dynamics
(Pascual et al. 2008). In a similar analysis of malaria
prevalence in northern Thailand, we found no clear
evidence for super-annual cycles (Childs et al. 2006).
An improved understanding of the relationship between
extrinsic and intrinsic drivers of malaria and their
concomitant effect on disease dynamics is clearly
needed in order to better understand these different
patterns in different countries.

A number of factors affecting malaria transmission,
including vector density and the development time of
the parasite, depend upon key climate variables such
as rainfall and temperature (Bayoh & Lindsay 2003,
2004). In turn, these climate variables may exhibit a
strong annual component of variation, leading to the
seasonal forcing of malaria transmission. Analysis
of the forced SIR class of models (and S(E)IR
(E—exposed) where there is an exposed, latent class)
has demonstrated that periodic forcing can interact
with nonlinearities in the model to generate novel
subharmonic oscillations, with periods at an integer
multiple of the forcing period (Dietz 1976; Aron &
Schwartz 1984). In addition, subharmonic resonances
of different orders may coexist simultaneously, resulting
in a system with multiple stable states. This mechanism
has been invoked to explain the range of complex
dynamics observed in childhood diseases such as
measles (Earn et al. 2000; Greenman et al. 2004).
In S(E)IR models of childhood diseases, subharmonic
resonances are excited under conditions of relatively
low amplitude forcing and short infectious
periods. In malaria, there is the potential for trans-
mission to vary enormously over the course of a year
and the infectious period may last for a number of
weeks. The dynamical consequences of the interaction
between strong seasonal forcing, longer infectious
periods and boosted host immunity have not been
investigated.

Here we develop a mechanistic model that examines
how differences in key epidemiological parameters may
contribute to observed differences in the dynamics of
malaria infection. The model is based upon the classic
Ross–Macdonald framework (Ross 1911; Macdonald
1957) and is motivated by the extensions developed
by Aron (1988) and Aron & May (1982). In order to
simplify the analysis, we assume that complete
immunity is achieved after first infection, but that the
maintenance of immunity is facilitated by higher overall
transmission. We also assume that the period of immu-
nity following recovery or boosting is exponentially
distributed (i.e. the loss rate of immunity is constant)
and that boosting events proceed independently of
one another. The resultant model is parametrized in
terms of 11 terms describing the disease epidemiology
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and the life history of the vector and host. However,
over a biologically realistic range of values for the
human mortality rate, the dynamical behaviour of
the model is determined by four key parameters: the
forcing amplitude d, the recovery rate g, the immunity
loss rate r and a transmission term, the mean vectorial
capacity C0. This last term is a product of several
remaining parameters, such that a comparable pro-
portional change in any one of these has the same
impact on the model behaviour. We begin by exploring
the general properties of the model, focusing on the con-
ditions promoting subharmonic resonance. The model
is then used to suggest a possible explanation for the
different temporal patterns of malaria prevalence
observed in Thailand and Kenya.
2. THE MODEL

The host population is divided into the proportion x of
susceptible individuals, the proportion y of infected
individuals and the proportion zi of individuals cur-
rently immune with i concurrent boosting events. This
gives rise to the following system of ordinary differential
equations:

dx
dt ¼ m� mx � hðtÞx þ rz1

dy
dt ¼ hðtÞx � ðgþ mÞy

dz1
dt ¼ gy � ðhðtÞ þ rþ mÞz1 þ rz2

dz2
dt ¼ hðtÞz1 � ðhðtÞ þ rþ mÞz2 þ rz3

dz3
dt ¼ hðtÞz2 � ðhðtÞ þ rþ mÞz3 þ rz4

..

.

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð2:1Þ

This is subject to the usual constraint

1 ¼ x þ y þ
X1
i¼1

zi:

