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Abstract. We have microinjected a mAb specifically
directed to phosphatidylinositol 4,5-bisphosphate
(PIP,) into one blastomere of two-cell stage Xenopus
laevis embryos. This antibody binds to endogenous
PIP; and reduces its rate of hydrolysis by phospholi-
pase C. Antibody-injected blastomeres undergo partial
or complete arrest of the cell cycle whereas the unin-
jected sister blastomeres divide normally. Since PIP,
hydrolysis normally produces diacylglycerol (DG) and
inositol 1,4,5-triphosphate (Ins[1,4,5]P;), we attempted
to measure changes in the levels of DG following
stimulation of PIP; hydrolysis in antibody-injected oo-
cytes. The total amount of DG in antibody-injected
oocytes was significantly reduced compared to that of
water-injected ones following stimulation by either
acetylcholine or progesterone indicating that the anti-
body does indeed suppress PIP, hydrolysis. We also

found that the PIP, antibodies greatly reduced the
amount of intracellular Ca?* released in the egg cortex
during egg activation. As an indirect test for
Ins(1,4,5)P; involvement in the cell cycle we injected
heparin which competes with Ins(1,4,5)P; for binding
to its receptor, and thus inhibits Ins(1,4,5)Ps-induced
Ca?* release. Microinjection of heparin into one
blastomere of the two-cell stage embryo caused partial
or complete arrest of the cell cycle depending upon
the concentration of heparin injected. We further in-
vestigated the effect of reducing any [Ca®*]; gradients
by microinjecting dibromo-BAPTA into the blasto-
mere. Dibromo-BAPTA injection completely blocked
mitotic cell division when a final concentration of 1.5
mM was used. These results suggest that PIP, turnover
as well as second messenger activity influence cell cy-
cle duration during embryonic cell division in frogs.

events of mitosis has long been recognized as an im-

portant regulatory step in many animal (1, 33, 34, 37,
49, 50, 56, 58, 60) and plant cells (25, 26, 36, 52, 66). Cal-
cium stores have been found in close association with the mi-
totic apparatus in both animal and plant cells (see reference
63) and blocking the increase in intracellular Ca?* by the
injection of various Ca** chelators prevents mitotic events
such as nuclear envelope breakdown, and consequently stops
mitosis (34, 58, 60). This mitotic arrest was reversed by sub-
sequent imposed increases in intracellular Ca** (58). It has
also been shown that an artificial increase in intracellular
Ca?* generated by injecting Ca** buffers or Ins(1,4,5)P;
caused premature chromatin condensation and the break-
down of the nuclear envelope in sea urchin embryos (60).
There are also several reports that the Ca?* receptor pro-

g transient increase in cytoplasmic-free Ca?* during the
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tein, calmodulin, is an important regulator of the cell cycle
since calmodulin antagonists block progression of the cell
cycle (6, 7). Thus, there is substantial evidence that [Ca**];
changes are required for normal mitotic events. Recently,
periodic oscillations of the intracellular Ca?* have been de-
tected in dividing Xenopus embryos (23). The fact that many
vertebrate embryos including Xenopus can divide in Ca?*-
free media suggests that such oscillations in intracellular
Ca? must indicate release from intracellular stores rather
than Ca?* influx across the plasma membrane. However the
mechanism generating intracellular Ca** mobilization dur-
ing cell division is unknown.

One well known [Ca?*]; mobilization cascade begins with
phosphatidylinositol 4,5-biphosphate (PIP,)! hydrolysis (3),
and a few studies implicate a possible role for the PIP, cycle
in cell division. It has been shown that lithium inhibits mito-
sis in sea urchin zygotes and the application of exogenous

1. Abbreviations used in this paper: ACh, acetylcholine; DG, diacylglyc-
erol; MBS, Modified Barth’s Saline; MPF, maturation-promoting factor;
MR, modified Ringers; NEB, nuclear envelope breakdown; PIP,, phos-
phatidylinositol 4,5-biphosphate.
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myo-inositol reverses this lithium effect (18). Since lithium
inhibits a phosphatase enzyme in the PIP, metabolic path-
way, these results suggest PIP, cycling is necessary during
mitosis of sea urchin zygotes. In addition, it has also been
demonstrated that inositol trisphosphates are produced after
the sperm-induced Ca?* transient declines, suggesting that
Ins(1,4,5)P; functions as a second messenger during the
sea urchin cell cycle (9). Moreover recent studies indicate
that PKC is an essential enzyme for the yeast cell cycle and
support a possible role for the PIP, cycle in cell cycle con-
trol (41).

