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Cell adhesion complexes facilitate attachment between cells or the binding of cells to the extracellular matrix. The regulation
of cell adhesion is an important step in embryonic development and contributes to tissue homeostasis allowing processes such
as differentiation and cell migration. Many mechanisms of cancer progression are reminiscent of embryonic development, for
example, epithelial-mesenchymal transition, and involve the disruption of cell adhesion and expression changes in components
of cell adhesion structures. Tight junctions, adherens junctions, desmosomes, and focal adhesion besides their roles in cell-cell or
cell-matrix interaction also possess cell signaling function. Perturbations of such signaling pathways can lead to cancer. This article
gives an overview of the common structures of cell adhesion and summarizes the impact of their loss on cancer development and
progression with articles highlighted from the present issue.

1. Tight Junctions

Tight junctions are regulators of the epithelial microenviron-
ment as they are responsible for the formation of paracellular
barriers (see Figure 1), [1, 2]. Claudin-based tight junc-
tions and their functions have been analyzed in numerous
knockout mouse studies. The loss of claudin-1 or -5
is embryonically lethal due to loss of the barrier function of
the skin and loss of the blood-brain barrier [3, 4]. In cancer,
claudins can be found to be up- or downregulated depending
on the cancer type. Claudin-1 and -7 are downregulated in
esophageal cancer [5], but upregulated in others [6, 7]. While
the mislocalization of claudin-7 in esophageal squamous cell
carcinoma leads to the loss of E-cadherin expression, N-
glycosylation of E-cadherin has been shown to stabilize tight
junctions [8]. An in-depth review of claudins and cancer can
be found in this special issue of the Journal of Oncology
(Singh et al., [9]).

2. Desmosomes

Desmosomes are adhesion complexes tethered to the inter-
mediate filament, (see Figure 1), [10]. Desmosomal cad-
herins, the desmogleins,establish the contact to the neigh-

boring cells [11]. Plakoglobin is homologous to β-catenin
and binds to the same region of the cadherin tail [12, 13].
While Plakoglobin is highly enriched in desmosomes, it
can also be localized to adherens junctions in cells that do
not have desmosomes, such as endothelial cells [14, 15].
There is evidence that plakoglobin can participate in Wnt
signaling as the transcription factor T-cell factor/lymphoid-
enhancer factor, TCF-4, contains binding sites for β-catenin
and plakoglobin [16], and that binding of plakoglobin could
hinder transcriptional activity. However, Plakoglobin has
been shown to have TCF/LEF-dependent transcriptional
activity in β-catenin-deficient cell lines [17].

Desmoplakin connects desmosomes through binding of
plakoglobin to the intermediate filament. It is downregulated
in oropharyngeal cancer [18] and a target of EGF and
progesterone in breast cancer [19]. Interestingly, aside from
its obvious function in cell adhesion, desmoplakin has
been described to regulate microvascular tube formation
[20]. Therefore, desmoplakin may be a novel target for the
inhibition of tumor angiogenesis.

The desmosomal cadherins, desmoglein 1, and 3, are
targets in two autoimmune diseases, Pemphigus foliaceus
and Pemphigus vulgaris, respectively [21]. Binding of
autoantibodies to desmoglein induces cell dissociation and
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Figure 1: Schematic diagram of tight junctions (a), adherens junctions (b), desmosomes (c) and focal adhesions (d). This is an overview of
the interactions of the major components of cell adhesion complexes.

inhibition of RhoA in a p38 MAPK-dependent pathway
causing the hallmark blistering [22]. The implications of
desmosomal component loss have been shown in mouse
models targeting desmoglein 2 [23] and desmoglein 3 [24,
25], plakoglobin [26] and desmoplakin [27]. Desmoglein 2
knockout mice proved to be embryonically lethal, despite
unaffected E-cadherin and β-catenin expression [23]. Mice
with loss of desmoglein 3 presented the same blistering
phenotype as Pemphigus patients [24]. Interestingly, targeted
loss of desmoplakin in the epidermis allowed the formation
of desmosome-like structures, but epithelial sheet formation
was impaired in the face of mechanical stress [27].

