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Abstract: Helicobacter pylori infection induces a number of pro-inflammatory signaling pathways
contributing to gastric inflammation and carcinogenesis and has been identified as a major risk
factor for the development of gastric cancer (GC). Janus kinase-signal transducer and activator of
transcription (JAK-STAT) signaling mediates immune regulatory processes, including tumor-driven
immune escape. Programmed death ligand 1 (PD-L1) expressed on gastric epithelium can suppress
the immune system by shutting down T cell effector function. In a human cohort of subjects with
gastric lesions and GC analyzed by proteomics, STAT1 increased along the cascade of progression of
precancerous gastric lesions to GC and was further associated with a poor prognosis of GC (Hazard
Ratio (95% confidence interval): 2.34 (1.04–5.30)). We observed that STAT1 was activated in human H.
pylori-positive gastritis, while in GC, STAT1, and its target gene, PD-L1, were significantly elevated.
To confirm the dependency of H. pylori, we infected gastric epithelial cells in vitro and observed
strong activation of STAT1 and upregulation of PD-L1, which depended on cytokines produced by
immune cells. To investigate the correlation of immune infiltration with STAT1 activation and PD-L1
expression, we employed a mouse model of H. pylori-induced gastric lesions in an Rnf43-deficient
background. Here, phosphorylated STAT1 and PD-L1 were correlated with immune infiltration
and proliferation. STAT1 and PD-L1 were upregulated in gastric tumor tissues compared with
normal tissues and were associated with immune infiltration and poor prognosis based on the TCGA-
STAD database. H. pylori-induced activation of STAT1 and PD-L1 expression may prevent immune
surveillance in the gastric mucosa, allowing premalignant lesions to progress to gastric cancer.

Keywords: gastric cancer; STAT1; PD-L1

1. Introduction

Gastric cancer (GC), especially the intestinal type, is a highly heterogeneous disease
preceded by a prolonged, multistage precancerous process, including superficial gastritis
(SG), chronic atrophic gastritis (CAG), intestinal metaplasia (IM), and dysplasia [1–3].
Helicobacter pylori infection-induced chronic inflammation is the most recognized risk
factor for the progression of gastric lesions and the development of GC [4]. Although the
correlation between GC and H. pylori infection has been extensively confirmed [5], the
molecular mechanisms underlying the pathogenesis of GC remain to be fully defined.
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Chronic inflammation and persistent bacterial infection lead to the progression of
gastritis to IM and GC. This process is supported by the activation of a number of pro-
inflammatory signaling pathways by H. pylori, which are important for the recruitment of
immune cells to the gastric mucosa. Among those, interferon gamma (IFN-γ)-producing T
cells are considered responsible for much of the pathology inflicted by H. pylori infection [6].
IFN-γ produced by infiltrating lymphocytes activates STAT1 through the Janus kinase
(JAK)-mediated phosphorylation of tyrosine (Y) 701. The IFN-γ receptor employs JAK1 and
JAK2 to phosphorylate exclusively STAT1, causing its homodimerization. Phosphorylated
STAT1 (p-STAT1) homodimers can translocate into the nucleus, where they bind to DNA,
promote transcription of target genes, and induce the expression of proteins that affect
basic cell activities and immune responses [7]. While some studies showed that STAT1 is
induced in epithelial cells upon H. pylori infection [8,9], other studies claimed a reduction
of the activation of STAT1 upon infection with H. pylori strains proficient in a type IV
secretion system and Cytotoxin associated gene A (CagA) [10–12]. Therefore, further
insight into the possible regulation of STAT1 activation by H. pylori is necessary. In addition,
considering the involvement of STAT1 in anti-tumor immune responses, the identification
of the molecular mechanisms underlying the contribution of H. pylori-mediated STAT1
regulation to tumor progression and immune escape is important for designing novel
therapeutic interventions for GC patients. In this context, previous studies have shown
that STAT1 induces programmed death-ligand 1 (PD-L1) on epithelial cells [13,14]. PD-L1
is an important regulator of CD8 T-cell functionality, and its expression in the stomach is
associated with T cell inhibition [15–17]. However, no data on the possible regulation of
PD-L1 expression by STAT1 in the context of H. pylori-driven gastric carcinogenesis has
been reported.

We hypothesize that the STAT1 signaling pathway is an early response to H. pylori
infection and, when accompanied by PD-L1 expression, may protect the gastric epithelium
from cytotoxic CD8+ T-cell responses, and allow premalignant lesions to progress to GC.