Despite such suggestive evidence, the direct involvement
of PIP, hydrolysis in cell division remains obscure. In this
study, we have microinjected two mAbs to PIP, (namely
kt3g and ktl0) into dividing blastomeres to two-cell stage
Xenopus embryos. These PIP, antibodies have previously
been used to suppress PIP, breakdown in at least three
different cell types. The monoclonal anti-PIP, antibody,
kt3g, has been shown to abolish the mitogenic effect of
PDGF and bombesin in NIH-3T3 cells (42). The introduc-
tion of this same antibody into yeast cells by electroporation
also inhibited the mitotic cell cycle and this arrest was recov-
ered by the application of mixtures of Ins(1,4,5)P; and DG
(61). Suppression of PIP, breakdown by the antibody (kt10)
inhibited the proliferation of ras-, src-, and erbB-transformed
cells (19). Finally, PIP, antibody blocked PDGF-mediated
Ca?* entry in rat vascular smooth muscle cells (31).

Here, we demonstrate that the microinjection of mAbs
(kt3g, kt10) to PIP;, into one blastomere of two-cell stage
Xenopus embryos greatly lengthens the duration of the cell
cycle of that blastomere while the sister blastomere cleaves
normally. We find that the microinjection of PIP, antibod-
ies into Xenopus oocytes significantly reduces the cellular
content of diacylglycerol (DG) in response to both acetyl-
choline and progesterone stimulation compared to that of
control oocytes, confirming that the antibody reduces the
amount of PIP, hydrolysis. These same antibodies also
greatly reduced the amount of Ca** released in the Xenopus
egg cortex during activation process. Furthermore, sup-
pressing Ins (1,4,5)P;-mediated intracellular Ca?* release by
injecting heparin inhibits the cell cycle in a dose-dependent
manner. Finally, preventing intracellular Ca** gradients by
dibromo-BAPTA injection suppresses mitotic cell division.
These results strongly suggest that a cellular event down-
stream of PIP, hydrolysis is crucial for the early mitotic
cell cycle of Xenopus embryos.

Materials and Methods

Egg and Embryo Preparations

Adult Xenopus females were injected with 700-800 U of human chorionic
gonadotropin (CG-10; Sigma Chemical Co., St. Louis, MO) into the dorsal
lymph sac 8 h before experiments and maintained at room temperature
(21-23°C). Eggs were stripped and fertilized with minced testis in 20%
modified Ringers (1X MR: 100 mM NaCl, 1.8 mM KC], 2.0 mM CaCl,,
1.0 mM MgCl,, 5 mM Na-Hepes; Sigma Chemical Co., pH 7.8) and were
then placed in 20% MR medium. At ~15 min after fertilization, embryos
were dejellied in 2% cysteine hydrochloride (pH 7.8; Sigma Chemical Co.)
for ~~5 min and were then extensively washed in 20% MR. All embryos
were raised in 20% MR at room temperature.

QOocytes Preparation
Mature female Xenopus, which had not been exposed to hCG during the
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previous four weeks, were anesthetized with either 3-aminobenzoic acid
ethyl ester methane sulphonate salt (0.2% wt/vol; Sigma Chemical Co.) or
by surrounding with ice, and sections of their ovaries were removed surgi-
cally into Modified Barth's Saline (MBS: 88 mM NaCl, 1 mM KCl, 2.4
mM NaHCO;, 0.33 mM Ca[NOs},, 0.41 mM CaCly, 10 mM Na-Hepes;
Sigma Chemical Co., pH 7.4). Individual oocytes at stage VI (15) were
manually dissected from their outer follicles using watchmakers’ forceps
and stored in a 19°C incubator. Qocyte maturation was induced by the addi-
tion of 2 uM progesterone in MBS at room temperature.

Microinjection Procedures

Microinjection was performed using a Xenopus oocyte microinjector
(Drummond Scientific, Broomall, PA). The micropipets for injection were
pulled on a vertical puller from 1.6 mm OD X 1.0 mm ID pyrex tubing
(Drummond Scientific, Broomall, PA). The tip of the injection pipet was
bevelled at a 45° angle (24) to minimize cell damage during impalement.
The injection volume was precalibrated by expelling the aqueous solution
into oil and measuring the radius of this drop, although the Drummond
microinjector has settings for volume to be injected. For each injection, er-
rors were not >0.5% of the total volume of injection. For dibromo-BAPTA
injection (usually <5 nl), we used Hiramoto’s microinjection technique (28)
which allows us to inject small volumes of solution with a great accuracy.
Before and after each injection series, the injection volume was calibrated
as described above. The final concentration of the injection solution in the
embryo was calculated based upon the assumption that the actual accessible
cytoplasmic volume of the 1.2 mm egg is 450 nl since half of the egg volume
is estimated to be occupied by membrane-bound yolk platelets. All injec-
tions were made in 5% Ficoll/MBS for oocytes and 5% Ficoll/20% MR
for embryos. Injected cells were then transferred to Ficoll-free solutions for
culture. Poor impalements caused leakage of the cytoplasm and these em-
bryos were discarded.

