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Abstract, Differentiation of rat pheochromocytoma 
PC12 cells into neuron-like cells was induced by nerve 
growth factor (NGF) and changes in the apparent rate 
of synthesis of cellular proteins were analyzed. Atten- 
tion was particularly focused on the first few hours of 
exposure to NGF before significant neurite outgrowth 
was detectable. Cultures were pulse-labeled for 1-h 
periods with [35S]methionine and proteins were ex- 
tracted from various subcellular fractions and analyzed 
by one-dimensional gradient and two-dimensional 
equilibrium and nonequilibrium gel electrophoresis. 
The results showed that although the general level of 
protein synthesis remained constant, by 8 h NGF in- 
creased the apparent rate of synthesis of '~11 cytoplas- 
mic and 5 nuclear proteins. For several of these pro- 
teins, the effect was apparently NGF-specific, since no 

induction was observed in dibutyryl cAMP-treated 
cells. Of interest was the following observation: of the 
five nuclear proteins, NGF increased the synthesis of 
two proteins with Mrs of 56,000 [doublet] and 50,000 
D that were associated with a biochemically and mor- 
phologically defined nuclear matrix fraction. A 
cytoplasmic protein, with an Mr of 92,000 D (pI 4.8) 
appeared to be induced de novo by NGE NGF also de- 
creased the rate of synthesis of several cytoplasmic and 
nuclear proteins of low molecular mass (<40,000 D). 
Since only 1-h pulses of [35S]methionine were used, 
and since experiments with actinomycin D showed that 
most of these NGF-induced early changes in rates of 
synthesis included a transcription-dependent step, it 
seems likely that early effects of NGF include activa- 
tion of specific genes. 

T 
HE PC12 clonal cell line derived from a transplantable 
rat pheochromocytoma (15) exhibits several charac- 
teristics of adrenal medullary chromaffin cells and 

responds to nerve growth factor (NGF) ~ by expressing 
many of the phenotypic properties of sympathetic neurons, 
including neurite outgrowth (15, 16, 57). Although the 
molecular mechanism by which NGF acts in PC12 cells as 
well as in normal neurons remains largely unknown, phar- 
macological data and in vitro transcription assays suggested 
that several parameters of the NGF-induced differentiation of 
PC12 cells involve transcriptional events, i.e., induction of 
neurite outgrowth (3), increased synthesis of NGF-inducible 
large external glycoprotein (43), and increases in ornithine 
decarboxylase (OrnDCase) mRNA (9), in fos mRNA (14), 
and in acetylcholinesterase activity (17). In addition, ongo- 
ing translation is necessary for the neurite outgrowth re- 
sponse of PC12 cells (16; Tiercy, J.-M., and E. M. Shooter, 
unpublished data) as well as of other cell types, such as chick 
sensory neurons (46). 

1. Abbreviations used in this paper: dbcAMP, dibutyryl cAMP; NEPHGE, 
nonequilibrium pH gradient gel electrophoresis; NGF, nerve growth factor; 
OrnDCase, ornithine decarboxylase; RSB, buffer containing 10 mM NaCI, 
10 mM Tris-HCl, pH 7.4, and 1.5 mM MgCI2; TNM sucrose, buffer con- 
taining 25 mM NaCI, 5 mM MgC12, 10 mM triethanolamine, pH 7.4, and 
250 mM sucrose. 

However, a number of studies on PC12 cells, using one- 
and two-dimensional gel electrophoresis techniques, have 
led to the conclusion that NGF-stimulated neurite outgrowth 
does not involve qualitative changes in the synthesis and ac- 
cumulation of the most abundant cellular proteins. Several 
quantitative changes have been described, including in- 
creased levels of the NGF-inducible large external protein 
(43), an 80-kD protein (44), a 55-56-kD protein (11), the 
neurofilament proteins and vimentin (36), a 25-kD glycopro- 
tein immunologically cross-reactive with Thy-l.1 antigen 
(53), and the tau (7) and MAP1 proteins (7, 18), the latter 
two occurring concommitantly with increases in microtu- 
bule mass and neurite extension (7). The rate of synthesis of 
a significant fraction of total cellular proteins was found to 
be modulated similarly by NGF and by two different cAMP 
analogs, the major cytoskeletal proteins remaining unaf- 
fected (12). NGF also markedly increased the release into the 
medium of a 70-kD and a 30-kD protein (11). The synthesis 
of a 34-kD single-strand DNA binding protein was inhibited 
by NGF (2). Among the early effects of NGF are transient 
synthesis of proto-oncogenefos proteins (5, 31), an increase 
in OrnDCase (9, 22) and tyrosine hydroxylase (19) activities, 
and stimulation of the phosphorylation of a variety of pro- 
teins (18, 23, 34, 62). 

Although the PC12 protein phosphorylation studies were 
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performed at very early times, i.e., within minutes after ad- 
dition of NGE none of the analyses described above consid- 
ered possible NGF-induced changes in rates of protein syn- 
thesis during the first few hours of NGF treatment, nor did 
they examine the subcellular localization of the induced pro- 
teins, except for the Thy-l-cross-reactive glycoprotein (57). 
It should also be pointed out that most of the previous studies 
on NGF-induced proteins describe changes in steady-state 
amounts, because of the use of the cumulative labeling 
method. In this paper, we present a study on changes in rates 
of protein synthesis during NGF- and dibutyrl cAMP (dbc- 
AMP)-induced differentiation of PC12 cells, focusing atten- 
tion on the first 8 h of NGF treatment. One- and two-di- 
mensional gel electrophoretic analyses of [35S]methionine 
pulse-labeled proteins extracted from PC12 cultures (+NGF) 
after subcellular fractionation showed that the rates of syn- 
thesis of several cytoplasmic and nuclear proteins were in- 
creased within the first few hours after NGF treatment and 
that the time courses of these increases were not all the same. 
Subnuclear fractionation studies furthermore revealed that 
two of these NGF-induced proteins were preferentially as- 
sociated with the nuclear matrix fraction. Finally, the in- 
creased resolution of two-dimensional gel electrophoresis al- 
lowed us to detect the NGF-induced de novo synthesis of one 
cytoplasmic protein with an apparent Mr of 92,000 D and a 
pI of 4.8. We also present evidence that most of these early 
changes in rates of synthesis include a transcription- 
dependent step and that induction of several of these proteins 
was not observed in cultures treated with dbcAMP. 

Materials and Methods 

Cell Culture 

Rat pheochromocytoma PC12 cells were grown in Dulbecco's modified Ea- 
gle's medium (Gibco, Grand Island, NY) supplemented with 5 % horse se- 
rum (Gibco) and 10% supplemented calf serum (HyClone Laboratories, 
Logan, UT) in a water-saturated atmosphere of 88% air/12% CO2. The 
cultures used for each experiment were prepared by replating growing PC12 
cells at 2-3 x 104 cells/cm 2 on poly-D-lysine-coated (Sigma Chemical 
Co., St. Louis, MO) 35-mm or 80-ram tissue culture dishes (Falcon Lab- 
ware, Oxnard, CA). After 2-4 d, either 100 ng/ml I~NGF (referred to as 
NGF) or 1 mM dbcAMP (Sigma Chemical Co.) were added to the cultures 
(time 0) in medium supplemented with serum. Medium plus serum alone 
was added to control cultures. NGF was prepared from submandibular 
glands of adult male Swiss-Webster mice by the method of Smith et al. (55). 