2. Results
2.1. H. pylori Infection Induces STAT1 Activation and PD-L1 Expression on Gastric Epithelial
Cells in an Immune-Cell Dependent Manner

We previously established a human gastric tissue proteomic cohort of 169 subjects,
including 33 with SG, 19 with CAG, 56 with IM, 3 with low-grade intraepithelial neoplasia
(LGIN), and 58 with GC, to explore molecular signatures associated with the progression of
gastric lesions and risk of early GC [18]. In this cohort, we observed that STAT1 expression
was significantly upregulated in H. pylori-positive gastritis compared to H. pylori-negative
gastritis (Figure 1a). Interestingly, the expression of STAT1 was found to increase along
the cascade of progression of gastric lesions to GC (Figure 1b). We next analyzed tumor
prognosis and identified STAT1 to be independently associated with poor prognosis of GC
with a hazard ratio (HR) (95% confidence interval [CI]) of 2.34 (1.04–5.30) after adjusting
for age, sex, TNM stage, and Lauren type (Figure 1c). We hypothesized that STAT1 could
represent an early response marker to H. pylori infection and favor the development of
precancerous gastric lesions progressing to GC.

To confirm STAT1 activation in response to H. pylori infection and during the course
of gastric carcinogenesis, we stained p-STAT1 in human stomach biopsies. STAT1 was
found to be activated in epithelial cells especially in H. pylori positive gastritis and was
significantly upregulated in both diffuse type and intestinal type GC (Figure 1d).

We next explored PD-L1 expression in the same tissue samples, as it was previously
shown that STAT1 regulates its expression in other tumor types. PD-L1 was also signifi-
cantly upregulated in GC compared to healthy mucosa (Figure 1e). These observations
indicate that STAT1 activation may be an early response to H. pylori infection, while PD-L1
expression occurs only at later stages of progression to GC.
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Figure 1. STAT1 in the human gastric tissue proteomic cohort and immunohistochemistry and
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Western blot analysis of p-STAT1 and PD-L1 in gastric biopsies and gastric epithelial cells after H.
pylori infection. (a) The expression of STAT1 in H. pylori-positive subjects and negative subjects, strati-
fied by pathology. (b) STAT1 expression in gastritis (SG/CAG), advanced gastric lesions (IM/LGIN)
and GC. (c) Kaplan–Meier curves of STAT1 in prognosis analysis of GC. (d,e) Immunohistochemistry
staining of p-STAT1 and PD-L1 in human gastric biopsies (20× magnification). Healthy (n = 10),
Gastritis H.p− (n = 10), Gastritis EX-H.p+ (n = 10), Gastritis H.p+ (n = 9), IM (n = 8), GCD (n = 10),
GCI (n = 10). Wilcoxon rank-sum test, ns, non-significant, * p < 0.05, ** p < 0.01, **** p < 0.0001.
PD-L1 staining evaluation: <1%, negative; 1–49% low; ≥50% high. (f) Western blot analysis of
p-STAT1 and PD-L1 in NUGC4 and NCI-N87 negative controls and after 24 h H. pylori infection.
IFN-γ (10 ng/mL) cells stimulated for 24 h were used as positive control. (g) Western blot analysis of
p-STAT1 and PD-L1 in NUGC4 and NCI-N87 incubated 24 h with supernatants from non-infected or
H. pylori-infected PBMCs for 24 h. GAPDH was used as loading control. Graphs show the mean ± SD
of three independent experiments. Student’s t test, ns, non-significant, * p < 0.05, ** p < 0.01. CAG,
chronic atrophic gastritis; CI, confidence interval; EX-H.p+, previously H.p positive; GC, gastric
cancer; GCD, diffuse-type gastric cancer; GCI, intestinal-type gastric cancer; H. p, Helicobacter pylori;
HR, hazard ratio; iFOT, intensity-based fraction of total; IM, intestinal metaplasia; LGIN, low-grade
intraepithelial neoplasia; NC, negative control; PBMCs, peripheral blood mononuclear cells; SG,
superficial gastritis; Sup, supernatant.

To explore the role of gastric epithelial cells and immune cells in the activation of
STAT1 and the induction of PD-L1 expression, we first infected gastric cancer cell lines
NUGC4 and NCI-N87 with the H. pylori G27 strain and detected p-STAT1 and PD-L1
expression by western blot. Compared to negative controls, we did not observe either
activation or upregulation of STAT1 or expression of PD-L1 in H. pylori-infected GC cells
(Figure 1f). We then isolated human peripheral blood mononuclear cells (PBMCs) from H.
pylori negative donors and infected them with H. pylori for 24 h. The supernatant obtained
from this mixture of immune cells was collected and used to incubate the GC cell lines. We
found strong activation of STAT1 and upregulation of PD-L1 expression in cells incubated
with supernatants from H. pylori-infected PBMCs (Figure 1g), indicating that activation of
STAT1 and PD-L1 expression in the gastric epithelium depends on cytokines released by
immune cells after encounter with H. pylori.