Effects of desmosomal perturbations on tumorigenesis
rarely share the lime light with the well-known consequences
of adherens junction loss. However, loss of desmoglein 1
has been associated with poor prognosis in head-and-neck
cancer patients [28]. Contrary, Desmoglein 2 upregulation
is associated with malignant skin carcinoma including basal
cell carcinoma and SCCs in a tissue-microarray-based study
[29].

Plakophilins, which are armadillo family members like
plakoglobin and β-catenin, are structural components of
the desmosomal plaque and regulate the strength and
integrity of cell contacts by facilitating the interaction with
the intermediate filament [30]. Decreased expression of
plakophilin 1 promotes cell invasion due to desmosome
instability [31]. Furthermore, the inverse correlation of
plakophilin expression with tumor grade in head-and-neck
SCCs has been documented [32]. Similarly, RNAi (small

interference RNA) suppression of plakophilin 3 results in
transformation of epithelial cells and accelerated tumor for-
mation as well as lung metastasis in mouse tumor xenografts
[33].

In addition, other junction types have been identified
that use desmosomal components without being desmo-
somes. A recent review by Pieperhoff et al. [34, 35]
highlights composite junctions that connect cardiomyocytes,
plakophilin-2-positive junctions in sarcomas as well as
the expression of Desmoglein 2 in melanoma. These data
together with molecules discussed in the last paragraph of
this paper demonstrate that we may not have discovered all
types of cell adhesion yet.

3. Adherens Junctions

Early on, experiments targeting E-cadherin and β-catenin
have shown that adherens junction components are essential
for normal development. E-cadherin- and β-catenin-null
embryos display lethality due to primary defects in mor-
phogenetic events such as trophectoderm development and
ectoderm formation [36, 37]. Deletion of N-cadherin, VE-
cadherin or plakoglobin also leads to embryonic lethality,
however at later stages of development [26, 38, 39]. As for α-
catenin, loss of this gene results in death shortly after birth
[40]. Interestingly, lack of E-cadherin in thyroid develop-
ment or adult tissues can be overcome by upregulation of
other cadherins as a mechanism of compensation [41, 42].
In cancer, however, loss of E-cadherin is associated with
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tumor progression, even if other cell adhesion complexes
remain intact. This has been attributed not only to the
detrimental effects E-cadherin loss has on the tissue integrity
and dissemination of cells “on the loose”, but also to the
signaling pathways activated in the absence of E-cadherin
[43–45]. Alterations of the cadherin-catenin cell adhesion
system and how they relate to cancer have been focus
of multiple symposia and meetings resulting in numer-
ous review articles [46] to this date, and where already
discussed at the Princess Takamatsu Symposium in 1994
[47–49].

Cadherins interact through their intracellular domain
with cytoplasmic proteins, the catenins (see Figure 1), [50,
51]. β-catenin mediates the anchoring of adherens junctions
to α-catenin and other actin-binding proteins, and thereby
to the cytoskeleton [52]. The relative amount of cadherin-
bound β-catenin and free β-catenin can tip the balance to
induce Wnt signaling [44, 53]. This occurs if free β-catenin
is not degraded by the ubiquitin-proteasome pathway,
but translocated to the nucleus instead to regulate target
gene expression in conjunction with members of the T-
cell factor/lymphoid-enhancer factor (TCF/LEF) family of
transcription factors [54]. Activation of cells with Wnt-
molecules can inhibit β-catenin degradation and allows its
accumulation in the cytosol and translocation to the nucleus
leading to the activation of genes such as cyclin D1, c-
myc, CD44, and others [55, 56]. Constitutive active Wnt
signaling either through mutations of β-catenin or loss of
adenomatous polyposis coli (APC) function frequently leads
to cancer [57], as particularly well understood for colon
cancer [58].

