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Abstract: Ultraviolet (UV) radiation is one of the primary factors responsible for disturbances in
human skin cells phospholipid metabolism. Natural compounds that are commonly used to protect
skin, due to their lipophilic or hydrophilic nature, show only a narrow range of cytoprotective
activity, which prompts research on their combined application. Therefore, the aim of this study was
to examine the effect of ascorbic acid and rutin on the phospholipid and ceramide profiles in UV-
irradiated fibroblasts cultured in a three-dimensional system that approximates the culture conditions
to the dermis. An ultra-high-performance liquid chromatograph coupled with a quadrupole time-
of-flight mass spectrometer was used for phospholipid and ceramide profiling. As a result of UVA
and UVB cells irradiation, upregulation of phosphatidylcholines, ceramides, and downregulation
of sphingomyelins were observed, while treatment with ascorbic acid and rutin of UVA/UVB-
irradiated fibroblast promoted these changes to provide cells a stronger response to stress. Moreover,
an upregulation of phosphatidylserines in cells exposed to UVB and treated with both antioxidants
suggests the stimulation of UV-damaged cells apoptosis. Our findings provide new insight into
action of rutin and ascorbic acid on regulation of phospholipid metabolism, which improves dermis
fibroblast membrane properties.

Keywords: skin fibroblasts; rutin; ascorbic acid; UV radiation; phospholipids; ceramides; three-
dimensional cell culture

1. Introduction

Human skin—which is responsible for isolation from, as well as communication with,
the surrounding environment—ensures the proper functioning of the whole organism.
Its multilayer structure, consisting of the epidermis, the dermis, and subcutaneous tis-
sue, provides an effective barrier against external factors such as radiation, xenobiotics,
or pathogenic microorganisms [1]. These actions are possible due to mutual interactions
between epidermal keratinocytes and dermal fibroblasts [2]. There are a lot of examples
of cross-talk between skin fibroblasts and keratinocytes, including not only their bilateral
protection against mechanical, chemical and physical factors, but also intercellular sig-
naling [3]. Moreover, skin intracellular composition rich in proteins and numerous lipid
derivatives, produced mainly by dermal fibroblasts, protects the organism against water
loss or thermoregulation disorders [4]. Therefore, the exposure of fibroblasts to harmful
environmental factors, including UV radiation, significantly affects their metabolism and,
consequently, the healthy functioning of the skin and the whole organism [5,6].

The UV radiation type which reaches skin fibroblasts to the greatest extent is UVA,
which easily penetrates to the inner layers of the dermis. The next most penetrating
bandwidth is UVB, which is mainly absorbed in the epidermis and affects the dermal
fibroblasts in only small amounts (Figure 1) [7]. These bandwidths differ not only in
wavelength and degree of penetration, but also in the way they affect cellular metabolism.
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Both bandwidths stimulate the production of reactive oxygen species (ROS). UVA does this
by endogenous chromophore activation, while UVB acts directly on molecules to create
ROS, the production of which leads to DNA, protein, and lipid damage [8].

Figure 1. The comparison of the penetration and effects of UVA (320–400 nm) and UVB (290–320 nm)
radiation in relation to cells of different skin layers.

However, in both cases, the oxidative stress also induces proinflammatory and
proapoptotic signals [5]. This effect, due to the penetration depth connected with the
type of radiation in a different way affects the interactions between the cells that build
the skin. It has been shown that keratinocytes from epidermis under stress conditions
induce the production of proinflammatory and growth factors by dermal fibroblast [3].
This reaction is accompanied by feedback from fibroblasts to keratinocytes hyperprolif-
eration, adhesion, and keratin overexpression [3]. In addition, UVB strongly absorbed
by keratinocytes, induces these cell interactions with fibroblasts leading to the epider-
mal growth factor (EGF) increased secretion [9]. Moreover, molecules involved in signal
transduction between fibroblasts and keratinocytes are often products of phospholipid
fatty acid metabolism, such as lipid peroxidation products including reactive aldehydes,
but also products of enzymatic metabolism such as eicosanoids, endocannabinoids and
ceramides [10]. Disturbances in their physiological levels under UV-induced oxidative
stress have been identified as a main cause of disruption to skin cell metabolism, thus
lowering the functionality of the whole skin [11]. In this connection, there is still a need
to identify natural compounds with skin-protective properties, especially with regard to
cellular phospholipids.

To date, many cytoprotective compounds have been identified with antioxidant effects;
however, most of them have a lipophilic or hydrophilic character which means they can
only act in one fraction: membrane or cytosol [12]. Therefore, systems of compounds
that would protect both cellular fractions are sought. A good solution seems to be the
use of two well-known antioxidants—the water-soluble ascorbic acid and the partially
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lipophilic rutin—which both exhibit antioxidant properties and independently protect cell
metabolism [13,14]. So far, these compounds have been used together with great success in
oral pharmaceutical preparations, increasing the body’s immunity [15,16].

The biochemical functions of ascorbic acid include stimulation of the antioxidant sys-
tem; activation of certain enzymes; collagen biosynthesis, hormonal activation; detoxifica-
tion of histamine; proline hydroxylation [17]. Rutin is known to modulate the permeability
of the blood vessels and to support the antioxidant system as a free radical scavenger,
as well as being an activator of the transcription factor Nrf2 [14,18].

Moreover, our previous studies show that ascorbic acid and rutin used together have
a synergistic effect in stimulation of the cellular antioxidant system and protection against
changes to the proteomic profile of UV-irradiated keratinocytes and fibroblasts [19,20].
Moreover, in the case of skin fibroblasts, these properties become even more pronounced
if the traditional single-layer cell culture model is changed to a three-dimensional (3D)
model [21,22]. Since fibroblasts in the dermis are constantly surrounded by other cells,
observations made under 3D model conditions are more representative of physiological
conditions. Exposure to UV radiation will elicit a response, that depends not only on the
type of radiation, but also on the degree of ray penetration into the cell’s physiological
environment, which cannot be assessed in the case of single-layer cell culture. The same
is true in the case of cell treatments with chemical factors, where 3D modeling allows the
discovery of more representative intra- and extracellular signaling pathways as compared
to single-layer culture [23,24]. The multilayer structure of the dermis, combined with the
action of the cell membrane, is a strong barrier to be overcome for compounds with a
potential protective effect. In the case of rutin its action is limited due to its retention on
skin surface and keratinized layers, that is equal to 95% of total topically applied dose [25],
while ascorbic acid permeation through skin model varies even in range 20–40% [26].
Therefore, in the case of ascorbic acid/rutin cooperation, ascorbic acid is beneficial in that
it facilitates the penetration of rutin into the cell [27]. This, combined with the proteome
preservation mentioned above, suggests that these compounds could protect lipids and
their derivatives, and therefore are extremely important in the functioning of the skin,
especially under stress conditions.