The parameter m is the human death rate, r is the
immune function loss rate, g is the recovery rate and
h(t) is the inoculation rate. The term h(t) is derived
by assuming that the vector dynamics are fast com-
pared with those of the host (see Koella & Anita
(2003) for an example of the derivation). This allows
the inoculation rate to be expressed as

hðtÞ ¼ mðtÞpbpda2e�at
y

aþ apby
; ð2:2Þ

where m(t) is the number of vectors per host, a is the
biting rate of the vector, a is the vector death rate, t
is the incubation period of the parasite, pb is the pro-
portion of bites on an infected host leading to infection
of the vector and pd is the proportion of bites from an
infected vector leading to infection or immune boosting
of the host population. Seasonality is introduced by
allowing the vector–host ratio m(t) to vary sinusoidally
over the year such that mðtÞ ¼ m0ð1þ d cosð2ptÞÞ;
where m0 is the mean vector–host ratio and d is the
forcing amplitude. The model is further simplified
by noting that the potential inoculation rate is
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approximately linear in y when a� apby, such that

hðtÞ � pbpd
mðtÞa2e�at

a
y ¼ pbpdCðtÞy: ð2:3Þ

This linear approximation to the inoculation rate works
well over the range of biologically plausible parameter
combinations. The term C(t) is an epidemiological
index called the vectorial capacity. It describes the
rate at which a single case of malaria generates new
bites from infected mosquitoes when pb ¼ pd ¼ 1. We
refer to the mean value of this parameter as the mean
vectorial capacity, C0. Consequently, it is used through-
out the analysis to restrict the number of parameter
combinations that need to be explored. The basic repro-
ductive rate (R0) of malaria in this model is given by the
standard expression R0 ¼ pcpbm0a2e�at=ag.

In order to numerically integrate the model and
perform the usual local stability analysis calculations,
we need to close the system of equations given above.
This is achieved by noting that in the absence of
forcing, the non-trivial equilibrium ratio of densities
in successive immune classes (s) is constant, i.e. s ¼
ziþ1/zi ¼ ziþ2/ziþ1 ¼ ziþ3/ziþ2 � � � , for i in [1, 1]. We
conjecture that even in the presence of large periodic
perturbations this ratio is approximately constant as
i!1. Numerical simulation of the forced system with
a large number of immune classes (e.g. 1000) supports
this assumption for a wide range of parameters:
although there are periodic fluctuations in the magni-
tude of these ratios, the amplitude of these fluctuations
declines geometrically along the sequence of immune
stages. Therefore, we can capture the dynamics of
the system by explicitly modelling an arbitrary
number of immune classes (N), while implicitly model-
ling the remaining classes by solving for s(t) under the
assumption that s(t) is identical for all classes. This
gives rise to the following equations for the dynamics
of the immune classes:

dz1
dt ¼ gy � ðhðtÞ þ rþ mÞz1 þ rz2

dz2
dt ¼ hðtÞz1 � ðhðtÞ þ rþ mÞz2 þ rz3

..

.

dzN
dt ¼ hðtÞzN�1 � ðhðtÞ þ rþ mÞzN þ rzNs

ds
dt ¼ hðtÞ � ðhðtÞ þ rþ mÞsþ rs2:

9>>>>>>>>>=
>>>>>>>>>;

ð2:4Þ

Under a wide range of parameter values, time series
from periodically forced populations with 1000
immune classes are indistinguishable from those using
only a small number of immune classes, even when
the ziþ1/zi are close to 1. Therefore, numerical simu-
lations and stability analysis are conducted with 12
immune classes throughout this study.
3. BIFURCATION ANALYSIS

In the absence of seasonal forcing, the malaria model
is stable inside the range of biologically plausible
parameter values. The resonance structure of the sea-
sonally forced model can be explored using bifurcation
analysis; numerical simulation of the model is used to
J. R. Soc. Interface (2010)
determine the availability of different resonance
modes (multi-annual cycles with different periods) as
parameters vary. When the forcing amplitude is suffi-
ciently small, the system responds with oscillations of
the same period as the external forcing. We refer to
this as the base mode. Stable multi-annual cycles are
only observed as the strength of forcing increases.
This is illustrated in the bifurcation diagram in
figure 1a, where the maximum prevalence in the
infected population, ymax, is plotted against the forcing
amplitude parameter, d. Multi-annual cycles of period 2
(red line) and period 3 (green line) emerge at d ¼ 0.11
and d ¼ 0.31, respectively. Each of these undergoes
period doubling as the forcing amplitude increases,
eventually degenerating into chaos. A new period 4
cycle (blue line) exhibiting a period doubling cascade
appears at d ¼ 0.60. As we shall see, each of these
multi-annual attractors is the result of subharmonic res-
onance. Three important aspects of the model dynamics
are worth emphasizing now: (i) the amplitudes of the
new subharmonic oscillations are greater than that of
the annual base mode; (ii) a subharmonic attractor
may display period doubling as d increases, eventually
degenerating into chaos; and (iii) the model can be
multi-stable when sufficient seasonality operates.
These properties are qualitatively similar to the general
features of seasonally forced SIR models (Dietz 1976;
Aron & Schwartz 1984).