Labeling and Extraction of Total Proteins 

PC12 cultures (in 35-mm dishes) were labeled for 1-h periods at different 
times between 0 and 7 d after addition of NGF with 25 laCi/ml of 
[35S]methionine (~,,1,000 Ci/mmol; New England Nuclear, Boston, MA) 
in methionine-free medium (Irvine Scientific, Santa Ana, CA). When re- 
quired, NGF was present in the labeling medium. Labeling was terminated 
by washing the cultures twice with cold (4°C) Ca ++ and Mg++-free PBS 
(137 mM NaCl, 2.7 mM KCI, 8 mM Na2HPO4.12 HzO, 1.5 mM KH2PO4). 
Total proteins were extracted by adding 100 Ixl/dish (two dishes per ex- 
perimental point) of 1% SDS/1 mM NaHzPO4, pH 8.5 (30). After several 
passages through a 27 × ~/2-gauge needle, lysates were stored at -20°C. 
Aliquots (10-50 tad to be analyzed by SDS-PAGE were mixed (2:1, vol/vol) 
with threefold-concentrated protein sample buffer (final concentration, 2 % 
SDS, 10% glycerol, 5% [3-mercaptoethanol, 0.0625 M Tris-HCl, pH 6.7, 
0.003 % bromophenol blue) (32). The TCA-precipitable radioactivity of the 
samples was measured on 5-10-p.l aliquots that were spotted on 2.4-cm di- 
ameter GF/C filters (Whatman, Inc., Clifton, NJ), incubated in 10% TCA 
for 15 min on ice, washed five times with ethanol, dried, and counted in 
2 ml scintillation fluid (Aquasol; Amersham Corp., Arlington Heights, IL). 

Labeling of the Cells, Isolation of PC12 Nuclear 
and Cytoplasmic Fractions, and Extraction of Proteins 
After 7 h, control, NGF- (100 ng/ml), and dbcAMP- (1 mM) treated PC12 
cultures (grown on 80-ram dishes) were pulse-labeled for 1 h with 20 
~Ci/ml of [35S]methionine. When required, NGF or dbcAMP were pres- 
ent in the labeling medium. In parallel cultures (+NGF or +dbcAMP), 
2 I.tg/nd actinomycin D (Calbiochem-Behring Corp., La Jolla, CA) were 
present from 0 to 8 h. At the end of the labeling time, cultures were washed 
twice with cold PBS and cells were lysed with 2 ml/dish of RSB (10 mM 
NaC1, 10 mM Tris-HCI, pH 7.4, 1.5 mM MgCI2) (24) containing 1% Tri- 
ton X-100 and 0.5 mM phenylmethylsulfonyl fluoride (PMSF; Sigma Chem- 
ical Co.). The lysates were passed five times through a 22 × P,6-gauge nee- 
dle, incubated on ice for 10 min, and centrifuged for 5 min at 1,000 g (JA-21 
rotor; Beckman Instruments, Fullerton, CA). The supernatant was referred 
to as the cytoplasmic fraction. The first nuclear pellet was washed with the 
same buffer (nuclear wash 1) and then in RSB alone (nuclear wash 2). In 
some experiments, nuclei were centrifuged (10 min at 1,500 g) through a 
0.88-M sucrose cushion. The final pellet was referred to as the nuclear frac- 
tion. It was noted that an extensive syringing of the PC12 cell lysates led 
to significant breakage of nuclei. Cytoplasmic proteins were precipitated for 
1 h at 4°C with 20% TCA and the resulting pellets washed twice with a solu- 
tion containing 70% acetone (vol/vol), 20% ethanol (vol/vol), 10 mM Tris- 
HC1, pH 7.4, and 0.0001% bromophenol blue (35), ]yophilized, and 
resuspended in the protein sample buffer. Nuclei were lyophilized and 
resuspended in protein sample buffer. 

Subfractionation of Nuclei and Extraction of Proteins 
Nuclei were fractionated by a modification of the procedure of Berezney and 
Coffey (1). Purified nuclei were gently resuspended in TNM sucrose (25 
mM NaCI, 5 mM MgCI2, 10 mM triethanolamine, pH 7.4, 250 mM su- 
crose) at 2-4 × 106 nuclei/ml. DNase I (20 ~tg/ml; RNase-free) and 0.5 
mM PMSF were added and the mixture incubated for 30 min on ice. 
Digested nuclei were pelleted by centrifugation for 10 min at 1,500 g. The 
supernatant was termed DNase I extract. The nuclei were then incubated 
for 30 min on ice in 1 ml high salt buffer (2 M NaCI, 10 mM Tris-HCI, 
pH 7.4, 0.2 mM MgC12) in the presence of 0.5 mM PMSF. The resulting 
nuclear structures, referred to as the nuclear matrix fraction, were 
sedimented for 15 min at 4,000 g, dried under vacuum, and resuspended 
in 120 ~tl of protein sample buffer. The supernatant was referred to as the 
high salt extract. Proteins were extracted from the DNase I and the high 
salt extracts either with 20% TCA, as described above, or by precipitation 
with 8 vol of acetone, then lyophilized and resuspended in 100 and 200 ~tl, 
respectively, of protein sample buffer. For radioactivity measurements (Ta- 
ble II) and photomicroscopy (Fig. 3), the nuclear matrix pellet was gently 
resuspended in TNM sucrose. 

When proteins were to be analyzed by two-dimensional gel electrophore- 
sis, the resulting dried pellets were resuspended in lysis buffer (9 M urea, 
2% wt/vol NP-40, 5% l~-mercaptoethanol, 2% ampholines, pH 3.5-10 
[LKB Instruments, Gaithersburg, MD]) (47). 