Solution Preparation

Oocytes and two-cell stage embryos were microinjected in their vegetal
hemispheres with 30 nl of either PIP, antibody (0.25-0.7 mg/ml), or vari-
ous control agents: PBS (2.5X), mouse IgG (0.6 mg/ml; Sigma Chemical
Co.), PIP; antibody-PIP; mixture (0.6 mg/ml of PIP; antibody; PIP; from
Sigma Chemical Co.). The antibody was developed by immunizing mice
with PIP, prepared from bovine spinal cords, and a clone of hybridoma
cells producing an antibody of immunoglobulin Gy}, class was purified (see
reference 42 for detail). For PIP; antibody-PIP, mixture injection, kt3g
was preincubated with liposomes containing PIP;:dimyristoylphosphati-
dylcholine:cholesterol (1:40:60, mole ratio) at room temperature for 2 h be-
fore microinjection. Approximately 80% of the kt3g was absorbed with
PIP; in the condition where 100 times excess PIP, was used in molar ratio
(19, 42, 61). The stoichiometry of the antibody concentration to PIP, con-
centration in the Xenopus embryo has not been determined. However, the
amount of antibody we injected (20-58 pmoles) is estimated to be in excess
of PIP,. Although no values are available for direct comparison in the
Xenopus embryo, this was determined based upon the following assump-
tions. The PIP; content in mammalian tissues ranges from 941-3190 pmol/
mg of protein (8, 20, 46). If we assume that a similar leve! exists in the Xeno-
pus embryo and there is ~v5 ug of protein in the egg membrane (38), the
concentration of PIP; would be in the range of 4.7-16 pmoles. Since the
amount of the antibody we injected is 33-93 ug (20-58 pmoles since IgG2b
= 160 kD), we believe that most of the PIP; is bound to the antibodies.

Heparin (3 kD; Sigma Chemical Co.) injections and embryo handling
followed the same procedure as above. Heparin was prepared at four differ-
ent concentrations; 3, 1.5, 0.75, and 0.37 mg/ml. The concentration of the
De-N-sulfated heparin (15 kD; Sigma Chemical Co.) was 6 mg/ml. Dibromo-
BAPTA (1,2-bis[2-bis] {[carboxymethyl]lamino-5-bromophenoxy)ethane
(Molecular Probes, Eugene Oregon) solutions were prepared according to
the equation (Ca?*) = Kd(Ca?*-dibromo-BAPTA)/(dibromo-BAPTA) where
kD = 1.6 uM. A mixture of dibromo-BAPTA:Ca’*-dibromo-BAPTA in a
3:1 ratio gives final Ca?* concentration of 0.4 uM (59). The final concen-
tration of the Ca?*-free form of dibromo-BAPTA in the embryo ranged
from 0.5 to 2.0 mM. 5-nl volumes were injected into a blastomere at two
different sites that were far apart to speed equilibration in this large cell.
Oocytes microinjected with '4C-glycerol were treated in the same manner.
Radio-labeled oocytes were stored in an incubator at 19°C. All embryos
were cultured at room temperature.

Histology
Embryos were fixed in 4 % paraformaldehyde, 20% MR for 6 h at room tem-
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Figure 1. Cleavage inhibition induced by the microinjection of 30 ni of 0.5 mg/ml of anti-PIP; antibody (kt10) into the blastomere of a
two-cell stage embryo. Microinjections were made when the first cleavage furrow was completed. Large cells are descendents of the
antibody-injected blastomere. The sister blastomere which was not injected with PIP, antibody developed normally. A control embryo
at the same age is shown at right. All embryos were cultured for 6 h before photographing them. Embryos are viewed looking down on

the animal pole. Bar, 0.5 mm.

perature, washed with 20% MR three times, embedded in paraffin, sec-
tioned at a thickness of 10 um, and stained with bisbenzimide (Sigma
Chemical Co.). Pictures were taken using a Nikon epifiuorescence micro-
scope (Nikon Inc., Garden City, NY).

Diacylglycerol Measurements

Manually defolliculated stage VI oocytes were microinjected with 50 nl of
[*Clglycerol containing 0.1 uCi (NEN, NEC-046H Glycerol, {1,3-4C],
46.9 mCi/mmol). Radiolabeled oocytes were cultured in a 19°C incubator
in an MBS containing 2.5 mM pyruvate, 400 pg/ml BSA, 10 pg/ml
penicillin-G, 10 pg/ml streptomycin, 10 ug/ml gentamycin sulphate for

18-24 h. Once the oocytes exhibited steady-state labeling of the lipid frac- -

tion (18-24 h; see Fig. 4), either 30 nl of the PIP; antibody or a control
solution was microinjected into the cells. 10 min after microinjection,
groups of six to nine oocytes were exposed to either 1 uM acetylcholine
or 2 uM progesterone for 30 s followed by freezing in liquid N,. Control
oocytes were neither injected nor exposed to any of these agents.

