
Beavogui et al. Malar J          (2020) 19:223  
https://doi.org/10.1186/s12936-020-03290-w

RESEARCH

Efficacy and safety of artesunate–
amodiaquine and artemether–lumefantrine 
and prevalence of molecular markers associated 
with resistance, Guinea: an open‑label two‑arm 
randomised controlled trial
Abdoul Habib Beavogui1,2,3*  , Alioune Camara3,4,5, Alexandre Delamou1,3,4, Mamadou Saliou Diallo1, 
Abdoulaye Doumbouya1, Karifa Kourouma1, Patrice Bouedouno1, Timothée Guilavogui6, 
Samaly dos Santos Souza7, Julia Kelley8, Eldin Talundzic7, Aissata Fofana9 and Mateusz M. Plucinski10

Abstract 

Background:  Anti-malarial resistance is a threat to recent gains in malaria control. This study aimed to assess the 
efficacy and safety of artesunate–amodiaquine (ASAQ) and artemether–lumefantrine (AL) in the management of 
uncomplicated malaria and to measure the prevalence of molecular markers of resistance of Plasmodium falciparum 
in sentinel sites in Maferinyah and Labé Health Districts in Guinea in 2016.

Methods:  This was a two-arm randomised controlled trial of the efficacy of AL and ASAQ among children aged 
6–59 months with uncomplicated Plasmodium falciparum malaria in two sites. Children were followed for 28 days to 
assess clinical and parasitological response. The primary outcome was the Kaplan–Meier estimate of Day 28 (D28) 
efficacy after correction by microsatellite-genotyping. Pre-treatment (D0) and day of failure samples were assayed for 
molecular markers of resistance in the pfk13 and pfmdr1 genes.

Results:  A total of 421 participants were included with 211 participants in the Maferinyah site and 210 in Labé. No 
early treatment failure was observed in any study arms. However, 22 (5.3%) participants developed a late treatment 
failure (8 in the ASAQ arm and 14 in the AL arm), which were further classified as 2 recrudescences and 20 reinfec-
tions. The Kaplan–Meier estimate of the corrected efficacy at D28 was 100% for both AL and ASAQ in Maferinyah 
site and 99% (95% Confidence Interval: 97.2–100%) for ASAQ and 99% (97.1–100%) for AL in Labé. The majority of 
successfully analysed D0 (98%, 380/389) and all day of failure (100%, 22/22) samples were wild type for pfk13. All 9 
observed pfk13 mutations were polymorphisms not associated with artemisinin resistance. The NFD haplotype was 
the predominant haplotype in both D0 (197/362, 54%) and day of failure samples (11/18, 61%) successfully analysed 
for pfmdr1.

Conclusion:  This study observed high efficacy and safety of both ASAQ and AL in Guinea, providing evidence for 
their continued use to treat uncomplicated malaria. Continued monitoring of ACT efficacy and safety and molecular 
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Background
Worldwide, malaria represents a constant and persistent 
public health threat due to its morbidity and mortality 
especially among children [1], with sub-Saharan Africa 
bearing the largest proportion of the burden [2]. Signif-
icant progress had been made in the control of malaria 
over the past years through interventions such as early 
case identification and diagnosis and prompt treatment 
with artemisinin-based combination therapy (ACT) [3]. 
Major artemisinin-based combinations used globally 
include artesunate–amodiaquine (ASAQ), artemether–
lumefantrine (AL), and dihydroartemisinin–piperaquine 
(DP) [4].

However, progress in providing effective treatment of 
malaria is facing challenges including parasite resistance 
to anti-malarial drugs, particularly in South East Asia 
[5]. In response to these major threats, the World Health 
Organization (WHO) recommends periodic surveillance 
of anti-malarial first- and second-line treatment efficacy 
to provide data to national programmes for evidence-
based malarial treatment policies [6]. This strategy is 
based on assessing both clinical and biological parame-
ters along with analysis of molecular makers of resistance 
[4].