Gel Electrophoresis in One and Two Dimensions 

Proteins were analyzed either i n 10% or in linear polyacrylamide gradient 
(7.5-15% acrylamide) slab gels.(24 x 18 x 0.15 cm) in the discontinuous 
SDS-containing buffer system as described by Laemmli (32). Both the 
stacking (5% acrylamide) and separating gels contained 1 mM Na2.EDTA 
and the upper buffer contained 14 mM 13-mercaptoethanol (35). Electropho- 
resis was at 24 mA per gel until the bromophenol tracking dye had migrated 
20 cm. After staining with 0.075 % Coomassie Brilliant Blue (Sigma Chemi- 
cal Co.) and destaining, gels were dried and covered with x-ray film (X AR- 
5, Kodak) for 1-20 d at -70°C. Standard proteins (50 p.g/lane; Sigma Chem- 
ical Co.) were: myosin, Mr 205,000 D; 13-galactosidase, Mr 116,000 D; 
phosphorylase b, Mr 97,400 D; bovine albumin, Mr 66,000 D; ovalbumin, 
Mr 45,000 D; and carbonic anhydrase, Mr 29,000 D. Analysis of labeled 
proteins by two-dimensional gel electrophoresis with isoelectric focusing in 
the first dimension was performed as described (47). Isoelectric focusing 
gels contained 4 % of pH 3.5-10 ampholines and 2 % of pH 4-6 ampholines; 
electrophoresis was for 8,000 V.h. Two-dimensional gel electrophoresis 
using nonequilibrium pH gradient electrophoresis (NEPHGE) in the first 
dimension was performed as described (48). The first dimension gels con- 
tained 6% ofpH 3.5-10 ampholines and electro_phoresis was for 2,500 V.h. 
The SDS-polyacrylamide gels for the second dimension contained 10% 
acrylamide. The gels were stained with Coomassie Blue, destained, 
fluorographed, and covered with x-ray film using an intensifying screen 
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Figure L Rates of protein synthesis in total PC12 cell extracts at 
different times after addition of NGF. PCI2 cultures were pulse- 
labeled for 1-h periods with [35S]methionine at 0 (lane a), 3 (lane 
b), 8 (lane c), 16 (lane d), 24 (lane e), 48 (lane f) ,  and 72 h (lane 
g), and 7 d (lane h) after addition of 100 ng/ml NGE Total proteins 
were extracted and aliquots containing the same amounts of protein, 
as judged by Coomassie Blue staining and corresponding to ,07.5 
x 104 cpm/lane were analyzed in a 7.5-15%-gradient gel. Slightly 
more protein was loaded on lanesfand g. The figure shows the au- 
toradiograph of the dried gel (9-d exposure). Arrows indicate the 
NGF-induced proteins with apparent Mrs of 56,000, 51,500, 
50,000, and 48,000 D. The insert shows an enlarged section of an 
autoradiograph of a gel showing the control (0 h) and after 8 h of 
exposure to NGF (8 h). 

(Merry-X-ray, San Francisco, CA). pH gradients were measured on parallel 
gels cut into 5-mm slices as described (47). 

R e s u l t s  

Analysis o f  [35S]Methionine Pulse-labeled 
Total Proteins 

Changes in protein synthesis that occur in PC12 cells in re- 
sponse to NGF were determined by pulse-labeling mono- 
layer PC12 cultures with [35S]methionine for 1-h periods at 
different times between 0 and 7 d after addition of NGE At- 
tention was focused on the first 24 h, since neurites could be 
detected in some cells as early as 8-12 h, and by 24 h about 
5 % of the cells had neurites (not shown; 20, 21), the neurites 
being defined as neuritic processes longer than one cell body 
diameter and displaying a growth cone at their tip. Under the 
conditions used in this study, a maximum of *80% of the 
cells were bearing neurites by 7 d in accordance with previ- 
ous studies (15, 20, 21). Total labeled proteins were extracted 
at 0, 3, 8, 16, 24, 48, and 72 h, and 7 d, and aliquots contain- 
ing the same amount of protein were analyzed by one- 
dimensional SDS-PAGE; proteins were revealed by Coomas- 
sie Blue staining and by autoradiography (Fig. 1). Under 
these conditions, ,,o100 individual bands were routinely 
resolved. The staining patterns (not shown) of the proteins 
extracted at any time between 0 and 7 d were similar in con- 
trol and NGF-treated cultures. This result was expected in 

view of previous experiments that indicated no qualitative 
and very few quantitative changes in PC12 proteins (12, 43, 
44). However, the autoradiographs (Fig. 1) revealed that 
NGF increased the incorporation of [35S]methionine into 
four bands with apparent Mrs of 56,000, 51,500, 50000, and 
48,000 D, whereas the labeling of the other proteins re- 
mained virtually unchanged. It is not possible to tell from 
these one-dimensional analyses whether the bands contain 
more than one protein. However, for ease of description, 
these are referred to as the 56-, 51.5-, 50- and 48-ki) pro- 
teins, respectively, without implying that they represent sin- 
gle proteins. Results presented later indeed show that the 
56-kD protein contains two proteins with slightly different 
isoelectric points. The time course of induction of these pro- 
teins was different. Increased synthesis of the 56-, 50-, and 
48-kD proteins was already detected 3 h after addition of 
NGF (Fig. 1, lane b). NGF-induced synthesis of the 56-kD 
protein reached a maximum at ~ 8  h (lane c and insert), re- 
mained at this level until at least 24 h (lane e), and then de- 
creased until it reached, by 72 h (lane g), a level even slightly 
lower than that observed in naive PCI2 cells. Increased syn- 
thesis of the 50- and 48-kD proteins was also maximal at 
,,o8 h (lane c and insert) but remained at this level for at least 
3 d (lane g). Induction of the synthesis of the 51.5-kD protein 
was first detectable by 8 h (lane c) and increased continu- 
ously until up to at least 7 d (lane h). The same pattern of 
increased protein synthesis was observed after 8 h of NGF 
treatment when PC12 cells were grown on uncoated dishes 
(not shown). 

An alternative but less likely explanation for the NGF- 
induced increase in the labeling of these specific proteins 
may be a decrease in their turnover rate occurring during the 
1-h labeling period. Total proteins of control and NGF- 
treated cultures were thus labeled with [35S]methionine 
from 7 to 8 h and analyzed by SDS-PAGE at the end of the 
pulse and also after a 5-h chase in cold medium. The results 
showed a similar difference in the labeling of the 56-, 50-, 
and 48-kD proteins between control and NGF-treated cells 
after the 5-h chase (not shown), as compared with that ob- 
served at the end of the labeling period (Fig. 1, insert). If  de- 
creased turnover were solely responsible for the increased 
labeling of these three proteins after a 1-h pulse, the effect 
would have been amplified after the cold chase. Increased 
rates of translation are thus essentially responsible for the 
increased incorporation of [35S]methionine in the NGF- 
induced proteins. 

lntracellular Localization of  NGF-induced Proteins 

To analyze the intracellular distribution of NGF-induced 
early proteins, PC12 cells incubated with and without NGF 
were pulse-labeled with [3SS]methionine from 7 to 8 h, and 
nuclear and cytoplasmic fractions were isolated by use of 1% 
Triton X-100 in hypotonic buffer (RSB; 24). We have tested 
different lysis buffers and found that the Coomassie Blue 
staining patterns of PC12 nuclear and cytoplasmic proteins 
were almost indistinguishable, whether the cell fractionation 
was performed in RSB containing either 0.5-1.0% Triton 
X-100 or 0.5-1.0% NP-40, or in TNM sucrose containing ei- 
ther detergent at the same concentrations. However, the ratio 
of radioactivity in nuclear proteins relative to that in 
cytoplasmic proteins (after a 1-h pulse) was slightly lower 
with the hypotonic buffer compared with the isotonic buffer, 
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Table L Proteins Induced in PC12 Cells by Short-term Exposure to NGF (8 h) 

Analysis of cell fraction Molecular mass x 10 

l d  
Total 
Cytoplasmic* 
Nuclear* 
Nuclear, high salt 
Nuclear, matrix 

2 d  
Cytoplasmic, equilibrium 
Cytoplasmic, nonequilibrium 
Nuclear, nonequilibrium* 
Nuclear, high salt, equilibrium 
Nuclear, matrix, equilibrium 

123,§ 75* 
56 

56*8 
(56) 
56 

51.5 
51.5 

50 48 
50* 48 
50*8 48 

(48) 
50 48 

92 75 55 50 
54'§(d) 485 

56(d) 

53*§ 

50 

(38) 
38* 

38 
38*ffd) 30* 

35 

25 

* In these experiments the effect of dbeAMP and of actinomycin D were also tested. 
* NGF-dependent increase in labeling abolished by actinomycin D. 
§ Labeling not affected by dbcAMP. 
(d) Refers to the presence of two proteins of equal molecular mass but different isoelectric points. 