p120ctn binds cadherins at the juxtamembrane domain
of the cytoplasmic tail and prevents their internalization
and degradation [51, 58]. Similarly to β-catenin, unbound
p120ctn can translocate to the nucleus where it binds Kaiso,
a zinc finger transcription factor that acts as a transcriptional
repressor and tumor suppressor. Once bound to Kaiso,
p120ctn relieves the repressor activity of Kaiso by dissoci-
ating it from its sequence-specific binding sites [59]. Wnt
signaling stabilizes p120ctn and results in Kaiso withdrawal
from the nucleus [60–62]. p120ctn also functions as a regula-
tor of cell motility by modulating the activity of Rho GTPases
[63] and has been shown to coordinate Rho inhibition
through Rac [64]. In this context, a p120ctn isoform has
been shown to fail to inhibit RhoA and to promote invasion
[65]. In another model, overexpression of P-cadherin has
been linked to the activation of the RhoGTPases, Rac1, and
Cdc42, through accumulation of p120ctn in the cytoplasm
during cell invasion [66]. Furthermore, overexpression of the
p120ctn isoform 3A demonstrated cytoplasmic accumula-
tion. This isoform is also associated with cyclin E- and cyclin-
dependent kinase 2-colocalization at the site of centrosomes
during mitosis [67]. Ablation of p120ctn in the skin also
results in mitotic defects and, additionally, a chronic inflam-
matory response [68]. Conditional knockout in the small
intestine and colon disrupts normal barrier function and
epithelial homeostasis resulting in phenotypic and morpho-
logical changes associated with inflammatory bowel disease
[69].

4. Cadherins and Cancer Cell Signaling

Cadherins can signal in different ways: they can bind to
growth factor receptors and modulate their internalization
and downstream pathways. They also activate signaling
mediators, such as phosphatidylinositol 3-kinase (PI3K) or
small GTPases. Alternatively, they can recruit transcriptional
cofactors, such as β-catenin or p120ctn, at the cell membrane
and thereby negatively control their nuclear translocation.

A number of cadherins has been implicated in cell
signaling via interaction with receptor tyrosine kinases:
both E-cadherin and N-cadherin interact with FGFR-1. To
prevent constitutive or prolonged signaling by FGFR-1, it is
sequestered by E-cadherin and internalized [70]. Contrary,
complex formation of N-cadherin with FGFR-1 prevents
internalization and circumvents degradation. This is known
to be one of the mechanisms by which N-cadherin con-
tributes to tumor cell invasion. The switch from E-cadherin
to N-cadherin expression occurs during normal develop-
mental processes and is recapitulated in cancer [71, 72].

E-cadherin can also interact with epidermal growth
factor receptor (EGFR) [73]. EGFR overexpression is a
frequent event in epithelial cancers. EGFR promotes cell
motility by phosphorylation of β-catenin and plakoglobin
leading to the disruption of cell adhesion [74]. At the same
time, E-cadherin-mediated inhibition of EGFR activity is
an important aspect in tumorigenesis. Somatic mutations
of E-cadherin have been linked to increased EGFR activa-
tion resulting in activation of Ras [75, 76]. Other studies
have found that E-cadherin can cluster EGFR at the cell
membrane thereby inhibiting EGFR-mediated signaling [77,
78]. Similarly, desmoglein 1 can suppress EGFR signaling
resulting in epidermal differentiation [79].

VE-cadherin is an endothelial specific transmembrane
protein concentrated at adherens junctions. Similar to E-
cadherin it engages in homophilic cell-cell adhesion. A
link to the cytoskeleton is established through the same
intercellular partners, β-catenin, p120 and plakoglobin [80].
Upon VEGF stimulation, VE-cadherin binds to VEGFR-2
preventing vascular endothelial growth factor 2, VEGFR-
2, phosphorylation. This clustering of VE-cadherin with
VEGFR-2 blocks cell proliferation by inhibition of MAPK
activation [81]. Furthermore, VE-cadherin is required for
TGFβ receptor-mediated TGFβ signaling. This has been
demonstrated through knockdown of VE-cadherin [82], but
also as β-catenin null-endothelial cells are unable to respond
to TGFβ stimulation [83].