Therefore, the aim of this study was to analyze and compare the effects of ascorbic
acid and rutin, when used either separately or together, on the phospholipid and ceramide
profiles of 3D-cultured skin fibroblasts following UVA or UVB radiation.

2. Materials and Methods
2.1. Reagents/Chemicals

Human skin fibroblasts (CRL-1474) were obtained from the American Type Culture
Collection (ATCC). Sterile reagents for cell culture, including AlgiMatrix 3D Cell Culture
System, were obtained from Thermo Fisher Scientific (Waltham, MA, USA). Phospholipid
and ceramide internal standards were purchased from Avanti Polar Lipids, Inc. (Alabaster,
AL, USA). All chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis,
MO, USA). All solvents were of LC-MS grade. Milli-Q water was used for all experiments,
filtered through a 0.22 µm filter and obtained using a Milli-Q Millipore system (Advantage
A10, Millipore Corporation, Billerica, MA, USA).

2.2. Cell Culture

Prior to transfer to a 3D substrate, cells were cultured in a two-dimensional model in a
humidified atmosphere of 5% CO2 at 37 ◦C in a growing medium consisting of Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and
50 µg/mL streptomycin and 50 U/mL penicillin. When cells (passage no. 9) reached 90%
confluence, they were seeded into 24-well plates (5 × 105 cells/well) with AlgiMatrix gel
to create a three-dimensional model, and cultured under standard conditions in a growing
medium (DMEM, 10% FBS, 50 µg/mL streptomycin and 50 U/mL penicillin) for four days,
according to the producers protocol [28]. Next, cells were washed with phosphate-buffered
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saline (PBS) and in this buffer exposed to UVA (365 nm) at a dose of 20 J/cm2, or to
UVB (312 nm) at a dose of 200 mJ/cm2, using a Bio-Link Crosslinker BLX 365/312 (Vilber
Lourmat, Germany). UV doses were chosen to reflect 70% cell viability in a 2D culture [13].

Following irradiation, control group cells were cultured in a fresh medium without
FBS under standard conditions for 24 h. To analyze the effect of ascorbic acid and rutin on
UV-irradiated cells, cells were then incubated for 24 h in medium containing either 100 µM
ascorbic acid [13] and/or 25 µM rutin in 0.1% DMSO [29]. Concentrations were selected
according to the cells viability measured by the sulforhodamine B assay in a 2D culture,
doses that were used did not reduce cell survival, but at the same time were sufficient
to cause an effect on cells metabolism, including activation of the antioxidant enzymes
or Nrf2 pathway, as well as reduction the lipid peroxidation products level [19]. Control
cells were cultured in parallel with no treatment. Following incubation, fibroblasts were
recovered from the 3D gel with the use of AlgiMatrix™ dissolving buffer, then lysed by
sonication on ice, and centrifuged (15 min, 12,000× g). The creation of a cell culture for the
experiment, as well as cells treatments are shown in Figure 2.

Figure 2. The overview of the experiment: cell culture preparing and tested groups. Abbreviations: Asc, ascorbic acid;
Rut, rutin.

2.3. Lipidomic Analysis
2.3.1. Extraction of Lipids and Total Phospholipid Quantification

Total lipids were extracted from cell pellet with the use of the Bligh and Dyer method [30].
Quantification of the amount of phospholipids in each extract was performed according
to the Bartlett and Lewis method [31]. Experimental procedures of lipid extraction and
phospholipid quantification were described in detail in a previously published study based
on the same methodology [32].
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2.3.2. Phospholipid Separation and Quantification by UPLC-ESI-MS

Hydrophilic interaction liquid chromatography (HILIC) was applied to separate
phospholipids with the use of a ultra-high performance liquid chromatography (UPLC)
system (Agilent 1290; Agilent Technologies, Santa Clara, CA, USA) coupled to a quadrupole
time-of-flight (QTOF) mass spectrometer (Agilent 6540; Agilent Technologies, Santa Clara,
CA, USA). In order to confirm and quantify the ion variations the phospholipid standards
dMPC (PC 14:0/14:0), LPC (19:0), dMPE (PE 14:0/14:0); CL (14:0/14:0/14:0/14:0), dPPI
(PI16:0/16:0), and dMPS (PS 14:0/14:0) were used. The solvent system was composed of
mobile phase A (acetonitrile, methanol and water with 1 mM ammonium acetate, 50%,
25% and 25% (v/v)) and mobile phase B (acetonitrile and methanol with 1 mM ammonium
acetate, 55% and 45% (v/v)). The solvent gradient was initiated with 0% mobile phase A,
increasing linearly to 100% within 20 min, holding for 15 min, and then returning to initial
composition of mobile phase in 10 min. The mobile phase flow rate was 40 µL min−1.

In total, 25 µg of lipid extract of each sample diluted in phospholipid standards
mixture and eluent B, was loaded onto the chromatographic column (Ascentis® Si, 15 cm
× 1 mm; 3 µm, Sigma-Aldrich). All MS analyses were carried out in negative-ion mode
with electrospray voltage, −3000 V; sheath gas flow, 13 L/min; capillary temperature,
250 ◦C, as typical ESI conditions. Data-dependent acquisition mode (DDA) was used for
data collecting. Parent ion scanning was performed in the m/z range of 100–1500, while
the collision energy was setup at 35 eV. The LPC, PC and SM species were analyzed as
[M + CH3COO]− adducts, while other phospholipid species were analyzed as [M − H]−

ions. The Agilent Mass Hunter data software (version B0.8.0) was used for data acquisition.
Relative abundance of each ion was estimated by normalization to the peak area of an
internal standard. Phospholipid species identification was based on the retention times
and inspection of the MS/MS spectra.