The genesis of subharmonic resonance cycles is best
understood by examining response curves; this is the
so-called resonance approach utilized by Greenman
et al. (2004). These diagrams show the magnitude,
ymax, and the period, pS, of the system’s response as a
function of the external forcing period, p. The resultant
diagram, which we refer to as a ‘resonance diagram’ for
consistency with Greenman et al. (2004), explores the
potential for resonance by revealing the relationship
between the natural period of the system, p0, the exter-
nal forcing period, p, and the period of the system’s
response, pS. It is important to realize that while
annual forcing is usually the only relevant external
period in an epidemiological context, the resonance dia-
gram allows us to see how the system’s responsiveness
links to the natural and external forcing periods.

Figure 1b shows resonance diagrams for the baseline
model at two different forcing amplitudes, correspond-
ing to low (d ¼ 0.15, dotted line in figure 1a) and
moderate (d ¼ 0.33, dashed line in figure 1a) forcing.
The low and moderate amplitude cases exhibit a
single attractor and a pair of coexisting attractors,
respectively. Each attractor corresponds to an isolated
structure exhibiting a peaked profile, which we charac-
terize as either a ‘wave-like’ (e.g. the black–red–blue
lines) or a ‘spray-like’ (e.g. the green line), by analogy
with surface waves on water. These are colour coded
according to the response period of the system (pS) rela-
tive to the external forcing period ( p), such that a
period 1 response ( pS ¼ p) is black, a period 2 response
( pS ¼ 2p) is red, a period 3 response ( pS ¼ 3p) is green
and a period 4 response ( pS ¼ 4p) is blue. We refer to
the pS ¼ p response region (i.e. black lines) as the
‘base peak’, because the system response is simply
matching the external forcing period.
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Figure 1. (a) Bifurcation diagram showing the resonant states of the baseline model under annual forcing in response to the
forcing amplitude, d. Dotted line, d ¼ 0.15; dashed line, d ¼ 0.33. The parameters of the baseline model are: human death
rate, m ¼ 0.02 yr21; immunity loss rate, r ¼ 0.5 yr21 (average immune period following recovery or immune boosting,
2 years); recovery rate, g ¼ 17.3 yr21 (average infectious period, 3 weeks); mean number of vectors per host, m0 ¼ 25; parasite
incubation period, t ¼ 0.03 yr; proportion of bites on an infected host leading to infection of the vector, pb ¼ 0.5; the proportion
of bites from an infected vector leading to infection or immune boosting of the host population, pd ¼ 0.5. The composite par-
ameter summarizing transmission and boosting (vectorial capacity) is C0 ¼ 573 yr21. Inset: (A) period 2 oscillation, d ¼ 0.15;
(B) period 2 oscillation, d ¼ 0.33; (C) period 3 oscillation, d ¼ 0.33. (b) Resonance diagrams for the baseline model when d ¼

0.15 and d ¼ 0.33. The vertical dotted lines locate submultiples of the natural period. Black line, pS ¼ 1; red line, pS ¼ 2;
green line, pS ¼ 3; blue line, pS ¼ 4; pink line, pS ¼ 6; grey line, pS � 8.
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Under sufficient forcing, subharmonic resonance of
nonlinear systems can occur when the external forcing
period is near a submultiple of the natural period (i.e.
p�p0/n for n ¼ 2, 3, 4, . . . ). These periods, easily calcu-
lated using linear stability analysis, are located by the
vertical dotted lines in figure 1b. When the critical for-
cing amplitude is reached, a new period 2 subharmonic
peak appears from the base peak by period doubling.
We refer to the location on the forcing period axis
where this new peak arises as the ‘root’ of the subhar-
monic. Period 2 subharmonic ( pS ¼ 2p) should be
rooted to the point p�p0/2, and indeed, we see that
the appropriate peak (red line) has emerged at this
location under low forcing (d ¼ 0.15). As the forcing
amplitude increases (d ¼ 0.33), we observe distortion
of this peak to the right and further period doubling
to create a period 4 ( pS ¼ 4p) region. The base of the
peak spreads out under increased forcing, such that
the leftmost point at which period 2 peak is actually
observed does not correspond exactly to its theoretical
root at p�p0/2; and the wave-like peak folds rightward
over itself, generating an unstable attractor (dotted red
line) and two coexisting stable attractors over the
narrow folded region. Interestingly, this peak has a
much wider base region that the corresponding peak
for the measles example presented by Greenman et al.
(2004). Simulations indicate that this difference is
related to the long infectious period used in our model
rather than the immune boosting feature. An important
consequence of increased forcing is that higher order
subharmonic peaks may appear. Thus, we observe
the presence of period 3 peak when d ¼ 0.33. This
J. R. Soc. Interface (2010)
spray-like peak is rooted at p�p0/3, because if we
project downwards from period 3 peak we arrive
(approximately) at the point p0/3. In principle, distinct
peaks corresponding to the fundamental mode and the
series of harmonics rooted to the family of points p�np0