In line with these recommendations, sub-Saharan 
African countries have initiated the surveillance of the 
efficacy and safety of anti-malarial drug treatments to 
prevent parasite resistance [7–10]. In Tanzania, a study 
assessing the efficacy and safety of AL for the treatment 
of uncomplicated Plasmodium falciparum malaria and 
prevalence of artemisinin resistance molecular markers 
found high efficacy and safety of AL and no known arte-
misinin resistance pfk13 mutations [11]. Several rounds 
of therapeutic efficacy monitoring in Angola have high-
lighted absence of molecular markers for artemisinin 
resistance along with generally high observed effica-
cies of ACT, albeit with some evidence of decreased 
AL efficacies [9, 12, 13]. In Gabon, a recent open-label 
clinical trial reported lack of molecular markers of 
artemisinin resistance and high efficacy of artemether–
lumefantrine and artesunate–amodiaquine [14]. A 
review and network meta-analysis monitoring the effi-
cacy and safety of ACT in Cameroon, reported that 
ACT is still effective and safe in Cameroon, but there 
are insufficient data on efficacy, safety and tolerability 

[15]. In Guinea, initial studies prior to ACT introduc-
tion showed high baseline efficacy [16, 17]. More recent 
data from a large multi-site randomised control trial 
have showed continued efficacy of a range of arte-
misinin-based combinations in Guinea and the larger 
West Africa region [2].

In Guinea, ACT has been recommended as a first-line 
anti-malarial treatment for uncomplicated Plasmodium 
falciparum infection since 2005, with both ASAQ and 
AL included in the national treatment guidelines. Prior 
to 2016, ASAQ was the primary artemisinin-based com-
bination used in Guinea, but since then AL has largely 
replaced ASAQ. The change in ACT medicine procure-
ment strategy was motivated by patient and provider 
preference [18] as well as the expansion of seasonal 
chemoprevention using sulfadoxine–pyrimethamine and 
amodiaquine [19].

Guinea has observed a significant decrease of malaria 
burden over the past years, with malaria prevalence in 
children < 5  years measured in the last national house-
hold surveys declining from 44% in 2012 to 30% in 2017 
[20]. However, in light of limited data on resistance 
molecular makers in the region, in 2015 the National 
Malaria Control Programme (NMCP) began implement-
ing periodic therapeutic efficacy studies rotating between 
four sentinel sites in the country for early detection of 
emergence and prevention of spread of drug resistance.

The present study aimed to assess the efficacy and 
safety of ASAQ and AL in the management of uncompli-
cated malaria in children aged 6–59 months and to meas-
ure the prevalence of molecular markers of resistance of 
Plasmodium falciparum in two sentinel sites in Guinea in 
2016.

Methods
Study sites
This study was conducted in two of the four senti-
nel sites across the four natural regions of the coun-
try: Maferinyah health centre in Forécariah District 
in Lower-Guinea and Ley-Sare health centre in Labé 
District in Middle-Guinea. Anti-malarial resistance 
surveillance in Guinea rotates between four sentinel 
sites and the 2016 round occurred in Maferinyah and 
Labé. Maferinyah is a hyperendemic area with high 

makers of resistance in Guinea is important to detect emergence of parasite resistance and to inform evidence-based 
malaria treatment policies.

Keywords:  Efficacy, Plasmodium falciparum, Artesunate–amodiaquine, Artemether–lumefantrine, Molecular makers, 
Guinea



Page 3 of 9Beavogui et al. Malar J          (2020) 19:223 	

rainfall (6 to 10  months), and the principal vector of 
malaria is Anopheles gambiae sensu stricto (s.s.). Labé 
is a mesoendemic area with low rainfall, with Anopheles 
funestus and Anopheles melas as primary vectors [21].

Study design, period and population
This was an open-label two-arm randomised con-
trolled trial assessing the therapeutic efficacy of two 
anti-malarial treatments: ASAQ and AL among chil-
dren aged 6 to 59 months with uncomplicated Plasmo-
dium falciparum malaria. Participants meeting study 
inclusion criteria were allocated to either group in 
a 1:1 ratio, stratified by study site. The allocation was 
restricted with randomly varying block sizes of 4–6 and 
was concealed through sealed opaque white envelopes.

Sample size
A non-probability sampling methodology was used to 
select patients presenting at the two study sites. A min-
imum of 100 patients per treatment arm were required 
giving a total of 200 children per site. The sample size 
was determined based on a precision of ± 5% for the 
proportion of clinical and parasitological cure at Day 28 
(D28) after correction by PCR assuming a cure rate of 
95% and a loss to follow-up of 25%.

Inclusion criteria
Patients were screened and included according to the 
WHO standard protocol related to the treatment of 
uncomplicated Plasmodium falciparum malaria (2009) 
[22]. Briefly, children aged 6–59 months, inclusive, with 
axillary temperature ≥ 37.5 °C or history of fever in last 
24  h and microscopy-confirmed Plasmodium falcipa-
rum monoinfection with parasitaemia between 2000 
and 200,000  p/μl without signs of severe malaria and 
available for the full period of follow up were invited to 
participate.