The lipid fraction was isolated as follows. Qocytes (six to nine) were

homogenized by brief sonication in 1.5 ml polypropylene microcentrifuge .

tubes using 0.16 ml of deionized water followed by the addition of 0.6 ml
of chloroform/methanol (1:2, vol/vol). Phases were separated after the addi-
tion of 0.2 ml of chloroform and 0.2 ml of deionized water. Organic phases
were collected and aqueous phases were reextracted with 0.6 ml of chloro-
form. Both organic phases were collected and dried under N; gas at room
temperature. Samples were suspended in 0.1 ml of chloroform/methanol
(2:1, vol/vol) and spotted onto the Silica Gel G thin layer chromatography
plates (E. Merck, Darmstadt, Germany). Neutral lipids were dissolved in
hexane/diethy! ether/acetic acid (70:30:3.5, vol/vol/vol) along with corre-
sponding standards. Lipids were visualized with iodine vapor and DG bands
were scraped to count radioactivity in a scintillation counter.
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Results

Injection of the Anti-PIP; Antibody into Xenopus
Embryos at the Two-cell Stage

Microinjection of 30 nl of anti-PIP, antibodies (kt3g, kt10)
into one blastomere of two-cell stage embryos yielding a
final concentration of 33-93 ug/ml noticeably retards cell di-
vision. Microinjection of larger dosages of antibodies (final
concentration >130 pg/ml) completely stops division im-
mediately and has a detrimental effect on later development.
The cell cycle arrest and subsequent death of the embryo is
not because of the direct effect of the high concentration of
protein on the injected blastomere since microinjection of
comparable amounts of nonspecific mouse IgG usually does
not affect development. It seems more likely that cleavage ar-
rest for a long period of time causes self destructive cyto-
toxic effects which ultimately result in the death of the em-
bryos. Therefore we used a lower concentration which does
not affect the viability of the embryos for most of this work.
The concentration of antibodies in the micropipette was
0.35-0.7 mg/ml for kt3g and 0.25-0.5 mg/ml for ktl0, yield-
ing a final cytoplasmic concentration range of ~33-93 pg/
ml. We estimate that these concentrations are greater than
that of PIP, (see Materials and Methods). At these concen-
trations, the antibody-injected blastomere cleaved normally
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for the next one or two cell cycles, but the subsequent cell
cycles were greatly lengthened in duration as indicated by the
large cell size (Fig. 1) and the less-densely populated, en-
larged nuclei in comparison to the uninjected half of the em-
bryo (Fig. 2). When embryos reached the late blastula stage,
the descendant cells from the antibody-injected blastomere
were comparable in size to those of embryos in the late mor-
ula or early blastula stage, and were much larger than cells
descending from the noninjected sister blastomere (Fig. 1).
Cytological examination indicated that the nuclei of the
descendants of the antibody-injected blastomeres were prom-
inently enlarged and nuclear plasms were loosely packed
(Fig. 2 B), indicating chromosome condensation was in-
hibited. Antibody-injected embryos gastrulated abnormally,
presumably because of the failure of invagination of large
cells. The longer cell cycle duration was observed in almost
all of the blastomeres descending from the injected blasto-
meres, although we often observed that the largest blasto-
meres were closest to the injection site, supporting the no-
tion that those cells exhibited the longest cell cycles. The
descendants from the uninjected blastomeres developed ab-
solutely normally. The amount of cell cycle retardation ob-
served in blastomeres injected with PIP, antibodies is dose
dependent within the range we have studied. At higher con-
centrations of antibodies, the size of daughter cells from
antibody-injected blastomeres was larger than those injected
with lower concentrations (data not presented).

Injection of Control Agents (PBS,
Mouse IgG, and kt3g-PIP;) into Xenopus Embryos
at the Two-Cell Stage

Microinjection of 30 nl of three control agents into one
blastomere of a two cell stage embryo had no significant
effect on the cell cycle (Fig. 3). PBS was tested since PIP,
antibodies were prepared in it. Microinjection of PBS had
the least effect on cleavage of the three control agents tested.
The second control agent injected was nonspecific mouse
IgG. The final concentration of mouse IgG for the data
presented was 80 ug/ml. Concentrations as large as 133
pg/ml of mouse IgG had no significant effect on cell division,
although at such high concentrations, we often observed
small clusters of slightly larger, bulbous cells in the vicinity
of the injection site. This swelling response was inconsistent,
highly localized, and much smaller than the cell enlargement
generated by the injection of PIP; antibodies. While the in-
jection of PIP; antibodies caused the retardation of cell di-
vision resulting in the normal morphology of larger, younger
blastomeres in all of the descendants of the injected blasto-
mere, the injection of high concentrations of control IgG
affected only a few of the descendants closest to the injection
point and resulted in only a slight enlargement and rather ab-
normal morphology (bulbous shape) there alone. Lastly,
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Figure 3. Effect of kt3g and control agents on cell division. One
blastomere of a two-cell stage embryo was injected with either 30
nl of the PIP;-antibody, kt3g (0.6 mg/ml), or with various control
agents, PBS (2.5%), mouse IgG (0.6 mg/ml), and ki3g-PIP; (0.6
mg/ml) when the first cleavage furrow was ~50% completed. Five
hours after injection, undamaged embryos were scored. Results
represent the mean + SD of six separate microinjection experi-
ments for the kt3g and of four separate injection experiments for
the controls. Numbers on or over bars represent the total number
of embryos injected with the indicated substance.