(n ¼ 1, 2, 3, . . . ) may also be expected. However, these
overlap to such an extent that in fact a single base peak
( pS ¼ p) plateau is formed towards the right of the
diagram. As the focus of this study is subharmonic
resonances, we do not consider this region further.

Resonance diagrams provide two key insights. First,
they demonstrate that we can roughly locate potential
subharmonic resonance attractors simply by calculating
the natural period of the system, a property that
depends only upon the intrinsic parameters. It is necess-
ary, though not sufficient, for p0 , n in order for a
period n subharmonic to be accessed by an annually
forced system, because the resonance peaks are
distorted rightwards. This condition is met when the
corresponding resonance peak is rooted to the left of
the line through p ¼ 1. This rule is only an approxi-
mation because nonlinearities in the system result in
spreading at the base of the peak. Nonetheless, it
serves as a very useful rule of thumb for understanding
when subharmonic resonance is possible. In our
example, additional subharmonic peaks rooted to the
family of points p�p0/n (n ¼ 4, 5, 6, . . . ) might be
expected, and indeed period 4 attractor is observed in
figure 1a when the forcing amplitude is sufficiently
large. The second key reason for constructing resonance
diagrams is that they provide insight into the ‘respon-
siveness’ of a system to periodic forcing. By making
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baseline parameter set (solid point) and the comparison case (arrowhead). Dotted line shows the natural period of the system
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and r ¼ 0.4 yr21 (2.5-year immune/boosting period). Arrow indicates the natural period of this comparison case (arrowhead)
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small changes to the parameters of a baseline case and
examining changes in the response diagram, we can
undertake a qualitative assessment of whether the
system is more (or less) likely to exhibit resonance be-
haviour, by observing the genesis (or loss) of new sub-
harmonic peaks and period doubling (or halving) of
extant peaks. This assessment can be made whether
or not the new behaviours are actually accessible
under annual forcing.
4. RESULTS

We now consider each key epidemiological parameter—
the initial and boosted immune period, the infectious
period and the vectoral capacity (i.e. transmission)—
in turn to explore how they influence the potential for
subharmonic resonance dynamics in malaria. In each
case, a bifurcation diagram passing through the baseline
case (parameters given figure 1) is generated, along
with the resonance diagram resulting from a small
perturbation to the baseline case. We combine insights
from both diagrams to understand the general epide-
miological conditions favouring subharmonic resonance.
The standard bifurcation analysis allows us to describe
the oscillatory behaviour of a system in great detail, but
it can be very difficult to make general statements
about the conditions favouring resonance behaviour.
For example, a particular resonance mode may be
absent because the natural period is too large (or
small), because the forcing amplitude is too small to
elicit resonance or because the forcing amplitude is
large enough that the appropriate attractor has degen-
erated into chaos. This distinction is important,
because in the latter two cases the observed dynamics
are determined in part by the somewhat arbitrary
J. R. Soc. Interface (2010)
choice of forcing function. Therefore, understanding the
subtle interactions between the disease parameters and
the strength of forcing, mediated through their effect on
the natural period ( p0) and the bifurcation structure,
respectively, is difficult if we rely only on standard bifur-
cation diagrams. In contrast, comparing resonance
diagrams at different points in the parameter space
allows us to focus on how the epidemiological character-
istics affect the propensity for resonance per se. In the
following analysis, we adopt the moderate forcing
example from figure 1 (d ¼ 0.33) as our baseline case.
4.1. Immune period