Treatment
Patients meeting the inclusion criteria were treated 
with either ASAQ or AL based on randomisation on 
site by an authorised member of the research team 
and they were given the drug according to their weight 
and age. The treatment duration was 3 consecutive 
days (D0, D1 and D2) with oral intake under medical 
observation once daily for ASAQ and twice daily for 
AL. The entire dose was repeated if vomiting occurred 
within 30 min after intake of the anti-malarial and half 
the dose if vomiting occurred between the first 30 min 
and 1 h after intake. Drugs such as vitamin C [23], vita-
min B12 [24], retinol supplementation [25, 26], that 
may influence anti-malarial drug activity were avoided 
during prescription of concomitant drugs. Similarly, 

antibiotics such as cotrimoxazole, macrolides, tetracy-
cline and doxycycline were avoided during the period 
of follow up.

Clinical follow‑up
Patients were actively followed for 28  days for both 
arms from the 1st  day of treatment D0 till D28 with 
scheduled visits on D1, D2, D3, D7, D14, D21 and 
other days of unscheduled visits. Patients were sys-
tematically assessed on D0 for splenomegaly accord-
ing to the Hackett classification that has been used in 
previous studies [27, 28]. Clinical and parasitological 
assessments were performed and dried blood spots 
were collected on all days of follow-up with the follow-
ing exceptions: microscopy was only performed on D1 
in the presence of signs of severe malaria and no dried 
blood spots were collected on D1–D2. Recurrent infec-
tions were assessed by the field medical doctor of the 
site and treated with quinine (injection/intravenous) or 
artesunate injection based on clinical presentation as 
per the Guinean National Malaria Control Programme 
protocol.

The on-site research team was available to ensure 24-h 
passive monitoring for patients. During enrollment and 
scheduled visits, parents/guardians were informed and 
encouraged to bring back their children to the health 
centres or call the field medical doctor whenever their 
children felt unwell without waiting for scheduled visits. 
Patients who did not show up for their scheduled visits 
by mid-day were first called and asked to come to the 
health centre and then actively searched for by a com-
munity health worker. If a patient had travelled and could 
not be traced for scheduled follow-up, he or she was clas-
sified as lost to follow-up.

Data collection
Data were collected using a standardised case report 
form. Data variables included sociodemographic char-
acteristics (age, gender), clinical characteristics (weight, 
body temperature, splenomegaly) and laboratory results 
(malaria microscopy and haemoglobin).

Laboratory monitoring
Parasitaemia and haemoglobin
Malaria microscopy was carried out using 10% Giemsa 
staining of thick and thin smears according to a stand-
ard operating procedure on D0 and every day of follow-
up except D1. The parasite density from the thick smear 
was determined according to the following formula: 
Parasitaemia per microlitre = (number of asexual para-
sites divided by 200 or 500 counted leukocytes) multi-
plied by 8000. A slide was classified negative when the 
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entire examination of the thick smear revealed no asexual 
form of Plasmodium. The presence of gametocytes of 
Plasmodium falciparum (sexual forms) was determined 
over 1000 leucocytes instead of 200 or 500 for the asex-
ual forms. For quality control, each slide was read by 
two microscopists and, if results differed by more than 
30%, were re-examined by a third microscopist, with the 
final parasite density calculated based on the two clos-
est results. Haemoglobin was measured using HemoCue 
machines (AB Leo Diagnostics, Helsinborg, Sweden).

Biomolecular markers
Dried blood spots were collected on Whatman 903 filter 
paper on D0, D3, D7, D14, D21, D28 and at any unsched-
uled visits. Fragment lengths of seven neutral microsat-
ellite markers (Additional file  1: Table  S1) were used to 
compare genotypes on D0 and day of failure for patients 
with recurrent parasitaemia using a Bayesian classifier 
for molecular correction [29]. In brief, the Bayesian algo-
rithm uses allele frequencies to calculate the posterior 
probability of recrudescence for each recurrent parasi-
taemia. Patients with a posterior probability of recrudes-
cence greater than 0.5 were considered as recrudescences 
in the analysis.

