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Background: Crotonylation is an emerging lysine acylation modification implicated in various diseases, yet its role in esophageal 
squamous cell cancer (ESCC) is unexplored. This study aimed to investigate the role of crotonylation-related genes (CRGs) in ESCC 
using bioinformatics approaches.
Methods: We included three ESCC datasets and 24 CRGs. Differentially expressed genes (DEGs) from TCGA-ESCA were 
intersected with key module genes related to CRGs to identify candidate genes. Univariate and LASSO regression analyses were 
conducted to select prognostic genes, which were then used to construct risk models. Independent prognostic analysis and nomogram 
construction followed. Functional enrichment and immune infiltration analyses were performed using the prognostic genes. Single-cell 
analysis was conducted to assess cell communication and pseudotemporal dynamics in key cells.
Results: Intersection of 1529 DEGs with 1,048 key module genes yielded 55 candidate genes. OSM, FABP3, MICB, and FAM189A2 
were identified as prognostic genes. These genes were used to classify ESCA patients into different risk groups and construct 
a nomogram. FABP3 and FAM189A2 were enriched in neuroactive ligand-receptor interaction and ribosome terms. MICB and FABP3 
showed strong positive correlations with natural killer T (NKT) cells, while FAM189A2 negatively correlated with gamma delta 
T (γδT) cells. Single-cell analysis identified mast cells and neutrophils as key cells, differentiating into seven and three states, 
respectively.
Conclusion: Four genes (OSM, FABP3, MICB, and FAM189A2) were identified as prognostic crotonylation-related genes in ESCC, 
potentially involved in its pathogenesis. OSM was negatively correlated with ESCC, while FABP3 and MICB were positively 
correlated.
Keywords: esophagus cancer, crotonylation, risk model, prognostic genes, single-cell sequencing analysis

Introduction
Esophageal carcinoma (ESCA) is a common malignant tumor of the digestive system; among all types of cancer, it 
ranked seventh and sixth in terms of mortality and morbidity, respectively, in 2020.1 China has a high incidence of 
ESCA; new ESCA cases account for more than 50% of new cases worldwide, and new deaths constitute more than 50% 
of global deaths. ESCA ranks sixth and fourth among malignant cancers in terms of incidence and death.2 According to 
histopathological classification, ESCA can be categorized into two main types, including ESCC and esophageal 
adenocarcinoma; between them, ESCC accounts for about 95% of all ESCA cases.3 Most ESCC patients are already 
in the middle or advanced stages during admission. The treatment of ESCC remains a challenge despite significant 
advancements in this field and a considerable increase in the five-year survival rate. Elucidating the mechanisms 
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underlying the occurrence and development of ESCC, understanding the heterogeneity of ESCC, and finding new 
effective therapeutic targets are required to increase the overall survival rate of patients with ESCC.4

After the concept of epigenetics was first introduced by the Austrian developmental biologist Conrad Waddington in 
1942, scientists have been interested in understanding epigenetic mechanisms.5 Along with DNA methylation, histone 
modifications are also major components of the epigenetic code. Over the past decade, various histone acylation 
modifications have been discovered, including histone propionylation (Kpr), butylation (Kbu), 2-hydroxyisobutylation 
(Khib), succinylation (Ksucc), malondialdehyde (Kma), glutarylation (Kglu), crotonylation (Kcr), beta- 
hydroxybutylation (Kbhb), and benzene formylation (Kbz). Crotonylation is a novel and versatile lysine acylation 
modification involved in various biological processes, such as gene expression, the cell cycle, spermatogenesis, aging, 
and DNA damage. Compared to other histone modifications, including acetylation, crotonylation offers a distinct 
contribution. While both crotonylation and acetylation target lysine residues, the modification groups in crotonylation 
are larger. Crotonylation is distinguished from acetylation in histone modifications by its unique structural features, 
including a four-carbon planar chain and an alkenyl C=C double bond, which give it distinct functional properties.6 