microinjection of 30 n! of 0.6 mg/ml of kt3g which had been
preincubated with PIP, greatly decreased the effect of kt3g
action as shown in Fig. 3. Like mouse IgG-injected blasto-
meres, injection of kt3g-PIP, sometimes resulted in a clus-
ter of slightly larger cells near the injection site. There is,
however, a clear distinction between these cells and the
descendants of PIP, antibody-injected blastomeres. Some
of the daughter cells from blastomeres injected with control
agents were slightly larger than normal (usually bulging in
shape and not at all like PIP, antibody-injected cells which
were severalfold larger) and were only found clustered near
the injection site (whereas cell division retardation occurred
over the entire half of the PIP, antibody-injected embryos).
Thus, these differences are probably a result of an artifact
caused by the damage of microinjection or by a nonspecific
effect of control agents.

Measurements of Diacylglycerol Changes in Oocytes

To determine that the injected antibody to PIP, was indeed
suppressing the rate of PIP, hydrolysis, we directly mea-

Figure 2. Fluorescence micrograph of a kt3g-injected Xenopus embryo. 30 nl of 0.6 mg/ml of kt3g were injected into one blastomere of
a two-cell stage embryo and incubated for 6 h at 23°C. The embryo was then fixed in 4% paraformaldehyde in 20% MR, embedded in
paraffin, sectioned to 10-um-thick slices and stained with the DNA-specific dye, bisbenzimide. (4) Low magnification view showing the
blastocoel cavity with a thin layer of ectodermal cells at the animal pole. The distribution of nuclei of the descendants from the antibody-
injected blastomere (left of the line) was less dense than those of the uninjected half which developed normally. Antibody-exposed cells
(left on the line) are much larger in size compared to unexposed cells and have greatly enlarged nuclei. (B) Higher magnification view
of animal pole cells from A. Arrows indicate enlarged nuclei. Bars (horizontal): (4) 160 um; (B) 40 pm.
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Incorporation of the [“C]glycerol
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Figure 4. Time course of the [“C]glycerol labeling of the total
lipids in Xenopus oocytes. Stage VI oocytes were manually defollic-
ulated and microinjected with 50 nl (0.5 uCi) of [“Clglycerol.
After incubating at 19°C for the indicated time, groups of five
oocytes were pooled and homogenized in 1 ml of Folch solution
(CHCl5:CH;0H/2:1). Organic phases were collected and radio-

activity was determined by scintillation counting. Results represent
the mean values + SD of three independent experiments.

sured the DG levels in the Xenopus oocyte following the
stimulation of PIP, hydrolysis. We used the Xenopus oocyte
instead of the Xenopus embryo because it is impossible to la-
bel the embryo to a steady-state level within the short period
of 80-85 min between fertilization and first cleavage. The
novel egg-labeling method originally described by Holwill et
al. (30) was not successful for this experiment in several at-
tempts mainly because of the death of the donor oocytes
which had previously been labeled by microinjection with
[*H]myo-inositol, matured in vitro, and transferred into a
host female frog for jelly coat formation. Moreover, even if
eggs were obtained it was very hard to get enough syn-
chronously dividing cells so that at least five embryos could
be pooled for each time point.

Two treatments that are known to stimulate PIP, hydroly-
sis in Xenopus oocytes are the addition of the maturation-
promoting hormone, progesterone (40, 62), and the neu-
rotransmitter, acetylcholine (ACh) (29, 47). To determine
the specific action of PIP, antibody microinjection on PIP,
hydrolysis, changes of DG level were measured and com-
pared in both ACh- and progesterone-stimulated stage VI oo-
cytes, with and without injected PIP, antibody. Stage VI
oocytes labeled to steady state with [“Clglycerol (Fig. 4)
were injected with 30 nl of water and treated 30 s with 1 uM
ACh or 2 uM progesterone and exhibited an increase in DG
production of 18.1 + 9.7% and 470 + 22.4%, respectively
(Fig. 5). However, microinjection of 30 nl of 0.5 mg/ml of
kt10 into oocytes blocked this increase in DG production fol-
lowing the addition of progesterone and actually reversed the
ACh response slightly. This is good evidence that the anti-
body is indeed reducing the amount of PIP, hydrolysis in
response to these two treatments. The strong effects of the
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Figure 5. Effects of PIP; antibody on DG levels in Xenopus oo-
cytes exposed to acetylcholine (1 uM) and progesterone (2 uM).
Stage VI oocytes labeled to steady state with [“C]glycerol were
microinjected with 30 nl of 0.5 mg/mi kt10 or 30 nl of water. 10
min after injection they were transferred to medium containing ei-
ther 1 uM ACh or 2 uM progesterone for 30 s. DGs were extracted
and measured as described in Materials and Methods. The counts
of “C-labeled DG were compared with those of control oocytes
not exposed to either progesterone or ACh and the percent change
was plotted. Error bars represent the mean + SD of triplicate (ACh
+ H,O-injected, ACh + ktl0-injected) or duplicate (Prog. +
H,0-injected, Prog. + ktlO-injected) experiments.