Another interesting aspect is that tumor-inducing
viruses alter cell adhesion. In the case of Kaposi-sarcoma-
associated herpesvirus, VE-cadherin is targeted inducing
endothelial permeability and contributing to the progression
and malignancy of this disease [84]. While Kaposi sarcoma-
associated herpesvirus induces VE-cadherin degradation,
hepatitis B virus HBx-protein disrupts adhesion junctions
in asrc-dependent manner [85]. Epstein Barr Virus “attacks”
cell adhesion complexes through another mechanism:
virus-induced gene silencing [86]. E7 protein of Human
Papillomavirus 16 (HPV), for example, augments DNA
methyltransferase I activity associated with the silencing of
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E-cadherin gene expression [87]. Simultaneously, N-
cadherin expression is increased [88]. Augmented cell
invasion in HPV-infected cells can be suppressed through
restoration of E-cadherin and subsequent downregulation of
EGFR [89] or ErbB2 [90]. The mechanism on how Src/ABL
regulates cell differentiation and invasion in E6/E7-positive
cervical cancer is described in this issue by Yasmeen et al.,
[91]. Another virus-associated protein, Epstein Barr Virus-
latent membrane protein 1, also affects the cadherin switch
[92].

5. Epithelial Mesenchymal Transition (EMT)

Similar to the cadherin switch, epithelial-mesenchymal
transition is an important process of development, but is
“hijacked” as a mechanism of malignant transformation
resulting in mesenchymal-like high motility cells. The spot-
light on EMT is warranted by the many signaling pathways
(peptide growth factors, Src, Ras, Ets, integrins, Wnt/β-
catenin, and Notch) involved in the regulation of this process.
However, a central node is the downregulation of E-cadherin
[93, 94]. Activation of PI3K/Akt is another feature of EMT
[95]. Despite its role as a tumor suppressor, TGFβ1 signaling
is often increased in tumor cells and induces EMT, thereby
leading to tumor cell invasion [96]. This morphological
transition is characterized by extensive changes in the
expression of cell adhesion molecules and by a switch
from a cytokeratin-rich cytoskeleton to one comprising a
mesenchymal cell phenotype, for example, the expression
of vimentin and S-100 [97]. The ability of epithelial or
carcinoma cells to undergo EMT in culture correlates with
cell changes that facilitate invasion and metastasis in vivo
[98–100]. Increased cell motility and scattering are caused by
a downregulation of E-cadherin, mainly through the TGFβ-
induced upregulation of transcriptional repressors such as
ZEB1, ZEB2, and Snail. This is accompanied by the decreased
expression of ZO-1 and keratins [97, 101, 102].

Focal adhesion kinase (FAK) can also mediate TGFβ-
induced EMT [103]. The induction of mesenchymal migra-
tion through FAK signaling and its importance in glioblas-
toma is discussed by Zhong et al. [104] in this issue
of the Journal of Oncology. As EMT results in increased
cell invasion, it is accompanied by the digestion of the
extracellular matrix and changes in matrix metalloproteinase
(MMP) expression. Overall, E-cadherin has been shown to
induce the suppression of MMP expression. When restored
in motile prostate cancer cells, E-cadherin not only reverted
EMT and induced an epithelial phenotype, but also reduced
MMP-2 expression levels resulting in decreased cell invasion
[96, 105]. Lynch et al. [106] describe in this issue how
cleavage of E-cadherin by MMP-7 promotes cell proliferation
through activation of RhoA.

The microenvironment is a prominent modulator of
tumorigenesis and some of these aspects are covered in this
special issue: the modeling of microenvironments in vitro
(by Ngalim et al. [107]), the tumor-stromal interactions in
prostate cancer (by Josson et al. [108]) and the upregulation
of laminin-322 by lysophosphatic acid and its effects on
colony dispersal (by Yamashita et al. [109]).