2.3.3. RPLC-ESI-MS Analysis

Reversed-phase (RP) chromatography LC-MS/MS was utilized to characterize ce-
ramide (CER) profiles. The same UPLC-ESI-QTOF-MS system (Agilent 1290; Agilent 6540;
Agilent Technologies, Santa Clara, CA, USA) was used for the analysis. The separation
of ceramides was carried out on an RP C18 column (Acquity BEH Shield 2.1 × 100 mm;
1.7 µm; Waters, Milford, MA, USA). The mobile phase consisted of water with 20 mM
ammonium formate at pH 5 (A) or methanol (B). The solvent gradient started at 70%
eluent B held for 1 min, linearly increasing to 100% within 75 min, and returning to initial
composition over a final 5 min period. Flow rate was 0.5 mL/min. The MS analysis
was performed in positive-ion mode. Electrospray voltage set to 3.5 kV; the drying and
sheath gas temperatures set to 300 ◦C, and the drying and sheath gas flow rates set to 6
and 8 L/min, respectively, were the typical ESI conditions. Data was acquired in DDA
mode. Ceramides were identified according to the presence of the [M + H]+ molecular ion,
retention time, and characteristic fragmentation patterns, as described previously [33].

2.3.4. Data Processing

The assignment of each phospholipid and ceramide species was performed with
the use of MZmine software version 2.30 [34]. The software enables also filtering, peak
detection, alignment, and integration.

2.3.5. Statistical Analysis

Data are presented as mean± standard deviation. Metaboanalyst version 4.0 was used
for the univariate and multivariate statistical analyses [35]. The obtained by MS/MS analy-
sis data were autoscaled and subjected to principal component analysis (PCA). The pro-
cessed data was analyzed for statistical significance using a one-way ANOVA with an
adjusted p-value (FDR) cutoff of 0.05, and Tukey’s post-hoc tests. The heat map was con-
structed with the use of “Euclidean” clustering distance and “Ward” clustering algorithm.
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3. Results

In this work, we used a high-resolution HILIC-LC-MS/MS platform to characterize
the changes in the phospholipid profile of fibroblasts exposed to UVA or UVB radiation and
treated with rutin and/or ascorbic acid. We also used an RPLC-QTOF-MS/MS platform to
evaluate alterations to the ceramide profile. We identified phospholipid species belonging
to phosphatidylcholine (PC), lyso-PC (LPC), phosphatidylethanolamine (PE), lyso-PE (LPE),
phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM) classes. The
list of 104 phospholipid species (corresponding to the most abundant species each of their
respective classes) which were identified and quantified is presented in Supplementary
Table S1. For the relative quantification of all phospholipids listed in Supplementary Table
S1, the peak areas of the extracted ion chromatograms of each PL species within each class
were normalized using the peak area of the internal standard (ISTD) selected for the class.

In the case of ceramide profiles of our 3D-cultured fibroblasts, we identified more
than 60 ceramide species, including non-hydroxy fatty acid (N), α-hydroxy fatty acid (A),
and esterified ω-hydroxy fatty acid (EO), plus three sphingoid bases (dihydrosphingosine
(DS), sphingosine (S), and phytosphingosine (P)). All identified ceramides belong to seven
different classes, namely CER[NS], CER[NDS], CER[NP], CER[ADS], CER[AS], CER[AP],
and CER[EOS] (Supplementary Table S2). Identification of CER species was based on the
presence of the molecular [M + H]+ ion, retention time, and typical fragmentation patterns
observed in the MS/MS spectra. Multivariate and univariate statistical analyses were used
to identify significant changes in the profiles of phospholipids and ceramides between
groups. The data were first autoscaled and then subjected to a principal component analysis
(PCA) to reveal the clustering trends of the experimental groups (Figure 3).

Figure 3. Two-dimensional principal component analysis (2D PCA) scores plot of the relative phospholipid (A) and ceramide
(B) content related to the internal standard of each class within each class in 3D cultured fibroblasts: not treated (Control);
treated with ascorbic acid (Asc); treated with rutin (Rut); treated with rutin and ascorbic acid (Rut+Asc); exposed to UVA
(UVA); exposed to UVA and treated with ascorbic acid (UVA+Asc); exposed to UVA and treated with rutin (UVA+Rut);
exposed to UVA and treated with rutin and ascorbic acid (UVA+Rut+Asc); exposed to UVB (UVB); exposed to UVB and
treated with ascorbic acid (UVB+Asc); exposed to UVB and treated with rutin (UVB+Rut); exposed to UVB and treated with
rutin and ascorbic acid (UVB+Rut+Asc).
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The two-dimensional principal component analysis (2D PCA) plot corresponding to
the phospholipid data set of 12 analyzed groups shows that the model captured 53.2% of
the total variance (Figure 3A). The variation between the different biological groups is more
pronounced with the PC1 component (32%), which accounts for the greatest variation, and
allows discrimination of fibroblasts irradiated with UVB from other groups of analyzed
cells. The second component, PC2 (21.2%), mainly accounts for the variation between
groups of control fibroblasts and groups of UVA-irradiated cells. The PCA plot shows
that these groups (UVA-irradiated cells) as well as control fibroblasts are scattered in the
left region of the plot and clearly separated from the groups of fibroblasts irradiated with
UVB, which were scattered in the right region of the plot (Figure 3A). Separation was most
pronounced between groups of UVB-irradiated cells and the rest of the analyzed groups.
Although control cells treated with rutin and/or ascorbic acid were poorly separated
from each other, they were discriminated from groups of UVA-irradiated cells by the PC2
component.

The PCA two-dimensional plot constructed for ceramide profiling represented the
analyses describing 55.5% of the total variance, including PC1 (42.2%) and PC2 (13.3%),
where PC1 was the major discriminating component (Figure 3B). While the samples irradi-
ated with UVA or UVB were scattered in the center of the plot, PC1 mainly accounts for
the variation between the cluster of nonirradiated fibroblasts plus those irradiated with
UVA/UVB and treated with rutin and ascorbic acid simultaneously, which were scattered
in the right region of the plot, versus the rest of the analyzed groups, scattered on the left
region. However, PC2 most probably describes the variation between groups of UVA and
UVB-irradiated fibroblasts treated with both antioxidants simultaneously.