Figure 2a depicts the bifurcation diagram for the initial
and boosted immune periods (hereafter referred to as
the immune period). Short periods of immunity, on
the scale of weeks or months, are associated with
purely annual patterns of variation. This is not
surprising, given that the SIS model without acquired
immunity is less likely to show resonance behaviour
than a comparable SIR model. As the length of the
immune period increases, a sequence of resonance
cycles with increasing period is generated, in which suc-
cessively higher period oscillations show an increased
tendency to exhibit period doubling and degeneration
to chaos. Figure 2b depicts the resonance diagram for
a case in which the immune period (1/r) is increased
relative to the baseline case, such that individuals
remain immune for longer following recovery from infec-
tion or additional boosting of immunity (the arrow in
figure 2a illustrates the parameter perturbation).
Extending the time spent in the immune class clearly
increases the tendency of the system to undergo subhar-
monic resonance; the extent of each resonance peak has
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increased and the period-doubling regions have widened
relative to the baseline example (figure 1b, d ¼ 0.33),
such that the period 2 peak now encompasses an
extended period doubling cascade degenerating into
chaos. Increasing immunity also increases the natural
period of the system (illustrated by the arrow in
figure 2b), shifting the root of each resonance peak to
the right. Further extending the time spent in the
immune class results in loss of access to successively
higher period peaks as the natural period increases, so
that eventually the system can only access the base
peak and the period 4 peak. Importantly, the infected
proportion of the population at the trough of a period
4 oscillation is very low (less than 10 infected individuals
per 100 000 individuals), which means that stochasticity
may disrupt subharmonic resonance at higher periods.
Therefore, while extending immunity certainly increases
the intrinsic tendency for subharmonic resonance, in
practice, such states may not be attained because the
natural period of the system is too high or because sto-
chastic effects dominate. This argues that multi-annual
cycles are most likely at intermediate levels of immunity
(on the scale of a few years).
4.2. Infectious period

Figure 3a depicts the bifurcation diagram for the infec-
tious period. Here multi-annual cycles are more likely to
occur when the infectious period is shortened, although
very short periods are associated with the complete loss
of periodicity (and chaotic dynamics). Period 4 reson-
ance is very unlikely to be attained under realistic con-
ditions because stochastic effects will dominate at the
cycle’s trough. Figure 3b shows the resonance diagram
for an instance in which the infectious period (1/g) is
J. R. Soc. Interface (2010)
reduced relative to the baseline case (the arrow in
figure 3a illustrates the parameter perturbation).
Reducing the infectious period has a similar effect on
the tendency towards resonance as extending the time
spent in the immune class. The base of both the
period 2 and period 3 resonance peak has widened
and the central region of each peak undergoes period
doubling to chaos. However, despite the fact that reson-
ance is more easily elicited relative to the baseline case
(figure 1b, d ¼ 0.33), the system is only just able to
access the period 2 and period 3 subharmonic reson-
ances under annual forcing. In contrast to the previous
example described in figure 2b, reducing the length of
the infectious period also reduces the natural period
of the system (illustrated by the arrow in figure 3b). If
we continue to reduce the infectious period, access
to the period 2 and period 3 subharmonics is lost
because the line through p ¼ 1 (annual forcing) crosses
the chaotic region of each peak, rather than because the
base of each peak is rooted to the right of this line.
Access to the period 2 subharmonic can be regained
by decreasing the forcing amplitude (results not
shown), as this reduces the extent of the period dou-
bling region. Finally, we observe relatively little
change in the natural period as the infectious period
decreases across the range of plausible infectious
periods. Taken together, these results indicate that sub-
harmonic resonance is promoted by lowering the infec-
tious period, though these cycles may be destroyed if
the forcing amplitude is too high.
4.3. Transmission