Table II. Distribution of DNA, RNA, and Protein in the 
Different Subcellular Fractions 

Cell fraction DNA* RNA* Protein* 

Cytoplasmic 2.3 77.9 87.6 
Nuclear wash 1 0.8 1.5 2.4 
Nuclear wash 2 0.6 0.9 0.4 
DNase I extract 1.0 0.5 0.7 
High salt extract 92.5 18.8 5.4 
Nuclear matrix 2.8 0.4 3.5 
Total 100:~ 100' 100, 

PCI2 cultures were labeled for 44 h with 0.5 ~tCi/ml [3H]methyl-thymidine 
or 0.5 gCi/ml [3H]uridine or 2 gCi/ml [35S]methionine, respectively, in nor- 
mal medium plus serum. Cultures ("-5 x 106 cells/dish) were fractionated as 
described in Materials and Methods and the amount of TCA-precipitable radio- 
activity in each subeellular fraction was measured on 50-1xl aliquots in tripli- 
cate. The total radioactivity obtained from the sum of values for each fraction 
was within 4 % of the total radioactivity measured immediately at the beginning 
of the cell fractionation procedure. 
* Percent of total radioactivity. 
~t The 100% values were 840,800 cpm for I~H]dT, 1,065,500 cpm for 
[3H]uridine, and 747,450 cpm for [35S]methionine. 

resulting perhaps from a better purification of nuclei. The 
distribution of DNA in these fractions (Table II, see below) 
also indicated that nuclei breakage was minimal. This is con- 
sistent with the observation of Schechter and Bothwell (54), 
who reported the isolation of nuclei with minimal cytoskele- 
tal contamination by using 0.5-1% Triton X-100 in PBS and 
mechanical shearing. 

Fig. 2, A and B show the results of a typical experiment 
where aliquots of [35S]methionine-labeled cytoplasmic and 
nuclear proteins were analyzed on 7.5-15 % gradient gels. 
Autoradiography of the cytoplasmic extracts (Fig. 2 A, lane 
c) revealed that the NGF-induced increase in the apparent 
rate of synthesis of the 51.5-, 50-, and 48-kD proteins ob- 
served on whole cell extracts was also apparent in cytoplas- 
mic fractions (Table I). As was noted in whole cell extracts, 
induction of the 51.5-kD protein was barely detectable by 8 h 
(see also the time course in Fig. 1). These analyses also re- 
vealed an NGF-induced increase in the apparent rate of syn- 
thesis of three other cytoplasmic proteins migrating with 
Mrs of 123,000, 75,000, and 38,000 D (Fig. 2 A, lane c; Ta- 
ble I). In some experiments the NGF-induced increase in 38- 

kD protein synthesis was also detected in total cell lysates, 
i.e., without enrichment in cytoplasmic proteins. Analysis of 
the nuclear extracts (Fig. 2 B) showed that the increased rate 
of synthesis of the 50- and 48-kD proteins (lane c) brought 
about by NGF was also detected in this fraction. On the other 
hand, the increase in the labeling of the 56-kD protein was 
only observed in the nuclear fraction. Thus, as evidenced by 
these analyses, NGF increases the rate of synthesis of four 
cytoplasmic proteins (123, 75, 51.5, and 38 kD), of one nu- 
clear protein (56 kD), and of two other proteins that appear 
in both cytoplasmic and nuclear extracts (50 and 48 kD). The 
distribution of these last two proteins may well reflect their 
heterogeneity. 

NGF-induced Synthesis of Early Protein Is 
Apparently Transcription-dependent 

The same experimental design was also used to determine 
whether the early increase in the synthesis of specific pro- 
teins in response to NGF required ongoing RNA synthesis. 
PC12 cultures were treated for 8 h with and without NGF in 
the presence or absence of 2 p.g/ml actinomycin D. Control 
experiments were performed by pulse-labeling PC12 cells 
(+NGF) from 7 to 8 h with [3H]uridine in the absence or 
presence of different concentrations of actinomycin D and 
then measuring the incorporation of TCA-precipitable radio- 
activity. It was observed that 2 ~tg/ml actinomycin D (added 
at time 0) was sufficient to block RNA synthesis by 94 _+ 2%. 
Most importantly, the same extent of inhibition was already 
measured after the first hour of incubation in actinomycin D. 

Pulse-labeling with [35S]methionine was performed from 
7 to 8 h, and the cultures were then separated into nuclear 
and cytoplasmic fractions. Aliquots containing the same 
amounts of protein, as judged by Coomassie Blue staining 
(Fig. 2, A and B, lanes a and b) were analyzed on gradient 
gels. The autoradiographs (Fig. 2) showed that actinomycin 
D decreased the overall rate of protein synthesis in both con- 
trol and NGF-treated cultures. This result was anticipated 
from the 30-50% decrease in the incorporation of TCA- 
precipitable [35S]methionine in the cytoplasmic fractions 
(+NGF) and the 66-80% decrease in the nuclear fractions 
(+NGF) (not shown). However, the decreased rate in overall 
protein synthesis was slightly less marked in NGF-treated 
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Figure 2. Analysis of [35S]methi- 
onine pulse-labeled cytoplasmic 
(A) and nuclear (B) proteins in 
control, NGF-, and dbcAMP- 
treated PCI2 cultures in the pres- 
ence or absence of actinomycin 
D. PC12 cultures were pulse- 
labeled with [~sS]methionine from 
7 to 8 h in the absence (lanes a 
and b) or presence of 100 ng/ml 
NGF (lanes c and d) or in the 
presence of 1 mM dbcAMP (lanes 
e and f )  added at time 0. In one 
set of the control (lane b), NGF- 
(lane d), and dbcAMP-treated 
(lane f )  cultures, 2 gg/ml actin- 
omycin D was added at time 0. 
Proteins were extracted from cy- 
toplasmic (A) and nuclear (B) 
fractions as described in Materi- 
als and Methods, and aliquots 
containing the same amounts of 
proteins were analyzed in 7.5- 
15%-gradient gels. The figure 
shows the Coomassie Blue (CB) 
staining patterns of cytoplasmic 
(A, lanes a and b) and nuclear (B, 
lanes a and b) proteins of the con- 

trois and the controls plus actinomycin D, respectively. The patterns of the other lanes were identical. The corresponding autoradiographs 
(AR) of the dried gels are shown (A, 5-d exposure; B, 10-d exposure). Cytoplasmic proteins in lanes a, c, and e and b, d, and fcontained 
"~10 x 104 and 6 x 104 cpm, respectively. Nuclear proteins in lanes a, c, and e and b, d, and fcontained 7 x 104 and 1.5 x 104 cpm, 
respectively. Arrows indicate NGF-induced proteins; arrowhead indicates dbcAMP-induced 170-kD protein. 