Additionally, all D0 samples and Day of Failure sam-
ples from late treatment failures were systematically 
amplified and sequenced for pfk13 and pfmdr1 resist-
ance genes following previously described methodologies 
[30]. Molecular analyses were performed in collaboration 
with the U.S. Centers for Disease Control and Prevention 
(CDC) laboratories in Atlanta, USA as part of the PMI-
supported Anti-malarial Resistance Monitoring in Africa 
(PARMA) Network [31].

Study outcomes
The primary endpoints were adequate clinical and parasi-
tological response (ACPR), early treatment failure (ETF), 
and late treatment failure (LTF) in accordance with 
the WHO in  vivo guidelines. Secondary endpoints of 

therapeutic efficacy included the proportion of patients 
with negative slides at D3. Adverse events that occurred 
were reported on specific forms and classified accord-
ing to their severity and their assessed relationship to the 
study. Serious or unexpected side effects were reported 
to the principal investigator, the sponsor, the study coor-
dinator and the Guinean Ethics Committee on Health 
Research.

Data analysis
Data from the standardised forms were double-entered 
into Microsoft Access version 2010 (Microsoft Corpora-
tion, Redmond, WA) and then exported into STATA 14 
software (Stata Corporation, College Station, TX, USA) 
for analysis. Primary endpoints findings were tabulated, 
and the primary outcome was reported as the Kaplan–
Meier estimate of the corrected efficacy at D28 by study 
site and drug.

Results
Baseline characteristics of participants enrolled 
and completing follow‑up
A total of 966 participants were screened from July to 
October 2016 at the two study sites. A total of 211 and 
210 participants were included in the Maferinyah and 
Labé sites, respectively, for a total of 421 participants. 
Baseline characteristics of the included participants who 
completed their follow-up are shown in Table 1. At both 
study sites, nearly all included participants completed 
their follow-up, with combined exclusion and loss to fol-
low-up rates of less than 3% across all arms. The median 
age of the study participants was 36 months [interquar-
tile range (IQR): 24–48] for both study arms in Maferin-
yah. In Labé, median patient age was higher in the ASAQ 
arm [45  months, (IQR): 24–59] than in the AL arm 
[36  months, (IQR): 24–48]. The median weight of the 
participants at both sites was similar across all arms, at 
approximately 13 kg.

Table 1  Baseline characteristics of participants enrolled and completing follow-up (n = 421)

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine

Variables Maferinyah (n = 211) Labé (n = 210)

ASAQ AL ASAQ AL

Participant characteristics at baseline

 Median age, in month (interquartile range) 36 (24–48) 36 (24–59) 45 (24–59) 36 (24–48)

 Median weight, kg (interquartile range) 14 (10–16) 13 (11–16) 13 (10–16) 13 (10–15)

 Percent female, n (%) 55 (51.4) 39 (37.5) 40 (38.1) 43 (41.0)

 Median day 0 parasitemia, parasites/µl * 103 (interquartile range) 19.4 (101–519) 27.4 (10.2–55.0) 30.2 (13.0–63.9) 30,450 (13.1–49.6)

 Median day 0 haemoglobin, g/dl (interquartile range) 9.7 (8–10) 9.8 (8–10) 10.7 (9–11) 10.6 (8.5–11)
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Overall, there were fewer girls than boys among the 
included participants at both sites (39.5% vs 60.5% in 
Labé and 44.5% vs 55.5% in Maferinyah). At inclusion 
(D0), the median baseline parasite density for partici-
pants in AL arm was higher at 19,400 parasites/μl [(IQR): 
10,100–51,900] than for those in ASAQ arm 27,430 para-
sites/μl [(IQR): 10,215–55,045] in Maferinyah. In Labé, 
median baseline parasite density was almost the same in 
both arms at 30,200 and 30,480 parasites/μl respectively. 
The median haemoglobin level of participants, was 9 g/
dl for both arms in Maferinyah 10 g/dl for both arms in 
Labé.

Rates of follow up and treatment outcomes of participants 
who completed their follow‑up
Of the 421 included participants, 8 (1.9%) were lost to 
follow-up, including two deaths. This left 413 partici-
pants completing their follow-up. Treatment outcomes 
of participants who completed their follow-up are shown 
in Table 2. No ETF was observed in any study arms. In 
contrast, 22/413 (5.3%) participants developed a late 

treatment failure: 5/105 (4.8%) in the Maferinyah ASAQ 
arm, 8/101 (7.9%) in the Maferinyah AL arm, 3/104 
(2.8%) in the Labé ASAQ arm and 6/103 (5.8%) in Labé 
AL arm.