PIP; antibodies on PIP, hydrolysis are further supported by
the reduction in Ca?* release at activation in eggs that had
been preinjected with PIP, antibodies (Larabell and Nuc-
citelli, submitted for publication). Microinjection of PIP,
antibodies into the animal hemisphere of Xenopus eggs re-
duced the peak Ca?* level achieved in the egg cortex during
activation by ~50% compared to the same region of un-
treated eggs or eggs injected with an equal amount of
nonspecific mouse IgG as a control. This result suggests that
less Ins(1,4,5)P; is being produced during activation in
these PIP, antibody-injected eggs.

Microinjection of Heparin into Two-cell Stage
Xenopus Embryos

We have shown that Ins(1,4,5)P; releases Ca?* from the ER
in Xenopus eggs (24) so we tested the hypothesis that the
cell cycle requires changes in intraceliular Ca?* that would
result from mobilization of Ins(1,4,5)P;. We injected hepa-
rin which is known to be a potent inhibitor of Ins(1,4,5)-
P;-induced intracellular Ca?* release by competing with
Ins(1,4,5)P; for binding to its receptor (17, 21, 64). It has
been demonstrated that heparin inhibits Ins(1,4,5)Ps-induced
Ca?*-release from rat liver cells (27) and sea urchin egg
homogenates (13), as well as intact sea urchin eggs (51)
and we have observed the same inhibition in Xenopus eggs
(Larabell and Nuccitelli, unpublished results). Microinjec-
tion of heparin into one blastomere of the two-cell stage
Xenopus embryo inhibited cell division in a dose-dependent
manner (Fig. 6). We have tested four different final concen-
trations of heparin, 200, 100, 50, and 25 ug/ml. The cell cy-
cle was not affected by the injection of 25 ug/ml of heparin,
but with a final concentration of 50 ug/ml of heparin, 14 out
of 37 injected embryos exhibited a complete, immediate
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block of cell division in injected blastomeres and remained
undivided through the next three to four rounds of cell divi-
sion of their sister blastomeres. Subsequently, these injected
blastomeres began dividing again but at a much slower rate
than the uninjected blastomeres. The remaining 23 embryos
injected with 50 pg/ml of heparin showed lengthened cell cy-
cles without complete cleavage arrest. Uninjected control
blastomeres underwent normal cell division. Blastomeres
injected with a final concentration of 100 ug/ml of heparin
stopped cell division for the next three or four cell cycles fol-
lowed by slowed cell division in all of 33 injections. In 35
of 35 cases, 200 ug/ml of heparin completely blocked the
cell cycle and the injected blastomere remained undivided
throughout the blastula stage. As a control, we microinjected
de-N-sulfated heparin which is not specific to Ins(1,4,5)P;
binding sites. This did not inhibit cell division even at final
concentrations as high as 400 ug/ml (Fig. 6 B).

Han et al. Frog Cell Cycle Duration Depends on Inositol Lipid Hydrolysis

Figure 6. Effect of heparin and
control de-N-sulfated heparin
on cell division. (4) Microin-
jection of heparin (50 pg/ml)
into one blastomere of two-
cell stage embryos suppressed
cell division in that blasto-
mere as indicated by the large
cell size of the descendants of
the injected blastomere. (B)
Control embryos injected at
the same time with 400 pg/ml
of de-N-sulfated heparin de-
veloped normally. Photos were
taken when embryos were
4.5-h old. Embryos are viewed
from the animal pole. Bar,
0.5 mm.

Microinjection of Dibromo-BAPTA into Two Cell
Stage Xenopus Embryos

This strong effect on the cell cycle by heparin suggests that
Ins(1,4,5)Ps-induced Ca?* release may be important for nor-
mal cell division. We further examined this possibility by
suppressing intracellular [Ca?*]; gradients. It has been shown
that intracellular [Ca?*]; gradients are greatly reduced by
microinjecting into the cell the Ca**-chelator, dibromo-
BAPTA (1,2-bis[2-bis(carboxymethyl)amino-5-bromophen-
oxy]ethane)(57). Dibromo-BAPTA was used because it is
among the most potent of the BAPTA buffers in suppressing
[Ca**]; gradients required for fucus egg germination. We in-
jected a mixture of dibromo-BAPTA:Ca?*-dibromo-BAPTA
in a 3:1 ratio (free Ca?* concentration of 0.4 uM) into one
blastomere of two-cell stage Xenopus embryos. This mixture
completely blocked cell divisica if a final cytoplasmic con-
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Table 1. Dibromo-BAPTA Microinjection Slows Xenopus Blastomere Cleavage Rate

Final conc. Blastomeres exhibiting Blastomeres exhibiting Blastomeres exhibiting no
dibromo-BAPTA blocked cleavage slowed cleavage rates change in cleavage rates

mM % ()] % () % (0]
2.0 100 @ 0 @ 0 @
1.5 100 (5) 0 (5) 0 )
1.0 20 (&) 80 5) 0 5)
0.75 0 o) 60 (5) 40 o)
0.5 0 “) 25 4) 75 4)