cytoplasmic fractions (~30%),  compared with untreated 
controls (40-50%), perhaps reflecting an NGF-induced in- 
crease in mRNA stability. NGF-increased synthesis of the 
cytoplasmic 123-, 75-, 50-, 48-, and 38-kD proteins (Fig. 2 
A, lanes b and d) was markedly decreased by actinomycin 
D. The effect of the inhibitor was particularly striking for the 
123-, 75-, and 38-kD proteins that became undetectable (Fig. 
2 A, lane d). The cytoplasmic 48-kD protein was still synthe- 
sized at a slightly higher level in NGF-treated cultures as 
compared with untreated controls. The NGF-increased la- 
beling of  nuclear 56- and 50-kD proteins was also complete- 
ly abolished in actinomycin D-treated cultures (Fig. 2 B, 
lanes b and d). These results suggested that NGF-induced 
increase in the synthesis of these early proteins required 
ongoing transcription. It is not yet known whether this tran- 
scription-dependent step is the synthesis of the pre-mRNAs 
coding for these induced proteins or the synthesis of other 
RNA species required, either directly or via their protein 
products, for posttranscriptional modifications (splicing, 
transport) or translation of these mRNAs. 

dbcAMP Does Not Induce the Synthesis of 
the 123-, 56-, and 50-kD Proteins 

In the above experiment, parallel cultures were also treated 
for 8 h with 1 mM dbcAMP in the presence or absence of 
2 gg/ml actinomycin D, added at time 0. It has been reported 
that dbcAMP induces a rapid but transient neurite outgrowth 
in PCI2 cells (16, 21). Under our experimental conditions, a 
maximum of '~30% of the cells bore neurites after 3-4 d of 
dbcAMP treatment and this number remained the same until 
at least 7 d. The cultures (±dbcAMP) were labeled with 
[35S]methionine from 7 to 8 h, and separated into nuclear 

and cytoplasmic fractions that were analyzed by SDS-PAGE 
as described above. 

The autoradiographs in Fig. 2, A and B (lanes e) show that 
dbcAMP did not increase the apparent rates of synthesis of 
the 123- and 50-kD proteins, nor of the nuclei-associated 56- 
kD protein. On the other hand, dbcAMP increased the syn- 
thesis of the 48- and 38-kD proteins to about the same extent 
as NGF, and the synthesis of the 51.5-kD protein to a lesser 
extent. It also increased the rate of synthesis of the 75-kD 
protein, but here the effect of dbcAMP was significantly 
more noticeable than that of NGF (Fig. 2 A, lane e). In addi- 
tion, dbcAMP specifically increased the incorporation of 
[35S]methionine into a protein of ~170 kD (arrowhead in 
Fig. 2 A, lane e). Where rates of synthesis were increased 
by dbcAMP it was also in a transcription-dependent manner, 
i.e., it was abolished by actinomycin D (Fig. 2 A, lane f ) .  

In tran uclear Localization of NG F-induced Proteins 

To further analyze the distribution within the nuclei of the 
56-, 50-, and 48-kD proteins whose synthesis was increased 
by NGE the following fractionation procedure was per- 
formed. PC12 cultures (+NGF) were pulse-labeled with 
[35S]methionine from 7 to 8 h and nuclei isolated as de- 
scribed above. The purified nuclei were then incubated in the 
presence of 20 gg/ml DNase I (RNase-free), which resulted 
in a DNase I extract. The nuclei were further treated with 
2 M NaC1 (1) resulting in a high salt extract, or chromatin 
fraction (4, 10), and in a pellet of residual nuclear structures 
referred to as nuclear matrix. 

As shown in Table II, the PC12 nuclear matrix contained 
~3.5% of total cell protein. Although the measurements 
were based on pSS]methionine cumulative labeling experi- 
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Figure 3. Morphology of unfixed PC12 nuclei and nuclear matrix structures. Purified nuclei and nuclear matrix fraction were prepared 
from PC12 cells as described under Materials and Methods and photographed, using a Zeiss inverted microscope, a and b show Nomarski 
interference and phase-contrast micrographs of nuclei, respectively, c and d show phase-contrast micrographs of a nuclear matrix prepara- 
tion. Bar, 20 p.m. 

ments and should be taken as estimates, the figure is com- 
parable to the results published by others, using similar (but 
not identical) cell fractionation procedures (10, 52, 56). The 
DNase I and high salt treatments removed most of the DNA 
and RNA from nuclei (Table II), leaving a nuclear matrix 
fraction containing '~3% of nuclear DNA, '~2% of nuclear 
RNA, and one-third of the nuclear proteins (Table II). Under 
our conditions, nearly 30% of newly synthesized RNA (1-h 
pulse with [3H]uridine) copurified with the nuclear matrix 
(not shown). 

As observed by high magnification Nomarski interference 
and phase-contrast light microscopy, the purified nuclei (Fig. 
3 a and b, respectively) appeared essentially devoid of de- 
tectable cytoplasmic filaments, at least at the level of resolu- 
tion allowed by the technique. The nuclear matrix prepara- 
tion under phase-contrast light microscopy (Fig. 3, c and d) 
appeared as less dense, slightly smaller structures, as com- 
pared with intact nuclei, with nucleoli still visible, and with 
the characteristic fibrillogranular network appearance de- 
scribed for the nuclear matrix of other mammalian cells (1, 
29, 56). 

When isolated PC12 nuclei were treated with double deter- 
gent (0.5 % NP-40/0.5 % deoxycholate) (4) in TNM sucrose 
buffer, no change in the nuclear protein staining pattern 
could be detected; nor did a DNase I/RNase A treatment 

of the nuclear matrix fraction result in a different protein 
staining pattern (not shown). This is in accordance with 
previous observations that the presence of the characteristic 
matrix proteins does not depend on association with the bulk 
of nuclear RNA (41) and that heterogeneous nuclear RNA 
is not an integral component of the nuclear matrix because 
it can be digested with RNase without altering the matrix ar- 
chitecture (39, 40, 45, 59). 

The distribution of TCA-precipitable [35S]methionine 
(representing newly synthesized proteins) in the various sub- 
cellular fractions is shown in Table III. Between 7 and 8 % 
of total radioactivity was recovered in the nuclear fraction 
from control cells and those treated with NGF for 8 h. More 
specifically, it was found that in untreated controls 30 + 
0.5 % of the nuclear radioactivity was associated with the nu- 
clear matrix structures, whereas in the NGF-t~eated cultures 
it amounted to 39 + 2 %, as measured in three independent 
experiments. In contrast, the slight inccease in TCA-precipi- 
table radioactivity observed after NGF treatment in most of 
the other subcellular fractions (Table III) was not consis- 
tently observed in several independent experiments and 
might be due to small variations in cell number/dish either 
before or after washing the cultures at the end of the radioac- 
tive pulse. 

Aliquots of each subnuclear fraction (+NGF) pulse- 

The Journal of Ceil Biology, Volume 103, 1986 2372 



Table IlL Distribution of [35S]Methionine Pulse-labeled 
PC12 Proteins in the Different Subcellular Fractions 

Fraction NGF cpm x 10 -4* PercentS: 

C y t o p l a s m i c  - 2 ,542  89.5  
+ 2 , 8 8 4  90.5  

Nuc l ea r  w a s h  1 - 63 2 .2  
+ 66 2.1 

Nuc lea r  w a s h  2 - 11 0 .4  
+ 12 0 .4  

D N A s e  I ex t rac t  - 21 0 .7  
+ 14 0 .4  

High  salt  ex t rac t  - 154 5 .4  
+ 131 4.1 

Nuc l ea r  ma t r ix  - 50 1.8 
+ 78 2.5 

Total - 2,841 100 
+ 3,185 100 

Control and NGF-treated cultures (two dishes per experimental point) were 
pulse-labeled with [35S]methionine from 7 to 8 h. Cells were fractionated as 
described in Materials and Methods, and TCA-precipitable radioactivity was 
measured in each subcellular fraction. 
* Total cpm per fraction. 