Through in vitro and cellular models, Allis et al demonstrated that the transcriptional activation driven by histone 
crotonylation is even more potent than that induced by histone acetylation.7 Besides, crotonylation has a greater impact 
on regulating the cell cycle and metabolism than acetylation, acting on specific genes or under certain environmental 
conditions, and is found at the promoters or enhancers of actively transcribed genes, where it modulates transcription.8 

Crotonylation plays a key role in multiple diseases, such as acute kidney injury, depression, hypertrophic cardiomyo-
pathy, as well as cancer.9 The loss of acyl-CoA oxidase 2 (Acox2) can decrease the level of crotonylation of peroxidase, 
thus compromising metabolic homeostasis and inducing liver cancer in mice.10 Lysine crotonylation strongly influences 
cytoplasmic and mitochondrial proteins. In pancreatic cancer cells, enzymes involved in metabolic processes, including 
glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, and glutamine, undergo extensive crotonylation.11 

By affecting gene transcription, crotonylation plays an important role in the biological processes of cancer cell 
proliferation, differentiation and apoptosis. Research shows that glioblastoma stem cells (GSCs) reprogram lysine 
metabolism to accumulate crotonyl-CoA, promoting histone lysine crotonylation, which supports tumor growth and 
immune evasion.12 Another study reveals that LncRNA LINC00922 promotes colorectal Cancer (CRC) metastasis by 
increasing crotonylation on Lys27 of histone H3 (H3K27cr), which activates ETS1 transcription and enhances cell 
migration and invasion.13 Crotonylation is upregulated in ESCC.9 However, no study has investigated the function and 
prognostic risk assessment of crotonylation-related genes in ESCC.

Hence, in this study, we examined crotonylation-related prognostic genes in ESCA and analyzed the functions and 
pathways of prognostic genes via bioinformatics based on transcriptome and single-cell data. Additionally, a prognostic 
model and a nomogram were constructed, followed by the analysis of the immune microenvironment and drug sensitivity 
in the high-risk and low-risk groups. Moreover, the key cells related to prognostic genes were identified, and the related 
functions of the key cells were analyzed. Finally, we verified the expression of these crotonylation-related DEGs in 
ESCC patients in clinical samples. These findings revealed the importance of crotonylation in the occurrence and 
development of ESCC and provided some novel ideas for the development of new targets and individualized treatments 
for ESCC.

Materials and Methods
Data Sources
In this study, data from patients with ESCA were downloaded from the Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/), including RNA-seq data from 11 normal esophageal tissues and 161 esophageal cancer 
tissues, as well as, relevant clinical information (age, sex, tumor grade, tumor stage, mutation data, and copy number 
variation (CNV)) and survival information. Complete clinical information is available for 160 cases. Additionally, both 
the single-cell dataset GSE196756 (GPL24676) and the validation dataset GSE53622 (GPL18109) were derived from 
GEO databases (http://www.ncbi.nlm.nih.gov/geo/), where GSE196756 included three esophageal squamous cell 
carcinoma tissue samples and three paracarcinoma tissue samples. The GSE53622 dataset had 238 samples, of 
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which 119 esophageal squamous cell carcinoma samples had information on overall survival (OS). Finally, we 
obtained 24 CRGs from reference.9 All datasets were downloaded and analyzed starting from April 17th to 
April 30th, 2024.

Screening of CRG-Related Key Module Genes
First, to investigate the relationship between CRGs and ESCA prognostic survival, the single-sample gene set 
enrichment analysis (ssGSEA) scores for CRGs in the ESCA sample were calculated in TCGA-ESCA using the 
GSVA package (v 1.42.0).14 The ESCA samples were classified into high/low score groups based on the best ssGSEA 
score cutoff values using the R package “survminer” (v 0.4.9). Next, survival differences between these two groups 
were compared using Kaplan-Meier (K-M) survival curves using the R package “survminer” (v 0.4.9). Subsequently, 
in order to identify co expressed gene modules and identify module genes highly correlated with CRGs, the sample 
expression matrix of TCGA-ESCA were subjected to Weighted correlation network analysis (WGCNA) via the 
WGCNA package (v 1.71).15 The samples were first clustered through the expression of the Euclidean distance for 
hierarchical clustering to check for outliers in the sample. The appropriate soft threshold power was selected from 
1–20 for intergenic correlations. Next, scale-free network construction was performed based on the filtered soft 
thresholds, and all genes were divided into different modules (the minimum number of genes was 200 for each 
module). Finally, the ssGSEA scores associated with the CRGs were used as traits to calculate the correlation 
coefficient matrices between the module eigenvectors and the phenotypic traits, and a correlation heat map was 
drawn. The modules with the highest correlation with the phenotypic traits were subsequently selected as key 
modules, and the genes associated with these modules were considered to be key module genes closely related to 
CRGs.