Figure 4a depicts the bifurcation diagram for the trans-
mission rate (related to the mean vectorial capacity, C0).
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period of this comparison case (arrowhead) relative to the baseline case (solid point). The vertical dotted lines locate submultiples
of the natural period. Black line, pS ¼ 1; red line, pS ¼ 2; green line, pS ¼ 3; blue line, pS ¼ 4; pink line, pS ¼ 6; grey line, pS � 8.
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Here, multi-annual cycles are favoured at intermediate
levels of transmission with seasonal outbreaks predicted
at low and very high levels of transmission. Figure 4b
shows the resonance diagram for an instance in which
the vectorial capacity is reduced relative to the baseline
case (the arrow in figure 4a illustrates the parameter
perturbation), resulting in lower transmission. Redu-
cing the magnitude of this term increases both
the width of the period 2 and period 3 peaks and the
extent of the period-doubling region inside the period
2 peak. Hence, the intrinsic likelihood of exciting sub-
harmonic resonance increases as transmission is reduced.
Some care must be taken when interpreting the effect of
altering vectorial capacity, as this term concomitantly
influences both the transmission of the disease and the
effective length of the acquired immunity by means of
its impact on boosting. Results presented in figure 2 indi-
cate that reducing the length of the immune period
decreases the intrinsic likelihood of subharmonic resonance
and reduces the natural period of the system. However, the
opposite response is seen when transmission is reduced; the
natural period increases and the system is more responsive
to forcing. Therefore, it appears that the direct effect of
reduced transmission outweighs the indirect impact on
immunity. We conclude that reducing transmission
enhances the potential for subharmonic resonance, up to
a point, after which resonance attractors become inaccess-
ible because the natural period of the system is too high.
4.4. General results

In summary, the analysis presented above indicates that
the likelihood of eliciting subharmonic resonance in
malaria under periodic annual forcing is increased
J. R. Soc. Interface (2010)
by: (i) extending the period individuals remain
immune from the scale of months to years;
(ii) shortening the length of the infectious period, poss-
ibly through medical interventions; and (iii) reducing
the transmission rate in high transmission areas, for
example by decreasing the vectorial capacity. While
each of these processes increases the intrinsic likelihood
of resonance, it is essential to consider the natural
period of the system under study when trying to deter-
mine the likelihood of observing such behaviour. In the
presence of annual forcing, subharmonic resonance at
period n may only be observed if the (approximate)
condition p0 , n is satisfied. Even when this simple
criterion is met, the nature of the nonlinearities in the
system and the forcing amplitude (d) ultimately deter-
mine whether any such resonance is observed. For
example, shortening the infectious period should
always increase the likelihood of multi-annual cycles
(or chaotic dynamics, if the forcing amplitude is
sufficiently large) as it increases the intrinsic propensity
towards resonance and concomitantly reduces the natu-
ral period of the system. In contrast, increasing the time
individuals remain immune following infection increases
the system’s propensity towards resonance while simul-
taneously increasing the natural period. This implies
that while there is always a minimum immune period
for eliciting subharmonic resonance, there may also be
a maximum immune period, above which the system
is only able to access the annual seasonal attractor.
5. THE EFFECT OF TREATMENT

A major component of malaria epidemiology missing
from the current model is that of intervention by drug
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Figure 5. (a) Bifurcation diagram showing the resonant states of the model as a function of the time to treatment, 52/n (weeks).
Remaining model parameters are the same as those given in figure 1. Arrow indicates the baseline parameter set (solid point) and
the comparison case (arrowhead). Dotted line shows the natural period of the system (right vertical axis) as a function of the
infectious period. (b) Resonance diagrams for the comparison case, d ¼ 0.15 and n ¼ 20.8 yr21 (2.5 weeks average time until treat-
ment). Arrow indicates the natural period of this comparison case (arrowhead) relative to the baseline case (solid point). The
vertical dotted lines locate submultiples of the natural period. Black line, pS ¼ 1; red line, pS ¼ 2; green line, pS ¼ 3; dark blue
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treatment. We explored the potential impact of such
treatment on the resonance behaviour of the model in
the simplest manner possible, by including a term
that moves individuals from the infected class (y) to
the susceptible class (x) at a constant rate, n. This
gives rise to the following modified equations governing
the dynamics of susceptible and infected populations:

dx
dt ¼ m� mx � hðtÞx þ rz1 þ ny

dy
dt ¼ hðtÞx � ðgþ mÞy � ny

..

.

9>>>=
>>>;