Percent of total cpm. 

labeled with [35S]methionine from 7 to 8 h were analyzed 
on 7.5-15 %-gradient gels. The result of a typical experiment 
is shown in Fig. 4. Again, the protein staining patterns of the 
different subnuclear fractions were identical whether or not 
the cells were exposed to NGF for 8 h. The DNase I treat- 
ment released a few proteins, the major band comigrating 
with actin. Most of the histone core proteins were released 
with the 2-M NaCl extraction (Fig. 4, CB, lanes c and d), 
as well as most of the low molecular mass proteins in the 
range of 15-40 kD (1, 56). The nuclear matrix protein frac- 
tion (Fig. 4, CB, lanes e and f )  was specifically enriched 
with a number of bands migrating with apparent Mrs from 
49,000 to 170,000 D. The most prominent proteins in the 
60,000-70,000-D molecular mass range probably correspond 
to the lamin proteins from the dense lamina underlining the 
nuclear envelope (1, 6, 13, 56). The quantitative distribution 
of proteins within the three subnuclear fractions, as esti- 
mated by staining with Coomassie Blue (see legend to Fig. 
4), correlated well with the estimation of protein content ei- 
ther by [3~S]methionine cumulative labeling (Table II), or 
by colorimetric analysis. The results showed a DNase I ex- 
tract/high salt extract/nuclear matrix fraction ratio of protein 
content of 0.3:3.0:1.0 (not shown). 

Although histone H1 was completely removed after the 
high salt treatment, and was thus undetectable in the nuclear 
matrix fraction, some histone core proteins were present in 
this latter fraction even though digestion of DNA was almost 
complete. Similar observations were made during the isola- 
tion of mouse 3T3 nuclear matrix (4). As suggested by Long 
et al. (40), this may result from specific binding between his- 
tones and non-histone proteins. This hypothesis is consistent 
with our observation that in PCI2 cells treatment of the nu- 
clear matrix with both DNase I and RNase A did not com- 
pletely remove traces of histone core proteins. 

The autoradiograph (Fig. 4) did not reveal many changes 
in rates of protein synthesis in any of the three subnuclear 

Figure 4. Intranuclear localization of early NGF-induced proteins. 
PC12 cultures were labeled with pSS]methionine from 7 to 8 h af- 
ter addition of NGF and nuclei were purified from the untreated 
(lanes a, c, and e) and treated (lanes b, d, and f )  cultures. Nuclei 
(3-6 × 106 nuclei per experimental point) were fractionated as de- 
scribed in Materials and Methods into DNase I extracts (lanes a 
and b), high salt extracts (lanes c and d), and nuclear matrix frac- 
tions (lanes e and f) .  Samples containing the same amounts of pro- 
teins within each subnuclear fraction (i.e., control and +NGF) 
were analyzed in a 7.5-15%-gradient gel. Lanes a and b, protein 
samples corresponding to 4.5 x 105 cells (104 cpm); lanes c and d, 
3 x 105 cells (4.8 × 104 cpm); lanes e and f, 1.2 × 105 cells (1.2 
x 104 cpm). The figure shows the Coomassie Blue staining pattern 
(CB) and the corresponding autoradiograph (AR, 9-d exposure). 
Arrows indicate the two nuclear matrix-associated NGF-induced 
proteins. 

fractions, as expected from the overall pattern of nuclear pro- 
teins (see Fig. 2 B, lanes a and c). The 48-kD protein was 
found in both the high salt extract and in the nuclear matrix 
fraction, but its rate of synthesis was only increased in the 
latter fraction. (Fig. 4, lanes c-f). The 50-kD protein was 
found exclusively in the nuclear matrix fraction extracted 
from 8 h NGF-treated cultures and was barely detectable in 
the controls (Fig. 4, lanes e and f ) .  The 56-kD protein was 
highly enriched in the nuclear matrix fractions and its appar- 
ent rate of synthesis was increased in NGF-treated cultures 
by a factor of three, as judged by densitometer tracings of the 
autoradiograph (Fig. 4, lanes e and f ) .  Traces of the 56-kD 
protein were also detected in the DNase I and high salt ex- 
tracts; however, in both instances no increase could be ob- 
served upon NGF treatment (Table I). 

Two-dimensional Gel Electrophoretic Profiles of  
FsSIMethionine Pulse-labeled Proteins Extracted from 
Cytoplasmic Fractions, High Salt Extracts, 
and Nuclear Matrix Fractions 

The possibility of isolating biochemically and morphologi- 
cally distinct subnuclear fractions from PC12 cells prompted 
us to analyze the [35S]methionine pulse-labeled high salt ex- 
tract and nuclear matrix as well as cytoplasmic fractions by 
two-dimensional gel electrophoresis, the proteins being re- 
vealed by Coomassie Blue staining and fluorography. Al- 
though previous studies performed on whole cell extracts did 
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Figure 5. Two-dimensional 
gel electrophoretic profiles of 
[35S]methionine pulse-labeled 
proteins extracted from the 
cytoplasmic fractions, high 
salt extracts, and nuclear ma- 
trix fractions. PC12 cultures 
were incubated for 8 h in the 
absence (A, C, and E) or pres- 
ence (B, D, and F)  of NGF 
and pulse-labeled with 50 
laCi/ml pSS]methionine from 
7 to 8 h. Cell fractionation and 
two-dimensional gel electro- 
phoresis were carried out as 
described in Materials and 
Methods. (A and B) Cytoplas- 
mic proteins (600,000 cpm/ 
gel; 4-d exposure); (C and 
D) cytoplasmic proteins, en- 
larged fluorograph showing 
the induction of 92-kD protein 
(450,000 cpm/gel; 4-d ex- 
posure); (E and F)  nuclear 
matrix proteins (90,000 cpm/ 
gel; ll-d exposure). Arrows 
indicate proteins that were 
found to be reproducibly (n = 
5) induced after 8 h in NGF 
and open arrows point to the 
proteins whose labeling was 
decreased by NGE The pro- 
teins actin and tubulin are 
marked a and t, respectively. 
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not reveal qualitative changes in rates of protein synthesis af- 
ter NGF treatment (12, 43), it was hoped that isolation of a 
particular subcellular fraction would allow detection of mi- 
nor proteins that would otherwise remain masked by the high 
complexity of total protein extracts. 