Finally, we performed a univariate analysis (one-way ANOVA and Fisher’s LSD post-
hoc tests) in order to assess the variation of the relative abundance of the molecular species
of phospholipids and ceramides under the conditions studied. The univariate analysis
was used to create a dendrogram with two-dimensional hierarchical clustering, using the
25 main phospholipids (Figure 4A) and ceramide (Figure 4B) species, according to one-way
ANOVA. The primary split in the upper hierarchical dendrogram shows that the samples
were clustered independently in three main groups, in both phospholipid and ceramide
analyses (Figure 4A,B). Clustering of the individual lipid species (with regard to their
similar expression changes) shows that they cluster into three and four main groups for
phospholipids and ceramides, respectively. In the case of phospholipids, the first group
was mainly composed of PC species. The second group consisted of PS, while the third
group included PI species and one SM species, namely SM(d41:0). The first group of
clustered ceramides was composed of α-hydroxylated CER (CER[AS] and CE[ADS]), while
the other three clusters were composed of ceramides and dihydroceramides (CER[NS] and
CER[NDS]) (Figure 4B).

3.1. Comparison of Phospholipid and Ceramide Profiles of Control Fibroblasts vs. Those Treated with
Rutin or Ascorbic Acid Separately, as well as with Both Compounds together (Control vs. Rut vs.
Asc vs. Rut+Asc)

For a more detailed interpretation of the data, we decided to investigate changes by
analyzing three data sets, each comprising four different groups.

The first set included data from the following groups: control; rutin alone (Rut); ascor-
bic acid alone (Asc); rutin plus ascorbic acid (Rut+Asc). Among the phospholipid profiles of
these groups, we found that PC species were upregulated in the fibroblasts treated with Rut
and Asc—especially PC(40:6), PC(38:5), PC(38:3), PC(40:5), and PC plasmalogen PCp(46:11).
Moreover, a general tendency towards a decrease in SM(d40:1) relative content was shown
after Rut or Asc treatment. However, when compared to untreated cells, the most significant
downregulation of SM(d40:1) was observed in fibroblasts treated with both Rut and Asc
(Figure 4A, Table 1, Supplementary Table S3), which was accompanied by a significant up-
regulation of ceramide species (mainly Cer(d18:2/15:0); Cer(d18:1/24:0); Cer(d16:1/23:0);
Cer(d18:0/18:0); Cer(d18:2/21:0); Cer(d18:0/15:0); Cer(d18:0/17:0) (Figure 4B, Table 2,
Supplementary Table S4)).
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Figure 4. Two-dimensional hierarchical clustering heat map of the 25 most discriminating phospholipid (A) and ceramide
(B) molecular species (according to one-way ANOVA and Tukey’s post-hoc tests) of the 12 studied 3D cultured fibroblasts
groups. Levels of relative abundance are indicated on the color scale, with numbers indicating the fold difference from the
grand mean. The clustering of the sample groups is represented by the dendrogram on the top. The clustering of individual
phospholipid species with respect to their similarity in change of relative abundance is represented by the dendrogram to
the left. Abbreviations: Asc, ascorbic acid; Rut, rutin.

In contrast, cells treated only with Asc showed a tendency towards downregula-
tion of ceramides, including some CER[NS] and CER[NDS] species (Cer(d18:0/15:0);
Cer(d18:0/17:0); Cer(d18:1/18:0); Cer(d18:0/26:0); Cer(d18:1/22:0); Cer(d18:0/13:0); and
Cer(d16:1/17:0)). Interestingly, in comparison to control cells, significant changes were
observed in α-hydroxylated ceramides in fibroblasts treated with Rut or Asc—namely,
upregulation of Cer(d18:0/22:0(2OH)), and downregulation of both Cer(d16:2/24:0(2OH))
and Cer(d18:0/22:0(2OH)).

Significant changes in phospholipid and ceramide profiles were also observed in
fibroblasts irradiated with UVA or UVB. These changes include upregulation of PC species
and downregulation of sphingomyelin SM(d40:1) in both groups of fibroblasts irradiated
with UVA and UVB (Figure 4A, Table 1, Supplementary Table S3). Moreover, a general
tendency towards increase of CER species was observed in fibroblasts irradiated with
both types of UV light, but more pronounced upregulation was noted for cells exposed
to UVA, in which almost all relevant CER species were upregulated (Figure 4B, Table 2,
Supplementary Table S4). However, we found interesting changes in the relative abundance
of phosphatidylserine (PS) and phosphatidylinositol (PI) species. Exposure of fibroblasts to
UVA radiation led to upregulation of all significantly relevant PS and PI species, with the
exception of PI(40:3). In contrast, UVB led to significant downregulation of both classes.
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Table 1. The alteration observed in the molecular species of the 10 phospholipid molecular species (selected from 25 most discriminating phospholipid molecular species according to
one-way ANOVA and Tukey’s post-hoc tests) in the 3D cultured fibroblasts comparing control (Ctr) with rutin (Rut (25 µM)), control with ascorbic acid (Asc (100 µM)), control with
Rut+Asc, UVA with Rut, UVA with UVA+Asc, UVA with UVA+Rut+Asc, UVB with Rut, UVB with UVB+Asc, and UVB with UVB+Rut+Asc, along with their respective fold change. All
the alterations are significant at the p < 0.05 level. The bold indicates high fold change (more than 2-fold); red arrows indicate the increased level; blue arrows indicate the decreased level; -,
not significant changes. The table with the 25 most discriminating phospholipid molecular species is included in Supplementary Materials (Supplementary Table S3).