2.2. H. pylori-Induced Activation of STAT1 and PD-L1 Expression Correlate with Immune
Infiltration and Cell Proliferation in Gastric Lesions

To further investigate the correlation of STAT1 activation and PD-L1 upregulation
with immune cell infiltration, we employed Rnf43H292R/H295R mice, which were previously
described to develop precancerous lesions in the stomach characterized by high levels of
IFN-γ upon H. pylori infection [19].

In H. pylori-induced gastric lesions of Rnf43H292R/H295R mice, we observed increased
activation of STAT1 and upregulation of PD-L1 expression compared to infected wild-type
mice (Figure 2a,b). Rnf43 mutant mice also presented higher lymphocytic infiltration,
as detected by immunohistochemical staining of CD3+ cells (Figure 2c). In addition,
hypertrophic glands of Rnf43H292R/H295R mice were highly proliferative, showing high
numbers of Ki67 positive cells (Figure 2d). Notably, phosphorylation of STAT1 and PD-L1
expression correlated with lymphocytic infiltration and cell proliferation (Figure 2e).

2.3. STAT1 and PD-L1 Expression Correlate with Immune Infiltration in Humans and Can Be
Used as Biomarkers for GC Prognosis

Due to limited GC samples in our proteomic cohort to establish associations (Figure 1a),
we referred to The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database
to analyze the expression of STAT1 and PD-L1 and their correlation with immune infiltration
based on mRNA level [20]. STAT1 and PD-L1 were both significantly upregulated in GC
tissues compared with normal tissues (Figure 3a), and the expression of STAT1 and PD-L1
in tumor tissues were highly correlated (Figure 3b). Using a deconvolution method [21],
we estimated the immune infiltration of tumor tissues based on mRNA data. STAT1 and
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PD-L1 were both highly correlated with CD8+ T-cell immune infiltration (Figure 3c). When
analyzing tumor prognosis, CD8+ T cell immune infiltration and STAT1 were identified to
be independently associated with prognosis (HR [95%CI] = 0.41 [0.18–0.93] for CD8 + T cell
immune infiltration, and HR [95%CI] = 1.96 [1.07–3.57] for STAT1 expression). PD-L1 was
also correlated with poor survival (HR [95%CI] = 1.50 [0.90–2.50]) (Figure 3d).

Figure 2. Immunohistochemistry staining of p-STAT1, PD-L1, immune infiltration, and proliferation
in H. pylori-induced gastric lesions of Rnf43 mutant mice (20× magnification). (a) p-STAT1, (b) PD-L1,
(c) CD3, (d) Ki67 in the stomachs of wild-type (n = 6) and Rnf43 mutant mice (n = 6) after 6-month H.
pylori infection. (e) Correlation of gene expressions with immune infiltration and proliferation. Color
represents spearman’s correlation coefficient. Wilcoxon rank-sum test, * p < 0.05, ** p < 0.01. PD-L1
staining evaluation: <1%, negative; 1–49% low; ≥50% high. Mutant, Rnf43H292R/H295R mutant mice;
WT, wild-type mice.

CD8+ T cell immune infiltration displayed better differentiation for GC prognosis
compared to STAT1 and PD-L1 alone (Figure 4a–c). Patients with high CD8+ T cell immune
infiltration showed better survival, while those with low CD8+ T cell immune infiltration
accompanied with high STAT1 or PD-L1 had worse survival (Figure 4d,e).
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Figure 3. Transcriptome analysis of STAT1 and PD-L1 based on the TCGA-STAD database. (a) Ex-
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pression of STAT1 and PD-L1 in tumor tissues (n = 415) and normal tissues (n = 35). (b) Correlation
of STAT1 and PD-L1 expression in tumor tissues. (c) Correlations of STAT1 and PD-L1 with immune
infiltration levels. (d) Multivariable Cox regression analysis of GC. Wilcoxon rank-sum test, * p < 0.05,
** p < 0.01, *** p < 0.001. CI, confidence interval; GC, gastric cancer; HR, hazard ratio; TCGA-STAD,
The Cancer Genome Atlas-Stomach Adenocarcinoma.

Figure 4. Kaplan-Meier curves of CD8+ T cell immune infiltration, STAT1 and PD-L1 in TCGA-STAD
prognosis analysis. (a) CD8+ T cell immune infiltration; (b) STAT1; (c) PD-L1; (d) CD8+ T cell immune
infiltration combined STAT1; (e) CD8+ T cell immune infiltration combined PD-L1. Log rank test for
p-value.