Inhibition of cell division by various concentrations of the Ca** chelator, dibromo-BAPTA. A mixture of dibromo-BAPTA: Ca?*-dibromo-BAPTA, in a 3:1 ratio
(intracellular Ca?* concentration = 0.4 uM, final concentration of dibromo-BAPTA = 0.5 to 2.0 mM, Kd of dibromo-BAPTA = 1.6 uM) was injected into one
blastomere of two-cell stage embryos. Consecutive microinjections were performed at two different places in a blastomere to speed the equilibration of the antibody
distribution. Injected embryos were checked for their division status every 10 min and were scored when control embryos reached the large cell size blastula stage.

centration of 21.5 mM was used. These injected blastomeres
failed to cleave for up to at least three hours (approximately
six cell cycles) while the sister uninjected blastomeres cleaved
normally (Table I). The injection of dibromo-BAPTA result-
ing in a final cytoplasmic concentration below 0.5 mM had
no effect on cell division (Table I). Concentrations between
0.5 and 1.5 mM lengthened the cell cycle time in a dosage-
dependent manner as shown in Table I. At a concentration
of 0.75 mM, none of five injected cells completely stopped
cleaving but three out of five exhibited a longer cell cycle
time and the remaining two divided normally.

Discussion

In this report, we have demonstrated that the injection of
mAbs to PIP; into two-cell stage Xenopus embryos length-
ens the auration of the cell cycle. The PIP, antibodies have
been shown to be highly specific to PIP, and exhibit virtu-
ally no affinity for other phospholipids (PC, PE, PI) or Ins-
(1,4,5)P;, but have weak affinity toward PIP (19, 31, 42,
61). The concentration range of 33-93 ug/ml did not affect
the viability of the embryos, while inhibiting cleavage in a
dose-dependent manner. We have not yet determined if the
antibody lengthens a specific stage of mitosis. One likely tar-
get is nuclear envelope breakdown (NEB) since it has been
shown that Ca?* mobilization is required for NEB in the sea
urchin egg (49, 58, 60) and swiss 3T3 fibroblasts (34). There
is, however, no clear evidence for a close temporal correla-
tion between Ca?* transients and mitotic events. Time-lapse
video analysis in conjunction with rigorous histological ex-
amination of the antibody-injected embryos would elucidate
this issue.

To confirm that the injected antibody to PIP, was indeed
suppressing the rate of PIP, hydrolysis, we measured DG
levels and found that the normal increase in DG that follows
progesterone or acetylcholine addition to immature oocytes
is inhibited or even slightly reversed in PIP, antibody-in-
jected oocytes. These results suggest that the antibody sup-
presses PIP; hydrolysis. This notion was further supported
by the reduction in Ca** release at egg activation by PIP,
antibodies. Although one likely source of DG is from hydrol-
ysis of PC, there are no reports to date that either progester-
one or acetylcholine stimulate PC hydrolysis in Xenopus oo-
cytes. In addition, the PIP, antibodies have been shown to
have no affinity toward other phospholipids including PC.

One interesting question that remains to be answered is
what is the spatial distribu. »n of the PIP, which is impor-
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tant for cell cycle timing. One naturally thinks of a plasma
membrane location for PIP,, but it has also been found in
the nuclear envelope (5, 10, 11, 12). It is possible that the
injected mAbs are interfering with PIP, hydrolysis in the
nuclear envelope and lengthening the cell cycle.

The hydrolysis of PIP, will generate increases in both
Ins(1,4,5)P; and DG. We have been unable to detect Ins-
(1,4,5)P; in the frog egg using [H]myo-inositol labeling
or a radioimmunoassay kit (Amersham Corp., Arlington
Heights, IL), but we present indirect evidence in support of
its involvement in determining cell cycle duration. Microin-
jection of the inhibitor of Ins(1,4,5)P;-induced Ca?* release,
heparin, into one blastomere of two cell stage embryos either
slowed or halted the cell cycle in a dose-dependent manner.
Although heparin may have other cellular targets, it is the
most widely used inhibitor of Ins(1,4,5)P; binding to its
receptor. The effective concentration range of 50-200 ug/ml
is comparable to that used in previous studies (13, 27, 51).
Our laboratory has confirmed that these levels of heparin
greatly reduce Ins(1,4,5)P;-induced Ca?* release in Xenopus
eggs by using fura-2 fluorescence ratio imaging. These
results demonstrate that heparin-sensitive Ins(1,4,5)P; may
play an important role during cell division by modulating in-
tracellular Ca** levels. This agrees well with the previous
finding that Ins(1,4,5)P; functions as a second messenger
during the cell cycle in sea urchins (9).