Log2 (Fold-Change)

Phospholipid Species Rut
vs. Ctr

Asc
vs. Ctr

Rut+Asc
vs. Ctr

UVA
vs. Ctr

UVB
vs. Ctr

UVA+Rut
vs. UVA

UVA+Asc
vs. UVA

UVA+Rut+Asc
vs. UVA

UVB+Rut
vs. UVB

UVB+Asc
vs. UVB

UVB+Rut
+Asc

vs. UVB
PCp(44:9)/PCo(44:10) - - 1.08 ↑ 0.58 ↑ 1.00 ↑ - - - 1.94 ↑ 2.08 ↑ 2.90 ↑

PCp(44:11)/PCo(44:12) - - 2.13 ↑ 1.26 ↑ 1.86 ↑ - - - 1.88 ↑ 1.15 ↑ 2.68 ↑
PC(40:6) - - 1.69 ↑ 2.05 ↑ 2.76 ↑ - - - 0.70 ↓ 0.51 ↑ 2.34 ↑
PC(38:3) - - 2.34 ↑ 2.42 ↑ 3.49 ↑ - - - 0.64 ↑ 0.53 ↑ 1.68 ↑
PS(40:1) - - - 1.31 ↑ 2.15 ↓ - - - - - 4.98 ↑
PS(44:4) - - - 1.20 ↑ 2.42 ↓ - - - - - 4.93 ↑

SM(d40:1) 1.09 ↓ 1.36 ↓ 1.88 ↓ 2.25 ↓ 1.18 ↓ - - 4.46 ↓ 2.85 ↓ 0.59 ↓ 3.99 ↓
PI(40:10) - - - 0.57 ↑ 0.90 ↓ 0.62 ↓ 0.66 ↓ 1.22 ↑ 1.71 ↓ 2.42 ↓ 2.80 ↓
PI(40:3) - - - 1.15 ↓ 2.94 ↓ 0.86 ↑ - 2.76 ↑ 0.88 ↓ 0.57 ↓ 1.34 ↓
PI(40:8) - - - 1.00 ↑ 0.93 ↓ 0.81 ↓ 2.89 ↓ 2.53 ↑ 2.34 ↓ 1.97 ↓ 1.95 ↓
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Table 2. The alteration observed in the molecular species of the 10 ceramide molecular species (selected from 25 most discriminating ceramide molecular species according to one-way
ANOVA and Tukey’s post-hoc tests) in the 3D cultured fibroblasts comparing control (Ctr) with rutin (Rut (25 µM)), control with ascorbic acid (Asc (100 µM)), control with Rut+Asc, UVA
with Rut, UVA with UVA+Asc, UVA with UVA+Rut+Asc, UVB with Rut, UVB with UVB+Asc, and UVB with UVB+Rut+Asc, along with their respective fold change. All the alterations
are significant at the p < 0.05 level. Abbreviations: non-hydroxy fatty acid [N], α-hydroxy fatty acid [A], and esterifiedω-hydroxy fatty acid [EO], dihydrosphingosine [DS], sphingosine
[S], and phytosphingosine [P]. The bold indicates high fold change (more than 2-fold); red arrows indicate the increased level; blue arrows indicate the decreased level; -, not significant
changes. The table with the 25 most discriminating ceramide molecular species is included in Supplementary Materials (Supplementary Table S4).

Log2 (Fold-Change)

CER Class Ceramide Species Rut
vs. Ctr

Asc
vs. Ctr

Rut
+Asc

vs. Ctr

UVA
vs. Ctr

UVB vs.
Ctr

UVA
+Rut

vs. UVA

UVA
+Asc

vs. UVA

UVA
+Rut
+Asc

vs. UVA

UVB
+Rut

vs. UVB

UVB
+Asc

vs. UVB

UVB
+Rut
+Asc

vs. UVB
CER[ADS] Cer(d18:0/20:0(2OH)) 2.51 ↑ 3.57 ↑ - - 3.81 ↑ - 3.54 ↑ 1.85 ↓ 5.40 ↓ 0.79 ↑ 2.13 ↑
CER[ADS] Cer(d18:0/22:0(2OH)) 0.48 ↓ 1.50 ↓ 0.65 ↓ 0.31 ↑ 2.72 ↓ - 3.51 ↓ - 2.68 ↑ - 2.22 ↑
CER[AS] Cer(d16:2/24:0(2OH)) 0.75 ↓ 1.95 ↓ 0.62 ↓ 1.17 ↓ - 1.75 ↑ - 0.98 ↓ 1.02 ↑ 0.28 ↑ 0.86 ↑
CER[NP] Cer(t18:0/22:0) - - - 0.75 ↓ - 0.28 ↓ 1.32 ↓ 4.39 ↑ - - 1.70 ↑
CER[NS] Cer(d18:2/15:0) - - 1.86 ↑ 3.10 ↑ 1.15 ↓ 2.77 ↓ 5.36 ↓ 1.60 ↓ - - 2.84 ↑
CER[NS] Cer(d18:1/24:0) - - 1.79 ↑ 1.69 ↑ 2.34 ↓ 1.30 ↓ 1.13 ↓ 1.85 ↑ 3.54 ↑ - 4.47 ↑
CER[NS] Cer(d18:1/17:0) - - 0.86 ↑ 1.13 ↑ - 2.12 ↓ 1.47 ↓ 2.82 ↑ 2.37 ↑ - 2.92 ↑

CER[NDS] Cer(d18:0/18:0) - - 1.79 ↑ 0.58 ↓ 1.86 ↑ 1.99 ↓ 0.45 ↑ 4.03 ↑ - 2.77 ↓ 0.32 ↑
CER[NDS] Cer(d18:0/13:0) - 2.39 ↓ 0.94 ↑ 1.70 ↑ 0.79 ↑ 2.71 ↓ 2.29 ↓ 2.27 ↑ 1.24 ↑ 0.60 ↓ 2.28 ↑
CER[NDS] Cer(d18:0/20:0) - - - - - - - 1.97 ↑ 1.17 ↑ 1.86 ↓ 2.66 ↑
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3.2. Comparison of the Phospholipid and Ceramide Profiles of Fibroblasts Exposed to UVA and
Then Either Not Treated, Treated Separately with Rutin or Ascorbic Acid, or Treated with Both
Compounds Together (UVA vs. UVA+Rut/UVA+Asc/UVA+Rut+Asc)

To examine changes in phospholipid and ceramide profiles of UVA-irradiated fibrob-
lasts resulting from treatment with rutin or ascorbic acid, we analyzed a second set of
data composed of the following groups: UVA, UVA+Rut, UVA+Asc, and UVA+Rut+Asc.
We found no significant differences between the phospholipid profiles of UVA-irradiated
fibroblasts after ascorbic acid or rutin treatment, with the exception of a slight down-
regulation of some PI species (namely PI(40:2), PI(42:6), and PI(40:8) (Figure 4A, Table 1,
Supplementary Table S3)). It should be underlined that in comparison to untreated UVA-
irradiated cells, exposure of these cells to both compounds simultaneously (Rut+Asc) led
to a dramatic downregulation of sphingomyelin species SM(d40:1) (Figure 4A, Table 1,
Supplementary Table S3). The decrease in relative content of this SM species was ac-
companied by upregulation of almost all relevant CER species, which was most signif-
icant among all experimental groups examined in the present study (Figure 4B, Table 2,
Supplementary Table S4).