Comparison of the cytoplasmic fractions (which contained 
~90% of total TCA-precipitable radioactivity, Table III) 
from control and induced PC12 cultures are shown in Fig. 
5, A and B, respectively. The three major radioactive spots 
that were equally labeled in both control and NGF-treated 
cytoplasmic fractions corresponded to actin (43 kD, pI 
5.2-5.4), tubulin (55 kD, pI 5.1), and to a heterogenous spot 
of ~72 kD (pI 5.3). These proteins were also the major spots 
among the few detectable by Coomassie Blue staining (not 
shown). The fluorographs not only confirmed that NGF in- 
creased the labeling of proteins with apparent Mrs of 75,000 
(pI 5.6), 50,000 (pI 5.4), and 38,000 D (pI 6.0), as already 
noted in the one-dimensional analysis, but they also revealed 
two other proteins whose labeling was increased by NGF, 
i.e., the 55,000- (pI 5.7) and 25,000-D (pI 4.7) proteins. It 
was also noted that NGF markedly decreased the labeling of 
three low molecular mass proteins of 32, 34, and 36 kD 
(open arrows in Fig. 5, A and B). As observed in all of five 
separate fluorographs, NGF also induced the appearance of 
a new protein with an Mr of 92,000 D (pI 4.8; Fig. 5, A, B, 
C, and D), which appears to be synthesized de novo since 
it was undetectable in controls (even after overexposure of 
the films). Induction of the 92-kD protein was completely 
blocked when cultures had been treated with 2 ~tg/ml ac- 
tinomycin D (not shown). The two-dimensional profiles of 
proteins from the high salt extracts were similar to those of 
chromatin fractions extracted from other mammalian cells 
(4, 10) (data not shown). The high salt extracts were enriched 
in acidic proteins with Mrs of <40,000 D, as expected for a 
non-histone chromosomal protein pattern. The profiles did 
not differ significantly between control and NGF-treated cul- 
tures with the exception that NGF increased the labeling of 
a 35-kD protein (pI 5) and markedly decreased the labeling 
of a 39-kD protein (pI 5.3). 

The NGF-induced changes in rates of protein synthesis ob- 
served in the nuclear matrix fraction, which retained ~2.5 % 
of newly synthesized total proteins (Table III) are shown in 
Fig. 5, E and E Although low amounts of radioactive tubulin 
could be detected in the high salt extracts, virtually no tubu- 
lin was observed in the nuclear matrix fractions. As shown 
in Fig. 5 F, 8-h treated cultures exhibited a marked increase 
in the rate of synthesis of a 50-kD protein (pI 5.3) and of two 
56-kD proteins with pls of 5.7 and 5.8, respectively. The fact 
that the NGF-induced 50-kD protein was exclusively present 
in the nuclear matrix fraction is a good indication that it cor- 
responds to the NGF-induced 50-kD protein detected by one- 
dimensional gel electrophoresis (Fig. 4, lane f ) .  

Analysis of psS]Methionine Pulse-labeled Cytoplasmic 
and Nuclear Proteins by NEPHGE 
To obtain a better resolution in the pH 6-9 range, aliquots 
of pS]methionine pulse-labeled cytoplasmic proteins were 
analyzed in the nonequilibrium system. Control and NGF- 
treated cultures were pulse-labeled with [35S]methionine 
from 7 to 8 h either in the absence or presence of 2 ~tg/ml 
actinomycin D added at time 0. Cytoplasmic fractions were 
isolated as described above and aliquots containing the same 

amounts of proteins (as judged by analysis of parallel sam- 
ples on one-dimensional gels) were analyzed. The results of 
a typical experiment are shown in Fig. 6. As expected from 
the results described above (Fig. 2 A, lanes a and b; Fig. 5, 
A and B), the patterns of labeled cytoplasmic proteins were 
almost identical in control and NGF-treated cultures. How- 
ever, these analyses showed (Fig. 6 B) that NGF dramati- 
cally increased the rate of synthesis of proteins with Mrs of 
30,000 (pI 7.2), 38,000 (doublet, pI 6.6-6.8), 48,000 (pI 5.3), 
and 54,000 D (doublet, pI 5.6-5.8); the 30, 38 (pI 6.6), and 
54-kD proteins being detectable in control cultures only after 
overexposure of the film. Induction of these six proteins was 
completely abolished in NGF-treated cultures under condi- 
tions where nearly complete inhibition of RNA synthesis was 
achieved (Fig. 6 d). This is in contrast to the lack of effect 
of actinomycin D on the rate of synthesis of several other pro- 
teins, i.e., actin or a triplet of proteins with an Mr of 58,000. 
The nonequilibrium method thus identified two of the 
cytoplasmic proteins seen in the equilibrium analyses, the 
38,000- and 54,000-D molecular mass species, and showed 
that they are doublets, while also identifying two other pro- 
teins induced by NGF (Table I). No increase in the rate of 
synthesis of the cytoplasmic 38- and 54-kD proteins was ob- 
served in dbcAMP-treated cells (not shown). Taken together, 
the one- and two-dimensional analyses show that NGF 
reproducibly increases the rates of synthesis of ~11 cytoplas- 
mic proteins and induces de novo synthesis of one other 
cytoplasmic protein within 8 h of exposure (Table I). 

Analysis of [35S]methionine pulse-labeled nuclear pro- 
teins in the nonequilibrium system did not reveal any 
significant changes, with the single exception ofa 53-kD pro- 
tein (pI 6.3) whose rate of synthesis was induced by more 
than 10-fold by 8 h after addition of NGE The induction was 
transcription-dependent and did not occur when ceils were 
treated with dbcAMP (not shown). The combined analyses 
reveal that NGF increases the rates of synthesis of five 
nuclei-associated proteins within 8 h of exposure (Table I). 

Discussion 

In this work, changes in the rates of protein synthesis were 
studied in PC12 cultures during the early steps of NGF- 
induced differentiation. As expected from previous studies 
(ll, 12, 43, 44) no overall increase in protein synthesis was 
observed at either early or later times after induction by NGF 
(Fig. 1). Similarly, Huff et al. (25) did not find any sig- 
nificant increase in the overall rate of PC12 protein synthesis 
by 48 h after treatment with NGE Also, Yamada and Wessells 
(61) showed that NGF-promoted axon elongation in chick 
dorsal root ganglia in vitro was not accompanied by a major 
increase in overall protein synthesis. 

In view of the previous report (20) that total protein con- 
tent (per DNA unit) slightly increased after NGF-treatment, 
it is possible that NGF may act at a posttranslational level, 
by decreasing the overall protein turnover rate. We therefore 
suggest that the slight accumulation of tubulin over a time 
course of 7 d after induction of NGF (7), may be the result 
of an NGF-induced decrease in the turnover of tubulin. Al- 
though relatively few data are yet available on protein stabil- 
ity in the nervous system, it is interesting to note that the pro- 
tein breakdown rate in the immature rat brain is about twice 
as high as it is in the adult (33). 
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Figure 6. Analysis of [3SS]me- 
thionine pulse-labeled cyto- 
plasmic proteins by NEPHGE. 
PC12 cultures were incubated 
for 8 h in the absence (a and 
c) or presence (b and d) of 
NGF and pulse-labeled with 
50 p.Ci/mt [35S]methionine 
f r o m 7 t o 8 h .  I n c a n d d ,  2 
Ixg/ml actinomycin D were 
present in the culture medium 
from 0 to 8 h. Cytoplasmic 
fractions were isolated as 
described in Materials and 
Methods and 30-1xl aliquots 
were analyzed by NEPHGE 
as described in Materials and 
Methods. Labeled proteins 
were revealed by fluorography 
(4-d exposure). (a and b) 
300,000 cpm/gel; (c) 125,000 
cpm/gel, (d) 172,000 cpm/gel. 
The arrows indicate proteins 
that were induced by NGF and 
whose rates of synthesis were 
completely inhibited by ac- 
tinomycin D. 