To confirm that intracellular (Ca?*) modulation is impor-
tant for cell cycle control, we have artificially suppressed in-
tracellular Ca?* gradients by injecting the Ca** chelator,
dibromo-BAPTA to shuttle Ca?* from regions of high con-
centration to those of low concentration (57). Microinjection
of a final concentration range between 0.5-1.5 mM dibromo-
BAPTA either completely arrested or reduced the rate of cell
division, depending upon the buffer concentration. Although
we have not yet attempted to measure Ca?* transients dur-
ing cell division, these dibromo-BAPTA results imply that
intracellular Ca®* changes are required for mitotic cycling.
In fact most recently, periodic oscillations of the intracellular
(Ca*) during cell division of Xenopus have been detected
using Ca**-selective microelectrodes (23). These findings
agree well with numerous previous studies indicating a re-
quirement for Ca?* during mitotic processes in both plant
and animal cells (1, 25, 26, 33, 34, 36, 37, 49, 50, 52, 56,
58, 60, 66) and support the involvement of Ins(1,4,5)Ps-
mediated Ca** release during the cell cycle. Although our
data support a requirement for Ca?* gradients during the
cell cycle, this is still a controversial area because the detec-
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tion of free Ca?* changes during cleavage has proven to be
quite difficult. In some cases even reductions of intracellular
free Ca?* during mitosis have been reported (35, 65). How-
ever, the most recent attempts using the aequorin technique
for imaging intracellular Ca** have yielded positive results.
In both fish and frog embryos a wave of free Ca?* has been
detected in the cleavage furrow region during cleavage. Per-
haps it is this Ca?* increase that our injections perturbed to
lengthen the duration of the cell cycle.

While our data demonstrate an involvement of the PIP,
signal transduction cascade in the Xenopus embryonic cell
cycle, it is not clear what might trigger this pathway. Unlike
most receptor-mediated signal transducing mechanisms, the
embryonic cell cycle requires neither ligand binding nor
receptors. However, there are other studies which also impli-
cate the inositol cascade in the cell cycle. The most relevant
such study reported that microinjection of an antibody
against a p*' H-ras onco-protein inhibited cell division in
axolotl embryos (2) as well as in Xenopus embryos (43). This
ras gene protein is found predominantly on the cytoplasmic
side of the plasma membrane and is a GTP-binding protein
that activates various target enzymes, including PLC which
hydrolyzes PIP, (22, 39, 45, 55). Transformed ras greatly
affected the levels of second messengers generated by PIP,
hydrolysis in many systems including Xenopus oocytes (29).
Furthermore, it has also been demonstrated that the microin-
jection of p* ras into Xenopus oocytes induces meiotic cell
division, and that maturation can be blocked by the injection
of anti-ras antibody (14). However, it is not understood how
ras itself is controlled. Recent studies on fission and budding
yeasts have demonstrated that some gene products such as
ste6 and cdc25, activate ras protein by promoting GDP-GTP
exchange (4, 32, 54). This could imply the existence of a link
between signal transduction pathways and cell cycle control
mechanisms.

Maturation-promoting factor (MPF) is of fundamental
importance in cell division and its concentration oscillates
during the cell cycle. MPF is a protein kinase composed of
a cyclin and p* protein kinases, a homolog of a yeast cdc2
gene product (see reference 44 for review). In sea urchin em-
bryos, inhibition of the synthesis of cyclin prevented the rise
in intracellular [Ca?*] indicating that MPF may be coupled
to the Ca** transient during the sea urchin cell cycle (60).
Furthermore, it has recently been shown that microinjection
of a highly conserved sequence of p*2, called PSTAIR,
triggers an increase in intracellular Ca?* in both starfish
and Xenopus oocytes. This further supports the notion that
a component of MPF, p*2, interacts with an unknown cel-
lular component of the Ca?* regulatory system (48).

The control of cell cycle timing involves complex bio-
chemical events whose complexity has begun to be uncov-
ered by the recent progress on MPF studies. To understand
more about cell cycle control mechanisms, it would be of
great interest to elucidate the link between MPF activation
and the cell signaling pathway such as oscillation of second
messenger activities and that of MPF. This study indicates
that PIP, hydrolysis is necessary for the normal mitotic cell
cycle in Xenopus embryos and that one of its products may
function as a regulator of intracellular Ca** levels during
cell division. Perhaps there is a causal link between this in-
ositolpolyphosphate cycle regulation of Ca?* and the oscil-
lation of MPF activity.

Han et al. Frog Cell Cycle Duration Depends on Inositol Lipid Hydrolysis

We are grateful to Dr. Vincent Ziboh and Dr. Wilson Tang for their advice
and the use of the TLC and to Sonya Wong for help with the histology.
We also thank James Ferguson for his critical discussion. This work was
supported by National Institutes of Health grant HD 19966 to R. Nuccitelli.

Received for publication 24 May 1991 and in revised form 25 September
1991.

Note Added in Proof: Evidence that a wave of increased free Ca’* spreads
along the cleavage furrow in fish and frog eggs has recently appeared in
two abstracts and one full paper: McLaughlin et al. 1991, Biol. Bull.
(Woods Hole) 181:345; Miller et al. 1991. J. Cell Biol. 115:280a; Fluck
et al. 1991. J. Cell Biol. 1259-1265.
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