Interestingly, treatment of UV-irradiated fibroblasts with either Rut or Asc alone
resulted in significant downregulation of most ceramides (Figure 4B). In addition to
these changes, when compared with the other groups of UVA-irradiated fibroblasts, we
also noted significant upregulation of PI species, especially PI(40:3) and PI(40:8) in UVA-
irradiated cells treated with Rut and Asc.

3.3. Comparison of the Phospholipid and Ceramide Profile of Fibroblasts Exposed to UVB and Then
Either Not Treated, Treated Separately with Rutin or Ascorbic Acid, or Treated with Both
Compounds Together (UVB vs. UVB+Rut vs. UVB+Asc vs. UVB+Rut+Asc)

Assessment of the third set of data (UVB, UVB+Rut, UVB+Asc, and UVB+Rut+Asc)
revealed the most pronounced changes in the phospholipid profile of fibroblasts irradiated
with UVB and treated with rutin and ascorbic acid simultaneously. We found significant
upregulation of all statistically relevant PS species (Figure 4A, Table 2, Supplementary Table
S4)—namely PS(42:3), PS(40:3), PS(42:4), PS(40:1), PS(38:1), PS(38:0), PS(42:2), and PS(44:4).
In addition, a dramatic increase was observed in the relative abundance of all PC and
PCp species in this group of cells (Figure 4A, Table 1, Supplementary Table S4). We also
observed a significant decrease in the relative abundance of SM(d40:1) after treatment of
UVB-irradiated fibroblasts with rutin alone, and this was even more pronounced when
these cells were treated together with rutin and ascorbic acid together. These observations
were correlated with an upregulation of most of ceramide species indicated in fibroblasts
exposed to UVB and treated with rutin, but especially when treated with rutin and ascorbic
acid simultaneously. We also found significant downregulation of most PI species in
UVB-irradiated cells after rutin and/or ascorbic acid treatment when compared to UVB-
irradiated cells without treatment (Figure 4A, Table 1, Supplementary Table S3).

4. Discussion

UV radiation as one of the most harmful factors reaching human skin in various ways
affects cell metabolism depending both on the type of UV radiation and the skin cell line
subject to irradiation [5,36]. However, these UV-induced changes are strongly dependent
also on cell-to-cell interactions, based on signaling molecules secretion [37]. It has been
described that epidermal keratinocytes, creating the first line of protection against e.g., UV
radiation, transmit information about this factor, as well as about its negative effects
into skin fibroblasts. As a result, increased cells proliferation or even differentiation are
observed, which can lead to the development of skin cancer [38–40]. On the other hand,
3D cocultured fibroblasts with keratinocytes were shown as proapoptotic signal inducers
causing increase in caspase-3 and Bad expression in keratinocytes [41]. That shows how
important the interactions between UV irradiated skin cells are, as well as the level of
signaling molecules they produce, especially lipids and ceramides.
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Phospholipids and ceramides represent the main lipid species present in skin cells
that are not only responsible for organization of membrane structure, but which also play
an important role in cell signaling, as well as the permeability of cell membranes. It is
well-known that UV radiation, particularly by the induction of oxidative stress, leads to the
alteration of skin phospholipid and ceramide metabolism, and consequent changes in their
levels and composition [42]. Until now, most research has focused on the effect of UV radi-
ation on the phospholipid metabolism in major epidermal cells—keratinocytes [32,43,44].
Unfortunately, these studies do not reflect the metabolic consequences of UV radiation
in the dermis, the deeper layer of the skin, the primary cells of which are the fibroblasts.
Through the release of cytokines and growth factors, fibroblasts play a crucial role in
regulating various processes in the skin, including signal transduction which facilitates
their interaction with the surrounding extracellular matrix and blood vessels [45].

The results obtained in this study show that both UVA and UVB induce changes in
the 3D-cultured fibroblast phospholipid profile, namely the upregulation of PC species
and downregulation of sphingomyelin SM(d40:1), which has also been shown in our
previous in vitro studies on fibroblasts cultured in a 2D system [46]. Downregulation of
sphingomyelin species SM(d40:1) was accompanied by a general tendency to increase
the level of ceramides belonging to CER[NS] (ceramides containing non-hydroxy fatty
acids and sphingosine) and CER[NDS] (ceramides containing non-hydroxy fatty acids and
dihydrosphingosine). Such increased ceramide synthesis in the epidermis following UV
exposure has been reported previously [47,48]. In addition, it has also been reported that
UV radiation accelerates the formation of ceramides through hydrolysis of sphingomyelin
by increasing acidic-sphingomyelinase activity in human dermal fibroblasts [49]. Moreover,
it has also been shown that UV radiation by causing oxidative stress increases the expression
of acid and neutral sphingomyelinases at the mRNA level [50]. This is in agreement with the
results presented above, which may indicate the stimulation of sphingomyelin/ceramide
pathways, since the enzymatic hydrolysis of sphingomyelins is one of the main mechanisms
leading to formation of ceramides [51]. Our results show more pronounced upregulation
of all relevant CER species in fibroblasts exposed to UVA, which may be explained by the
ability of UVA radiation to penetrate more deeply into the skin [42]. Moreover, it has also
been shown that UVA radiation is also involved in the generation of singlet oxygen, which
has been suggested as a nonenzymatic mechanism for ceramide formation [52]. In fact,
it has been indicated previously that UVA radiation triggers de novo ceramide synthesis,
as well as enhancing enzymatic pathways of ceramide generation in human skin cells
through sphingomyelinase action [53,54].