Of the 22 late treatment failures, 2 were classified 
as recrudescences and 20 were classified as reinfec-
tions (Additional file  1: Table  S1). Both recrudescences 
occurred at D28 of follow-up, one in the Labé AL arm 
and one in the Labé ASAQ arm. The Kaplan–Meier esti-
mate of the D28 corrected efficacy rate was 100% (CI 
100–100%) for the Maferinyah AL arm, 100% (CI 100–
100%) for Maferinyah ASAQ arm, 99% (CI 97.1–100%) 
for the Labé AL arm, and 99% (CI 97.2–100%) for Labé 
ASAQ arm.

Safety of the anti‑malarial drugs and deaths observed
Vomiting at any time during treatment was observed in 
59/421 (14.0%) participants with 26 (44.1%) in the AL 
arm and 33 (53.9%) in the ASAQ arm. Two participants 
(one in the Maferinyah ASAQ arm and one in the Mafer-
inyah AL arm) developed signs of severe malaria less than 

Table 2  Treatment outcomes for  participants finishing follow-up as  part of  therapeutic efficacy monitoring in  Guinea, 
2016 (N = 413)

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine, 28-day follow-up
a  confidence intervals: undefined

Maferinyah Labé

ASAQ AL ASAQ AL

Enrolled 107 104 105 105

Reached study outcome 105 101 104 103

Treatment failure 5 (5) 8 (8) 3 (3) 6 (6)

 Early treatment failure 0 0 0 0

 Late treatment failure 5 (5) 8 (8) 3 (3) 6 (6)

Recrudescence 0 0 1 (1) 1 (1)

Day 28 0 0 1 (1) 1 (1)

Reinfection 5 (5) 8 (8) 2 (2) 5 (5)

 Day 21 1 (1) 3 (3) 1 (1) 1 (1)

 Day 28 4 (4) 5 (5) 1 (1) 4 (4)

Adequate clinical and parasitological 
response

100 (95) 93 (92) 101 (97) 97 (94)

Kaplan–Meier Day 28 efficacy

 Uncorrected 95.2% (91.3–99.4) 92.1% (87.1–97.5) 97.1% (94–100) 94.2% (89.9–98.8)

 Microsatellite-corrected 100%a 100%a 99% (97.2–100) 99% (97.1–100)

Table 3  Proportion of slides negative for asexual malaria parasites on days 2 and 3 following treatment (n = 413)

Variables Maferinyah (n = 206) Labé (n = 207)

ASAQ % AL % ASAQ % AL %

Day 2 94 89.5 89 88.1 99 95.2 94 91.3

Day 3 103 99.0 102 100 103 100 100 100



Page 6 of 9Beavogui et al. Malar J          (2020) 19:223 

24 h after inclusion in the study; one (in the Maferinyah 
AL arm) ultimately died. Both were excluded from analy-
sis due to onset of severe symptoms less than 24 h after 
inclusion following WHO definitions. One additional 
participant in the Maferinyah ASAQ arm died from a car 
accident during follow-up, and was censored at day 14 in 
the analysis.

Results of Day 2 and Day 3 microscopy
The proportion of negative slides at D2 and D3 of fol-
low-up is shown in Table 3. At D2 of follow-up, the vast 
majority of the participants had negative slides at exami-
nation at both sites and arms (> 88% for the two arms 
in Maferinyah and > 90% in Labé). At D3 of follow-up, 
nearly all slides were negative at both sites and in both 
arms (> 99% in Maferinyah and 100% in Labé).

Molecular markers of resistance
DNA was isolated from 443 samples, including 421 pre-
treatment and 22  day-of-late treatment failure samples. 
Of the 443 samples analysed, 411 (93%) were successfully 
amplified and sequenced for pfk13 (Table 4). The major-
ity of D0 (98%, 380/389) and all day-of-late treatment 
failure (100%, 22/22) samples were wild type for pfk13. 
All 9 observed pfk13 mutations were polymorphisms that 
have not been associated with artemisinin resistance.

Amplification and sequencing of the pfmdr1 gene at 
the 86, 184, and 1246 codons was successful in 380/443 
samples (86%). The NFD haplotype was the predomi-
nant pfmdr1 haplotype at D0, present in 54% (197/362) of 
analysable D0 samples, followed by the NYD haplotype, 
present in 44% (158/362) of D0 samples. In late treatment 
failure samples, the NFD haplotype also predominated, at 
61% (11/18).