More recently, with the advent of microRNAs, small non-
coding RNAs (miRNAs) regulating gene expression, an addi-
tional level ofprotein translation regulation has been added.
A number of miRNAs that inhibit tumor suppressor genes
have been identified as well as miRNAs, which negatively
affect the translation of oncogenes. Cadherin scan be targets
of miRNAs directly or indirectly through the modulation of
transcriptional repressors that target cadherins. Ma et al.,
identified E-cadherin as a direct target of miR-9 [110] leading
to activation of β-catenin and increased invasion as well as
increased tumor angiogenesis via VEGF upregulation. miR-
145 is an example of a tumor suppressor miRNA, which
silences MUC-1, thereby reducing β-catenin and oncogenic
cadherin-11 [111]. The miR-200 family gained a lot of
attention as it participates in a signaling network with the
E-cadherin repressors, ZEB1 and 2 and TGFβ1, therefore
placing it at the center for the regulation of the epithelial
phenotype. Another central regulator of cell invasion and
metastasis that is upregulated in the absence of E-cadherinis
Twist [43]. Twist, as well as ZEB1 and other transcription
factors, is thought to induce EMT by suppression of E-
cadherin. The data by Onder et al. [43], however, suggest
Twist to be downstream of E-cadherin and sufficient to
mediate cell invasion and metastasis as well as to prevent
anoikis. The authors demonstrated that, while the loss of cell-
cell contacts can induce changes in gene expression leading
to increased cell invasion, the induction of EMT and its
associated gene expression changes only occurs if β-catenin
is released from the E-cadherin cytoplasmic tail.

6. Focal Adhesions

FAK, focal adhesion kinase, is a crucial mediator of integrin
and growth factor signaling. FAK resides within focal adhe-
sion complexes, large integrin clusters that mediate crosstalk
between the extracellular matrix and the cytoskeleton,
where it regulates outside-in signaling (see Figure 1). High
levels of FAK in a variety of human cancers have been
reported [112, 113], including a study in head and neck
squamous cell carcinoma (HNSCC) that shows enhanced
FAK signaling at the onset and progression of HNSCC
[114]. The increased expression of FAK has been linked to
cancer cell migration, proliferation, and survival [115, 116].
Motility defects in FAK-null ES cells [117] can be restored
with wild-type FAK, but not with a mutant of FAK lacking
the Tyr397-phosphorylation site, which is responsible for
Src recruitment [118]. Actin rearrangements are responsible
for the formation of adhesion complexes that stabilize the
leading edge. Leading edge formation and membrane ruffles
are regulated by Rho GTPases such as Rac 1 and RhoA
[119]. This issue of Journal of Oncology also features paper
focusing on the effects of hyperphosphorylated FAK on its
localization to focal adhesions (see Hamadi et al. [120]). Two
FAK-binding scaffold proteins that mediate Rac1 activity are
CAS (p130cas) and paxillin. Paxillin regulates the localiza-
tion of FAK [121] and possibly regulates Rac1. Interestingly,
in the study by Yano et al. [121] the suppression of FAK and
paxillin resulted in increased cell migration, presenting FAK
as a negative regulator of cell motility in contrast to other
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reports. Furthermore, the impaired FAK/paxillin signaling
cascade prevented N-cadherin-based cell-cell contacts. While
E-cadherin has been described to stimulate Rac1 activity
[122], N-cadherin is thought to suppress Rac1 activation
[123]. The important role of FAK in cancer is supported
by the intersection of the FAK and p53 signaling pathways.
Not only has the FAK-promoter p53 binding sites, there is
also a high correlation between FAK upregulation and p53
mutations [124]. These data demonstrate the regulation of
FAK by p53.

7. Summary

While the main components of cell adhesion structures are
well defined, recently new players such as the nectins have
been identified [125]. Similar to cadherins, nectins bind
the cytoplasmic protein afadin and are linked to the actin
cytoskeleton [126]. However, nectins can participate in cell
adhesion through interaction with cadherins in adherens
junctions, ZO-1 or claudins in tight junctions as well as
independently [127–129]. Additionally, nectins have been
shown to regulate E-cadherin endocytosis [130–132] and
to function in migration and polarization [133]. Others
include abLIM3, a novel component of adherens junctions
[134], and protocadherins, which have multiple functions
including neuronal specificity [135, 136] and are therefore
not discussed in this issue. Differences in the function and
tissue-specific expression patterns of all the cell adhesion
molecule family members involved in the pathogenesis of
cell transformation make therapeutics challenging. However,
knowledge of the crosstalk between signaling pathways and
common themes such as the interaction of cell adhesion
molecules with growth factor receptors allow new scientific
advances. Taken together, new mechanisms of the regulation
of cell adhesion structures and their signaling function
demonstrate the importance of understanding cell adhesion
and its impact on disease (see Cell Junctions, edited by
LaFlamme [137]) and tumorigenesis [138].
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