The results of this study also reveal inverse changes in the content of phosphatidylser-
ines and phosphatidylinositols, depending on the type of UV light used for irradiation. All
relevant PS and PI species were upregulated in UVA-irradiated fibroblasts, while downreg-
ulation of these phospholipids was observed in cells exposed to UVB radiation. It may be
assumed that phosphatidylserine upregulation may be associated with its translocation to
the outer layer of the membrane, which is an important indicator of apoptosis under the
influence of ROS [55,56]. However, it may be also suggested that a stronger overproduc-
tion of ROS, observed in fibroblasts exposed to UVB rays [5], may favor the oxidation of
PS [57,58]. This may explain the reduction in relative PS levels observed in UVB-irradiated
fibroblasts. However, since UV radiation activates phosphatidylinositol 3-kinase, it may be
suggested that observed downregulation of PI species resulted from their phosphorylation
to phosphoinositides (e.g., PI(4)P and PI(4,5)P2) by phosphatidylinositol kinases [59]. It is
plausible that these metabolic changes attributable to UV radiation might also be stimu-
lated in phototherapy for skin diseases such as atopic dermatitis or psoriasis [60,61], which
emphasizes the importance of developing novel therapies based on UV radiation due to
the simple stimulation of these natural cytoprotective compounds.

Cells in the skin of healthy people are also often exposed to harmful levels of UV
radiation from sunlight, e.g., as a result of excessive sunbathing, which means that com-
pounds/preparations are sought to prevent deleterious metabolic changes. One of the
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consequences of high doses of UV irradiation is redox imbalance. Thus, one desirable
characteristic of a protective compound is the possession of antioxidant properties. Two
examples of such compounds are ascorbic acid and rutin, which, when used together, exert
an antioxidant effect in both the aqueous and lipid environment that has been tested and
proven in relation to the proteome of skin cells [19,20].

To date, very few reports have been published on the cooperative effect of the com-
pounds mentioned above on lipid metabolism [46,62]. Although no significant changes
in phospholipid profile have been indicated in our previous study on fibroblasts cultured
in a 2D system [46], the results of this current study show upregulation of phosphatidyl-
choline species in UVA- and UVB-irradiated cells, both of those that were treated and
those which were untreated with ascorbic acid and/or rutin. This may have implications
for cell signaling and intercellular transport. Recently, it has been shown that the specific
ascorbate phosphatidylcholine (PC) liposome has an ability to overcome the barrier of
the stratum corneum and deliver the active agents into the dermis to prevent photodam-
age [63]. Therefore, the observed upregulation of phosphatidylcholine species, especially
in both groups of nonirradiated and UVB-irradiated fibroblasts treated with rutin and
ascorbic acid, may be associated with a specific mechanism allowing active compound
(e.g., rutin) penetration into the deeper fibroblast layers in a 3D system—or even into the
layers of the dermis. It has been shown previously that increase in PC species is pivotal to
rutin action since they also facilitate its transport through the cell membrane. Rutin and
phosphatidylcholine interact to form a PC-rutin complex known as a phytosome, which
can help to overcome difficulties in medicinal fortification, such as low water solubility
and bioavailability [64]. Moreover, quite recently it has been proven that the formation of a
nano-complex of rutin with phosphatidylcholine provides better efficacy of biological rutin
action [65]. Therefore, taking into account the results obtained here, it may be suggested
that ascorbic acid, assisted by the antioxidant activity of rutin, increases the synthesis of
phosphatidylcholine, consequently facilitating the transport of rutin through the fibroblast
layers, but also probably allowing its penetration into the deeper dermis.

The cooperative action of both antioxidants may also explain a decrease in the rel-
ative abundance of SM(d40:1) and also the accompanying significant upregulation of
ceramide species (mainly of the CER[NS] and CER[NDS] classes) in fibroblasts irradiated
and treated with both antioxidants. In addition, our results indicate the downregulation
of fibroblast ceramides by ascorbic acid alone, which stands in contrast to previous find-
ings which suggest that ascorbic acid enhances de novo ceramide synthesis by activation
of serine palmitoyltransferase and ceramide synthase, while sphingomyelinase remains
unchanged [66]. Notably, those findings were reported in 2D-cultured keratinocytes. This
may suggest different changes in the ceramide metabolic pathway in skin and epidermal
cells and different responses depending on the 2D or 3D nature of the culture. In addition
to indicated downregulation of CER[NS] and CER[NDS] a significant upregulation of
hydroxylated ceramide, namely Cer(d18:0/22:0(2OH)) was also observed in all groups
of fibroblasts treated with ascorbic acid. It has previously been shown that ascorbic acid
facilitates the hydroxylation of sphingoid bases and fatty acids, generating α-hydroxy fatty
acids, ω-hydroxy fatty acids, or various sphingoid bases [67]. This may explain the ob-
served increases in relative abundance of Cer(d18:0/22:0(2OH)) in all groups of fibroblasts
treated with ascorbic acid. However, our study demonstrated a significant increase of most
relevant ceramide species in control fibroblasts, as well as in UVA or UVB-irradiated cells,
when exposed to both rutin and ascorbic acid simultaneously. Taking this together with
the downregulation of SM(d40:1), these findings may suggest induction of sphingomyelin
degradation through sphingomyelinase action. Moreover, the decrease in SM(d40:1) may
additionally suggest combined effect of both compounds, which has been reported by
earlier metabolic and proteomic studies on skin cells exposed to UVA/B radiation [19,20].