ð5:1Þ

Figure 5 shows a bifurcation diagram for the treat-
ment parameter and the resonance diagram for the
low treatment case. In contrast to the preceding
examples, here we adopt the low forcing regime (d ¼
0.15) from figure 1 as the baseline model. This is
because much of the resonance structure is lost via
degeneration into chaotic dynamics under the moderate
forcing regime. Figure 5a depicts the bifurcation dia-
gram for the time to treatment (referred to as the treat-
ment delay). A sequence of resonance cycles with
increasing period is generated as the treatment delay
is reduced. Although the treatment model predicts
that many modes of subharmonic resonance are possible
under treatment, those above period 3 are very unlikely
to be attained in reality. This is because disease inci-
dence is very low following large epidemics (�1
infected individual per 100 000 individuals), such that
stochasticity will lead to local extinction and disruption
of the resonance cycle. Figure 5b shows the resonance
diagram for an instance in which the average treatment
J. R. Soc. Interface (2010)
delay is 20 days. Even under the low forcing regime, the
period 2 resonance peak has significantly broadened out
and the usual period doubling cascade is present. In
addition, a new period 3 resonance peak is visible
(recall that the baseline case here is the d ¼ 0.15
example in figure 1). It is clear that including treatment
significantly increases the likelihood of resonance be-
haviour under even very modest treatment regimes,
presumably because it has a similar effect as reducing
the infectious period in the treatment-free case. In
contrast to simply reducing the infectious period, intro-
ducing treatment increases the natural period of the
system. Moreover, the responsiveness of the system to
forcing is much greater in the case of treatment.
6. DISCUSSION

The simple model developed here offers some general
insights into the conditions under which multi-annual
(subharmonic resonance) cycles are likely to be
observed in malaria. First, interventions that shorten
the length of the infectious period, such as efficient
treatment of infected individuals, will increase the like-
lihood of generating multi-annual cycles. Second,
significant annual variation in transmission (i.e. vari-
ation of the order of at least 20–30%) is probably
required in order to excite subharmonic resonance in
the absence of treatment. This is a consequence of the
fact that the infectious period of malaria is of the order
of weeks rather than days, which in turn reduces the
ease with which resonance is elicited. Third, cycles due
to subharmonic resonance are most likely to occur in
areas with low to moderate levels of disease
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transmission. High transmission reduces the likelihood
of subharmonic resonance altogether, while under very
low transmission the natural period of the system is
too large for resonance to occur under annual forcing.
We would predict that cycles are therefore most likely
to be observed in meso-endemic (childhood infection
prevalence, 10–50%; Metselaar & Van Theil 1959)
regions.

We now return to the observation that malaria
prevalence in the Kericho region of Kenya exhibits an
apparent 3-year multi-annual cycle over the 1966–
1998 interval (Hay et al. 2000). It has been suggested
that malaria in much of the western highlands of
Kenya is best classified as meso-endemic and seasonal
(Hay et al. 2002). In the Kericho region, conditions
are usually suitable for transmission throughout the
year. This results in significant clinical immunity
among adults, so that the disease is typically found in
cohorts of children (Hay et al. 2001). In the period
1965–1998, the within-year range in the mean
number of monthly malaria cases was approximately
6–20 in adults and 10–35 in children (Hay et al.
2001). Hence, two of our proposed requirements for
subharmonic resonance in malaria, moderate year-
round transmission and significant seasonal (annual)
variation in transmission, are met in the region. The
lack of evidence for a consistent 3-year cycle in the con-
temporaneous climate data for Kericho argues against
the notion that such multi-annual variation in malaria
is purely due to extrinsic drivers. Our model supports
the proposition of Hay et al. (2000) that cycles in
malaria prevalence in the region most likely result
from an interaction between the extrinsic and intrinsic
drivers of the disease. More precisely, we suggest that
the observed cycles could occur as a result of subharmo-
nic resonance of the system under annual forcing.
Alternatively, it is possible that (non-seasonal) envi-
ronmental variation and stochasticity lead to an
alternative resonance phenomenon where the system
oscillates at its natural period. A more recent analysis
of malaria epidemics at two locations in the Kericho
region used non-stationary time-series techniques (wave-
lets) and afitted time-series SIR model to explore the role
of climate variability and intrinsic factors in driving
observed epidemic cycles (Pascual et al. 2008). Evidence
for an approximate biennial cycle and a 3-year cycle in
the data originally analysed by Hay et al. (2000) was
reported, but the authors concluded that these were
most likely driven by rainfall variation rather than
intrinsic dynamics. The authors further concluded that
a 4-year cycle was, however, likely to be driven by intrin-
sic factors at the second location, supporting the
conclusions from our analysis that intrinsic drivers
can lead to multi-annual cycles in this region. The
time-series model that was fitted to the data assumed
life-long immunity (Pascual et al. 2008) and as we have
shown the nature of the immune response is a key deter-
minant of resonance dynamics. Our work would there-
fore suggest that further analysis of the time series is
required to determine the mechanisms that drive the
dynamics in any particular location.