The rates of synthesis of '~11 cytoplasmic and 5 nuclear 
PC12 cell proteins are increased by NGF (Table I) and the 
noncoordinate induction of some of these proteins (Fig. 1) 
suggests different functional roles, i.e., some may be in- 
volved in aspects of the differentiation pathway other than 
neurite outgrowth. The transient induction of the nuclear 56- 
kD protein by NGF (Fig. 1) was not expected to result in a 
significant increase in the amount of the protein. Indeed, no 
Coomassie Blue-stained band comigrating with the 56-kD 
protein was detectable in controls and in the NGF-treated 
cultures. However, increased levels of the 51.5-, 50- and 48- 
kD proteins were anticipated from their time courses of in- 
duction (Fig. 1) but, with the exception of the 51.5-kD pro- 
tein, could not be conclusively detected on the Coomassie 
Blue-stained gels. This might be due to a faster turnover rate 
of the 50- and 48-kD proteins, as compared with the bulk 
part of cellular proteins, or to the fact that the same amounts 
of the total protein extracts were loaded on each lane, thereby 
masking increased levels of specific bands by the overall in- 
crease in total protein (20). Alternatively, if these NGF- 

induced proteins mainly accumulate in the neurites, they 
could be lost selectively upon washing the cultures before 
protein extraction. Normalization of the proteins loaded on 
each lane on a DNA basis might be necessary to detect in- 
creased levels of these NGF-induced proteins. 

We were also able to detect NGF-induced de novo synthe- 
sis of a cytoplasmic protein with an Mr of 92,000 D (pI 4.8; 
Fig. 5, A, B, C, and D). The identity of this protein is 
presently unknown, but it should be noted that Levi et al. 
(38) have recently isolated a cDNA clone corresponding to 
an early NGF-induced mRNA encoding a 90-kD protein. It 
is also clear that NGF significantly decreases the apparent 
rate of synthesis of several nuclear and cytoplasmic proteins 
migrating in the 30-40-kD range (Fig. 5). The turndown 
synthesis of some proteins may be needed in order to proceed 
to the differentiation pathway, but it might also be directly 
related to a decrease in the rate of entry of the cells through 
the cell cycle. 

Subnuclear fractionation studies showed that the 56- and 
50-kD-proteins (Figs. 4 and 5) were specifically associated 
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with nuclear matrix structures prepared by successive 
DNAse I and 2 M NaC1 extractions of purified nuclei and 
containing ~36% of nuclear proteins (Table II). Treatment 
of PCI2 cells with NGF did not alter the polypeptide pattern 
obtained after DNAse I digestion and high salt extraction of 
the nuclei (Fig. 4, e and f ) ,  suggesting that the early steps 
of differentiation in PC12 cells are not accompanied by global 
structural changes in the organization of chromatin. This was 
perhaps expected since both control and NGF-treated PCI2 
cells represent asynchronous populations of cycling cells, at 
least during the first few days (15, 27). It is of considerable 
interest that three major NGF-induced proteins are as- 
sociated with a nuclear matrix fraction, since the latter is 
now thought to play a role during DNA replication (50) and 
heterogeneous nuclear RNA transcription, processing, and 
transport (28, 39). Since NGF does influence part or all of 
these nuclear metabolic pathways, it is tempting to suggest 
that NGF-induced nuclear 56- and 50-kD proteins are an im- 
portant and early step on the differentiation pathway. 

The identity of these three proteins remains presently un- 
known. However, the insolubility in Triton X-100, the partial 
resistance to high salt extraction, and the apparent relative 
molecular mass pointed to the possibility that the 56-kD pro- 
teins might be vimentin. Although vimentin has been de- 
scribed as a major protein in the nuclear matrix fractions 
prepared from HeLa cells (56), 3T3 cells (4), BHK cells (6), 
or canine kidney cells (10), no radioactive spot correspond- 
ing to vimentin (with a pI very close to that of tubulin) was 
detected in the PC12 (+NGF) nuclear matrix preparations. 
This suggested either that contamination of nuclear prepara- 
tions with intermediate filaments (37) was minimal, or alter- 
natively, that our PC12 clone does not express detectable 
amounts of vimentin (49). Using a vimentin polyclonal anti- 
body (kindly provided by Dr. R. O. Hynes, Massachusetts 
Institute of Technology, Cambridge, MA) (26), we were able 
to show, by Western blotting, that no immunoreactive protein 
could be found in the PC12 nuclear fraction in the molecular 
range expected for vimentin, whereas the antibody reacted 
with a cytoplasmic 58-kD protein (Tiercy, J.-M., and E. M. 
Shooter, unpublished data). That the 56-kD proteins de- 
scribed in this paper are not OrnDCase (Mr 55,000 D; ref- 
erence 42) was inferred from the following arguments: (a) 
the time course of induction differs from the known time 
course of OrnDCase activity (9, 22); (b) the pI of the NGF- 
induced 56-kD proteins are significantly more basic than the 
pI of OrnDCase (42); and (c) induction of 56-kD proteins 
was not observed with dbcAMP. It is possible that the NGF- 
induced 56-kD proteins may be related to the recently de- 
scribed (51) peripherin, a 56-kD protein (pI 5.6) found 
specifically in the neurons of the peripheral nervous system. 
We might also consider the possibility that the nuclear 
matrix-associated 56-kD proteins correspond to c-fos or 
c-myc proteins, although the time course of induction by 
NGF and the inability of dbcAMP to induce the 56-kD pro- 
teins are not in favor of this interpretation. 

The experiments also showed that the induction of the 
cytoplasmic 123-, 54-, 38-, and nuclear 56-, 53-, and 50-kD 
proteins was not observed after treatment with dbcAMP 
(Fig. 2 and Table I) and thus appeared to be NGF-specific. 
It is tempting to suggest that the inability of dbcAMP to sus- 
tain long term neurite outgrowth may be related to the im- 
pairment of the synthesis of a limited number of proteins. It 

is known in this regard that dbcAMP induces microtubule- 
associated protein 1 accumulation to a significantly lesser ex- 
tent than NGF (7). It was striking to note that, although the 
majority of NGF-induced cytoplasmic proteins was also in- 
ducible by dbcAMP, none of the four NGF-induced nuclear 
proteins tested so far was inducible by dbcAMP. This sug- 
gests that some nuclei-associated proteins are required for 
complete differentiation of PC12 cells by NGF. The experi- 
ments also point to the fact that the effects of NGF on these 
proteins is under transcriptional control (Fig. 2). It thus 
would be of great interest to test the hypothesis that other 
agents that induce either unstable neurites or a much lower 
density of outgrowth, such as fibroblast growth factor (58), 
extracellular matrix derived from bovine corneal endothelial 
cells (60), or C6 glioma-conditioned medium (8), or that do 
not induce neurite outgrowth at all, like epidermal growth 
factor, are also unable to induce these nuclear proteins and 
are thus unable to allow PC12 cells to differentiate past a cer- 
tain limiting step. In any case, the data suggest that early 
effects of NGF, before the onset of significant neurite out- 
growth takes place, include activation of specific genes. 
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