Since the most important function of the epidermal barrier is to prevent excessive
water loss, and since ceramides are considered the main type of lipid that ensures proper
skin permeability, the observed upregulation of ceramides indicates an important role for
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the combined action of rutin and ascorbate in preventing the alteration of permeability [68].
It has been shown that ceramides derived from sphingomyelinase activation typically
accumulate shortly after the stimulus is triggered [69], which may suggest this is a result
of the immediate effects of UV, while de novo synthesized ceramides accumulate later.
Therefore, it could be suggested that the increase in the level of ceramides after UVA/UVB
irradiation may be mainly the result of an increase in existing sphingomyelinase activity,
while the increase in relative ceramide content observed after treatment with antioxidants
(rutin and ascorbic acid) may be more attributable to de novo synthesis. In addition to these
changes, there was a significant upregulation of PI species in UVA-irradiated fibroblasts
treated simultaneously with rutin and ascorbic acid, while in UVA-irradiated cells treated
only with rutin or ascorbic acid, the general trend was to lower PI levels (as was observed
in case of all UVB-irradiated cells). Moreover, in UVB-irradiated fibroblasts treated with
both rutin and ascorbic acid, a dramatic upregulation was observed in all relevant PS
species. These changes are probably the result of the cumulative antioxidant properties of
two natural compounds preventing oxidative modifications of PS by ROS, to which these
phospholipids are particularly sensitive [57]. The upregulation of PS may be very important,
as indicated by the way these phospholipids bind to PPARα receptors, which reduce UVB-
induced inflammation [70]. Therefore, the upregulation of phosphatidylserines resulting
from treatment of UVB-irradiated fibroblasts with ascorbic acid and rutin may be a part of
the response to inflammatory processes induced by UV radiation.

Ceramide, by modifying the structure of the membranes, contributes to the change
of the mitochondrial membrane potential by specialized proteins such as the Bcl-2 family,
which leads to the release of cytochrome C and apoptosis-induced factor (AIF) into the
cytoplasm [71]. Moreover, the increased accumulation of ceramide leads to the formation of
ceramide-rich domains in the membranes, which provide a platform for the accumulation
and activation of cytokine receptors, including TNFR1 and death receptors [72]. Consid-
ering that the proapoptotic effect is related to the activation of the executive enzymes—
caspase 3 and caspase 8, which degrade the cytoskeleton, biological membranes and the cell
nucleus—the increase of ceramide in UVB-irradiated fibroblasts exposed to both ascorbic
acid and rutin may suggest the participation of ceramide in proapoptotic signal transduc-
tion in these cells. Therefore, the association of phosphatidylserines and ceramides with
reduction of inflammation, and with the proapoptotic mechanism of action of ascorbic acid
and rutin, may indicate the cooperation of these two antioxidants in a smooth change in
the direction of metabolic processes of fibroblasts from proinflammatory responses after
UV radiation to degradation of damaged cells by apoptosis.

5. Conclusions

In conclusion, our results showed that the combined action of both tested compounds
led to significant changes in the profile of phospholipids and ceramides. The results ob-
tained in the study indicate the protective effect of rutin and ascorbic acid, especially after
irradiation of fibroblasts with UVA/UVB radiation, which leads to significant changes
in the phospholipid and ceramide profiles. These changes include upregulation of phos-
phatidylcholines and ceramides, as well as downregulation of sphingomyelins, that provide
a stronger response of cells to stress. Meanwhile, the application of each antioxidant com-
pound on its own resulted in an opposite change in phospholipid levels. Our findings
provide new insight into the role of both compounds acting together to regulate dermal
lipid metabolism. In particular, these results suggest mechanisms for these compounds
related to apoptosis and the improvement of membrane properties—mainly decrease of
permeability and inhibition of intracellular water loss—through increased ceramide gener-
ation. In addition, considering obtained results and the multitude of interactions between
fibroblasts and keratinocytes, in order to fully understand the mechanisms induced by the
action of antioxidants following the exposure to UV radiation, it is also necessary to study
the alteration of lipid profile in a common model of cocultures containing keratinocytes and
fibroblasts. This may be of interest to many researchers in the field of skin diseases pharma-
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cotherapy, particularly due to the high therapeutic potential of both natural antioxidants
examined. Nevertheless, further research is needed to elucidate the exact mechanisms by
which both used compounds act, and also to explain the metabolic changes suggested in
this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10040578/s1, Table S1: Phospholipid molecular species identified in the 3D cultured fi-
broblasts used in the present study. (phosphatidylcholine (PC), lyso-PC (LPC), phosphatidylethanola-
mine (PE), lyso-PE (LPE), phosphatidylinositols (PI), phosphatidylserine (PS), and sphingomyelin
(SM)). Table S2: Ceramide molecular species (63) identified in the 3D cultured fibroblasts used in
present study (non-hydroxy fatty acid [N], α-hydroxy fatty acid [A], and esterifiedω-hydroxy fatty
acid [EO], dihydrosphingosine [DS], sphingosine [S], and phytosphingosine [P]). Table S3: The al-
teration observed in the molecular species of the 25 most discriminating phospholipid molecular
species (according to one-way ANOVA and Tukey’s post-hoc tests) in the 3D cultured fibroblasts
comparing control (Ctr) with rutin (Rut (25 µM)), control with ascorbic acid (Asc (100 µM)), control
with Rut+Asc, UVA with Rut, UVA with UVA+Asc, UVA with UVA+Rut+Asc, UVB with Rut, UVB
with UVB+Asc, and UVB with UVB+Rut+Asc, along with their respective fold change. Table S4:
The alteration observed in the molecular species of the 25 most discriminating ceramide molecular
species (according to one-way ANOVA and Tukey’s post-hoc tests) in the 3D cultured fibroblasts
comparing control (Ctr) with rutin (Rut (25 µM)), control with ascorbic acid (Asc (100 µM)), control
with Rut+Asc, UVA with Rut, UVA with UVA+Asc, UVA with UVA+Rut+Asc, UVB with Rut, UVB
with UVB+Asc, and UVB with UVB+Rut+Asc, along with their respective fold change. All the
alterations are significant at the p < 0.05 level. Abbreviations: non-hydroxy fatty acid [N], α-hydroxy
fatty acid [A], and esterifiedω-hydroxy fatty acid [EO], dihydrosphingosine [DS], sphingosine [S],
and phytosphingosine [P]. The bold indicates high fold change (more than 2-fold); n.s., not significant
changes. Table S5: Peak area of each phospholipid molecular species identified in the 3D cultured
fibroblasts used in the present study. Data obtained using MZmine software (XLSX). Supplementary
Table S6: Peak area of each ceramide molecular species identified in the 3D cultured fibroblasts used
in the present study. Data obtained using MZmine software (XLSX).
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