In contrast to the epidemics in Kenya, an analysis of
malaria prevalence within 13 districts of the northern
J. R. Soc. Interface (2010)
region of Thailand shows no evidence for the presence
of multi-annual cycles over a 25-year period (Childs
et al. 2006). Several of the provinces exhibit large vari-
ation in disease prevalence over the course of a year,
indicating that they are subject to considerable
annual variation in transmission. However, the remain-
ing aspects of malaria epidemiology in Thailand are
clearly quite different from the highlands of Kenya.
Owing largely to the success of the long-established
control programme, malaria is no longer considered a
major health threat throughout most of Thailand.
The annual parasite prevalence has recently been
reported to be as low as 64 per 100 000 individuals
(Thai Malaria Division 2003), and while the disease is
still a problem in some forest fringe areas and along
international borders (Somboon et al. 1998), it is best
classified as hypo-endemic (childhood infection preva-
lence, �10%) throughout most of Thailand. Our
model predicts that subharmonic resonance is extremely
unlikely to occur under these circumstances, as the
natural period of the system will simply be too high
for any of the extant resonance peaks to be rooted to
the left of the annual forcing case. Consequently, sub-
harmonic resonance is unlikely to be observed, despite
the fact that such behaviour is more easily excited
under low transmission conditions.

The availability and quality of treatment obviously
varies enormously throughout the world. In Thailand,
effective diagnosis and treatment of the disease are
freely available throughout the country as part of the
ongoing control programme (Thai Malaria Division
2003). Kericho is unusual for much of sub-Saharan
Africa in that the major employers in the region, the
tea plantation owners, provide free malaria treatment
for their workers (Shanks et al. 2005b). However, the
situation is complicated by the fact that a large
number of infections are contracted outside the region
(Shanks et al. 2005a), raising the question as to whether
the observed prevalence patterns truly reflect local pro-
cesses. Because effective treatment is not widely avail-
able outside the Kericho region, this makes assessing
the impact of treatment on the epidemiological
dynamics very difficult. Clearly, a detailed study of
the interaction between different forms of drug treat-
ment and parasite life history is required to make
general predictions about the ultimate impact of
treatment on epidemiological dynamics.

Our model has made a number of broad predictions
about the conditions favouring resonant behaviour in
malaria dynamics. We predict that processes shortening
the length of the infectious period very effectively pro-
mote resonance and that such behaviour is more likely
to occur in regions with moderate seasonality in trans-
mission and intermediate levels of transmission. We
have made extensive use of the recently highlighted
resonance approach to investigate the potential for
subharmonic resonance in the epidemiological dynamics
of malaria. This approach allows us to make statements
about resonance behaviour per se, by removing our
focus from the less general phenomenon of whether or
not a particular resonance mode is observed under a
particular annual forcing regime, with a given set of
parameters. By varying each epidemiological parameter
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in turn, we are able to perform a form of local sensitivity
analysis on the resonance behaviour of the baseline
malaria model. As such, the approach is more instruc-
tive than simply generating bifurcation diagrams for
each parameter in turn, though it clearly has limit-
ations. In particular, the effect of altering multiple
aspects of the epidemiology relative to the baseline
case may be hard to predict, particularly in more com-
plex models. Nonetheless, it would be valuable to
explore the resonance behaviour of models with more
biological details in order to determine the robustness
of our predictions. In particular, the manner in which
immunity is modelled is crucial to the dynamical out-
comes and care should therefore be taken in assuming
simple SIR dynamics in complex diseases such as
malaria. For example, the degree to which the immune
response is really maintained by boosting is still a
matter of debate (Gupta et al. 1999; Struik & Riley
2004), and a model incorporating a graded immune
response to repeated infection might offer a more realistic
description of the disease. Related to this, many impor-
tant parasites including malaria show substantial
strain variation that is crucial to the infection
dynamics (Gupta et al. 1998; Recker et al. 2004). With-
out doubt, there is a pressing need for better data to
inform the more complex models that would be required
to address these questions. However, the simple model-
ling framework developed here supports the parsimo-
nious proposal that annual seasonality leads to the
observed epidemics in Kenya and that the lower malaria
prevalence in Thailand explains the lack of observed
cycles despite a significant annual variation in
transmission.

This work was supported by the award of a Leverhulme Early
Career Research Fellowship to D.Z.C. and a Welcome Trust
VIP grant M.B.
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