Differential Expression Analysis and Acquisition of Candidate Genes
In the TCGA-ESCA training set, to explore genes related to ESCA, the R package “DESeq2” (v 1.40.2) was used to 
screen for DEGs between 161 primary tumor samples (ESCA) and 11 normal tissue samples (normal) next to cancer 
samples (p < 0.05 and |log2FoldChange| > 2.0).16 These DEGs were overlapped with key module genes to identify 
candidate genes. Next, we used the clusterProfiler package (v 4.7.1.3) to conduct gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses on the candidate genes to reveal their 
biological functions (p < 0.05).17

Construction and Validation of Risk Models
In this study, the TCGA-ESCA data were divided into training and at a ratio of 7:3 for internal validation of the risk 
model, with 112 and 48 samples, respectively. First, univariate Cox regression analysis was performed on the training set 
using the R packages “survival” (v 3.3.1) and “survminer” (v 0.4.9) to identify factors associated with patient survival 
time. The candidate genes were obtained and screened by the proportional hazards (PH) test (p > 0.05), and the genes that 
passed the test were incorporated into the univariate Cox analysis to correlate the survival information of each sample 
and screen for key genes (p < 0.05). Then, LASSO regression analysis with 10-fold cross-validation was performed to 
identify the prognostic genes used to construct the risk model, and the LASSO model with the smallest error was selected 
as the result of the analysis. Risk scores were calculated based on prognostic gene expression. In the training and test 
sets, the samples were categorized into high-risk and low-risk groups based on the median risk score, whereas, in the 
validation set, the grouping was based on the best cutoff value. The risk model was further validated in the test set and 
the GSE53622 dataset, where the survival differences between risk groups, the accuracy of the risk model, and the 
survival status between different risk groups were reflected by the K-M (p < 0.05), receiver operating characteristic 
(ROC) (larger AUC values indicated better predictive ability, and vice versa) and survival curves, respectively. In 
addition, to further verify the correlation between prognostic genes and survival outcomes, 161 esophageal cancer tissue 
samples in TCGA-ESCA were divided into high and low expression groups based on the optimal cutoff value of each 
prognostic gene expression level. The survival differences between the high and low expression groups were compared 
using K-M curves.
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Construction of a Nomogram and Analysis of Clinical Features Between Risk Groups
In TCGA-ESCA, to construct a prognostic model for predicting patient survival, we combined the risk score with other 
clinical indicators to identify clinical indicators related to patient survival time. P-tests were initially conducted on 
eight variables (age, stage, sex, T stage, N stage, and histology). Based on the results of this analysis, a univariate Cox 
regression analysis (p < 0.05) was conducted to identify independent prognostic factors. A nomogram for predicting 
the one-, two-, and three-year survival of ESCA patients was subsequently constructed, visually demonstrating the 
impact weights of each variable on prognosis. The predictive performance was evaluated via calibration and receiver 
operating characteristic (ROC) curves. Finally, the differential performance of risk scores based on different clinical 
indicators was assessed, and the results were visualized by constructing heat maps.