3. Discussion

Gastric cancer is the fifth most common cancer worldwide and the fourth leading
cause of cancer-related deaths [22]. GC evolves over decades from superficial gastritis
to adenocarcinoma, and the majority of patients are diagnosed at an advanced stage
with a poor prognosis. H. pylori infection induces immune cell infiltration in the human
stomach, and the consecutive dysregulation of cytokine receptor signaling is a key event
not only regulating the immune response to the infection but also orchestrating changes
related to chronic inflammation, development of GC and progression, and immune escape
of gastric tumors. In the current study, we showed that STAT1 is activated as an early
response to H. pylori infection. STAT1 is generally considered to function as a tumor
suppressor, but there is growing evidence showing that STAT1 can also act as a tumor
promotor [23–25]. Several studies suggested this tumor-promoting function to be related to
STAT1-mediated regulation of PD-L1 expression [13,14,26,27]. In agreement, our results
support a tumor-promoting effect of STAT1 expression and activation since it is upregulated
at early stages of H. pylori-induced inflammation and increases along the progression of
gastric lesions to GC. More importantly, STAT1 expression is associated with poor survival,
supporting a detrimental effect of STAT1 signaling during gastric tumorigenesis. One
possible mechanism leading to this effect could be the upregulation of target genes, such
as PD-L1. Indeed, we observed STAT1 activation to be accompanied by the upregulation
of PD-L1 in gastric epithelial cells suggesting that PD-L1 might be a target gene of STAT1
upon H. pylori infection. Importantly, PD-L1 also correlated with poor prognosis, and both
STAT1 and PD-L1 expression were also highly correlated with immune cell infiltration.
H. pylori-induced immune cell infiltration is well recognized as an important driver of
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inflammation-associated gastric tumorigenesis, while tumor-infiltrating lymphocytes have
been studied for their roles as prognostic markers and potential therapeutic targets in
GC. In particular, CD8+ cytotoxic T cells, which are the main effector cells directly killing
transformed cells [28], were demonstrated to be associated with better survival of patients
with GC [29,30]. Our results are in line with these previous studies and further correlate
STAT1 and PD-L1 expression with CD8+ T cell infiltration. In light of our results, we
hypothesize that upregulation of PD-L1 expression via STAT1 activation in gastric epithelial
transformed cells suppresses anti-tumor immune responses of CD8+ cytotoxic T cells. This
facilitates tumor immune escape and consequently enables tumor progression and growth.

Immunotherapy, especially immune checkpoint inhibitors, provides a new oppor-
tunity for GC treatment. Our findings showing that STAT1 is independently associated
with poor prognosis suggest the analysis of JAK-STAT1 signaling in GC patients to better
assess prognosis. Moreover, the use of inhibitors or antagonists of this pathway should be
considered to enhance the success of PD1/PD-L1 blockade therapy.

4. Materials and Methods
4.1. Proteomic Profiling of Precancerous Gastric Lesions and GC

We explored STAT1 expression in a gastric tissue cohort that we previously used for
proteomic analysis [18]. Briefly, liquid chromatography tandem mass spectrometry was
used for tissue proteomic profiling of 169 subjects including 33 SGs, 19 CAGs, 56 IMs,
3 LGINs and 58 GCs. A label-free intensity-based absolute quantification (iBAQ) approach
was used to quantify protein abundance. The iBAQ values were then converted to intensity-
based fraction of total (iFOT), calculated as the iBAQ of each protein divided by the sum of
iBAQs of all proteins in the sample and multiplied by 105 to ease the visualization of low
abundant proteins.

4.2. Cell Culture and H. pylori Infection

Gastric cancer cell lines NUGC4 (JCRB0834) and NCI-N87 (ATCC®CRL-5822) were
cultured in Dulbecco’s modified Eagle medium (Invitrogen, Carlsbad, CA, USA) containing
10% fetal calf serum (FCS) and 1% penicillin/streptomycin, and maintained at 37 ◦C in a
humidified atmosphere (5% CO2). Cells were tested routinely for mycoplasma contami-
nation. H. pylori strain G27 [31] was cultured on Wilkins–Chalgren (WC) Dent agar plates
(OXOID, Hampshire, UK) in a microaerophilic atmosphere at 37 ◦C and 10% CO2. Cells
were infected at a multiplicity of infection (MOI) of 10 (OD600 1 = 2 × 108 bacteria/mL)
for 24 h and lysed in sodium dodecyl sulfate (SDS) buffer for protein expression analysis.
IFN-γ (10 ng/mL) cells stimulated for 24 h were used as positive control.