Discussion
This study marks the first round of anti-malarial resist-
ance monitoring in Guinea, which has to date lacked reg-
ular and systematic surveillance since the introduction of 
ACT. The results showed high efficacy of ASAQ and AL 
(microsatellite-corrected D28 efficacies > 99%) to treat 
uncomplicated malaria, despite their use for more than 
a decade in Guinea. These results are consistent with the 
high ACT efficacies observed prior to introduction of 
ACT in Guinea and with other studies from Africa [8, 11, 
32, 33].

Rates of recurrent parasite density were relatively low 
in the Guinea study sites, below 8% in the 28-day follow 
up period. This low rate of recurrent parasite density may 
be explained by a high proportion of children < 5  years 
sleeping under an insecticide-treated net in Guinea as 
reported by the last demographic and health survey 
(2018) of the country [34]. The results showed a high 
rate of parasite clearance on D3 of follow-up at both sites 
and in both arms, with all patients slide negative by D3. 
This finding is similar to other TES studies conducted 
throughout the continent [35] but contrasts with the 
slow parasite clearance rate of AL in the Greater Mekong 
region [5, 36]. The high rate of parasite clearance with 
AL and ASAQ found in this study indicates high sus-
ceptibility of the parasite to the artemisinin component 
of the combination, which is able to rapidly reduce para-
site biomass [37, 38]. Absence of pfk13 mutations associ-
ated with artemisinin resistance is further evidence that 
parasites remain susceptible to artemisinin derivatives in 
Guinea. This finding is similar to those studies in Africa 
[11, 30, 39–42] reporting a lack of the pfk13 mutations 
associated with artemisinin combination therapeutic 
resistance that have been identified in Southeast Asia [40, 
43–45].

Table 4  Prevalence of  molecular markers of  resistance 
in  Day 0 and  Day of  Failure samples from  therapeutic 
efficacy studies in Guinea, 2016

a  All 9 samples with polymorphisms not associated with artemisinin resistance: 
P419S (1), L429L (1), C469C (3), G496G (1), E509E (1), V510V (1), A621A (1)
b  Haplotypes defined at codons 86, 184, and 1246. Samples with multiple 
haplotypes were included in the numerator for each haplotype

Day 0 Day of Failure
pfk13 n = 389 n = 22

Wild-type 380 (98%) 22 (100%)

Mutant 9 (1%)a 0 (0%)

pfmdr1 86 codon n = 379 n = 18

N 296 (78%) 14 (78%)

Y 59 (16%) 4 (22%)

N/Y 24 (6%) 0 (0%)

pfmdr1 184 codon n = 379 n = 18

Y 117 (31%) 3 (17%)

F 206 (54%) 14 (78%)

Y/F 56 (15%) 1 (6%)

pfmdr1 1246 codon n = 370 n = 18

D 363 (98%) 18 (100%)

Y 6 (2%) 0 (0%)

D/Y 1 (0.3%) 0 (0%)

pfmdr1 haplotypesb n = 362 n = 18

NYD 158 (44%) 4 (22%)

YYD 17 (5%) 0 (0%)

NFD 197 (54%) 11 (61%)

YFD 71 (20%) 4 (22%)

NYY 1 (0.3%) 0 (0%)

YYY​ 6 (2%) 0 (0%)

NFY 1 (0.3%) 0 (0%)

YFY 0 (0%) 0 (0%)
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Sequencing of the pfmdr1 gene revealed that the 
majority of both pre-treatment samples and late treat-
ment samples harbored the NFD haplotype, a molecular 
maker associated with reduced susceptibility of Plas-
modium falciparum to lumefantrine [46, 47]. As AL use 
increases in Guinea following the treatment policy switch 
to AL, continued surveillance of the prevalence of NFD 
pfmdr1 haplotype is important.

The current study only reports efficacy data from two 
sites in the country, and the results may not be repre-
sentative of the whole country. Subsequent therapeutic 
efficacy studies from the remaining two sentinel sites 
in N’Zérékoré and Dabola health districts will further 
inform monitoring of anti-malarial resistance.

Conclusion
This study found high efficacy and safety of ACT in 
Guinea, providing evidence that supports continued use 
of ASAQ and AL to treat uncomplicated malaria. Contin-
ued monitoring of ACT efficacy and safety and molecular 
makers of resistance in Guinea are important to detect 
parasite resistance and to inform evidence-based malaria 
treatment policies.
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