Human peripheral blood mononuclear cells were isolated from H. pylori-negative
healthy donors, after informed consent, by density gradient centrifugation with Pancoll
(PAN-Biotech, Aidenbach, Germany). Cells were cultured with RPMI-1640 containing
10%FCS at 37 ◦C in a humidified atmosphere (5% CO2) and infected with the H. pylori
G27 strain at MOI 10 for 24 h. The supernatant was collected and co-cultured with gastric
cancer cell lines (NUGC4 and NCI-N87) for 24 h. After co-culturing, gastric cancer cells
were lysed in SDS buffer for protein expression analysis.

4.3. Western Blot

To check for protein expression, equal volumes of protein lysate were loaded on an 8%
sodium dodecyl sulfate–polyacrylamide gel, and electrophoresis was performed. Separated
proteins were transferred onto a nitrocellulose membrane (Amersham Protran 0.45, GE
Healthcare, Chicago, IL, USA). The membrane was blocked with 5% non-fat milk in TBS-T
buffer (Tris-buffered saline supplemented with 0.1% Tween 20) at room temperature for
one hour. The blocked membrane was probed with primary antibodies targeting p-STAT1
(#9167, Cell Signaling Technology, Danvers, MA, USA, 1:1000) and PD-L1 (#13684, Cell
Signaling Technology, Danvers, MA, USA, 1:1000) at 4 ◦C overnight. GAPDH (#2118,
Cell Signaling Technology, Danvers, MA, USA, 1:1000) was used as a protein loading
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control. After washing, the membrane was incubated with secondary HRP-conjugated
anti-rabbit antibody (Promega, Madison, WI, USA). Proteins were detected by applying an
ECL Western blotting detection reagent (Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Immunohistochemistry

Human gastric biopsy samples from paraffin-fixed, paraffin-embedded (FFPE) blocks
were obtained from the tissue bank of the Institute of Pathology, Klinikum Bayreuth in
Germany, after the approval of the local ethics committee (155_20B). FFPE gastric samples
from mice [19,32] previously described were used in the present study. Briefly, Rnf43
mutant mice were generated by introducing two point mutations in the RING domain
of Rnf43 through homology-directed repair. Six- to eight-week-old mice were infected
twice with 2 × 108 H. pylori strain PMSS1 diluted in 200 µL brain-heart infusion (BHI)
containing 20% FCS by oral gavage and sacrificed after 6 months. Stomachs were dissected,
and tissues were fixed in 4% formaldehyde, and paraffin embedded. Human and mice
gastric tissue samples from wild-type (WT) and Rnf43 mutant mice were incubated with
specific antibodies (Table 1) overnight after antigen retrieval in a pressure cooker using
10 mM sodium citrate (pH6) or 1 mM EDTA (pH8) (p-STAT1 in humans and mice, and
PD-L1 in humans). After incubation with HRP-conjugated secondary antibodies, sections
were developed using SignalStain DAB substrate (Cell Signaling Technology, Danvers, MA,
USA), and counterstained with hematoxylin (Morphisto, Frankfurt, Germany). The slides
were scanned and analyzed using an Olympus Virtual Slide Imaging System (Olympus,
Tokyo, Japan). Five random high-power field areas per sample were quantified in a blind
manner. Positive staining cells were counted dividing by area and mean values of five
random areas for each slide were used for statistical analysis.

Table 1. Antibodies used for immunohistochemistry.

Target Clone Company

p-STAT1 58D6 Cell Signaling Technology
PD-L1 (human) E1L3N Cell Signaling Technology
PD-L1 (mouse) D5V3B Cell Signaling Technology

CD3 SP7 Thermo Fisher Scientific
Ki67 D2H10 Cell Signaling Technology

4.5. Statistical Analyses

Statistical analyses were performed using R (version 3.6.0) software. Differential
gene or protein expression analysis was tested by Wilcoxon rank-sum test, and with two-
sides, p < 0.05 was considered statistically significant. The correlation of gene or protein
expression was evaluated using Spearman’s correlation coefficients. The immune infiltra-
tion level of TCGA gastric tumors was estimated by a deconvolution method previously
published [21]. Probabilities of overall survival were estimated using the Kaplan–Meier
(KM) method and compared using the log-rank test or the Cox proportional hazards re-
gression model. The Youden index was used as the cut-off point to stratify patients with
different prognoses.

5. Conclusions

H. pylori infection induces PD-L1 expression in the gastric epithelium and during
GC development in a STAT1 and immune cell-dependent manner. PD-L1 may allow
transformed epithelial cells to progress to GC and later determine GC prognosis.
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