Functional Analysis
We investigated the biological functions of genes associated with different risk groups. Using the DESeq2 package, 
differential expression analysis was conducted between the risk groups, and the calculated log2FC values were sorted 
from largest to smallest. Next, the KEGG-enriched gene set (cc2.cp.kegg.v7.4.symbols.gmt) in the MSigDB was used as 
a reference gene set to perform GSEA using the clusterProfiler package (v 4.7.1.3).17 GSEA (p < 0.05) was also 
performed for prognostic genes via c2.cp.kegg.v2023.1.Hs.symbols.gmt as the reference gene set to determine the 
biological pathways involved.

Immune-Related Analyses
In order to gain a deeper understanding of the function and role of the immune system in ESCC, the ssGSEA algorithm in the 
GSVA package was used to calculate 28 immune infiltration cell enrichment scores, and their differences among different 
risk groups were compared. Additionally, the correlation of prognostic genes with differential immune cells was assessed. 
Moreover, 48 immune checkpoints extracted from previous studies18 were overlapped with genes in TCGA-ESCA to obtain 
the levels of expression of 48 immune checkpoints, and their differences between risk groups were further investigated (p < 
0.05). The immune score, stromal score, and ESTIMATE score of the ESCA samples were calculated in TCGA-ESCA via 
the ESTIMATE algorithm, and the Wilcoxon test (p < 0.05) was performed to analyze the differences between risk groups. 
Their correlation with risk scores was calculated using Spearman’s method (correlation > |0.3|, p < 0.05).

Tumor Mutational Burden (TMB) and Drug Sensitivity Analyses
To determine the mutation status of the genes in the risk groups, the mutation data were downloaded from the 
TCGA database based on TCGA-ESCA, and the top 20 mutated genes in the risk groups were illustrated using the 
MAfTools package (v 3.12).19 The differences (p < 0.05) in TMB based on the risk group were further examined 
using K-M survival curves. Next, the chemotherapeutic drugs with significantly different responses in the risk 
groups were screened based on the GDSC database. The IC50 values of the common chemotherapeutic drugs were 
calculated for each sample using the pRRophetic (v 0.5) algorithm, and their differences between risk groups were 
determined by conducting the Wilcoxon test (p < 0.05).

Regulatory Network Analysis
To elucidate the molecular regulatory mechanisms of the prognostic genes, the microRNAs (miRNAs) were predicted 
using the mirTarbase database on the NetworkAnalyst platform. The long non-coding RNAs (lncRNAs) of the miRNAs 
were also obtained from the miRNet database. Finally, the complete lncRNA‒miRNA-mRNA network was constructed 
using Cytoscape. The ENCODE database was used to search for transcription factors (TFs) that regulate prognostic 
genes, and the TF-mRNA network was visualized using Cytoscape (v 3.0).20

Single-Cell Analysis
The single-cell dataset (GSE196756) first underwent quality control through the Seurat package (v 4.1.0),21 where the 
screening criterion for the number of nFeature_RNAs was greater than 100 and less than 5000), the number of 
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nCount_RNAs was less than 20000), and the percentage.mt was less than 5%. Next, the data were normalized by the 
normalizeData function, and the highly variable genes were identified by the FindVariableFeatures function. After the 
data were normalized by the ScaleData function, the dataset was analyzed by principal component analysis (PCA) for 
dimensionality reduction. The cells were subsequently classified into different cell clusters via UMAP cell clustering 
analysis, where the resolution was set to 0.2. Then, based on the marker genes, the cell clusters were annotated as 
different cell types using the singleR package (v 3.11) and the CellMarker database.21 The Wilcoxon test was conducted 
to analyze the expression of prognostic genes in different cell types in ESCC samples and control samples to further 
screen key cells. Additionally, cell communication analysis was performed for cell types using the CellChat package (v 
1.6.1).22 Based on the results of the above analysis, the proposed timing analysis for key cells was performed using the 
monocle package (v 0.4.3).23

Quantitative Real-Time Polymerase Chain Reaction (qRT‒PCR)
The level of expression of the prognostic genes was confirmed by qRT-PCR. Five pairs of samples (including five ESCC 
samples and five normal samples) from patients at the First Affiliated Hospital of Wenzhou Medical University were used 
in the qRT-PCR analysis from April 19, 2024 to May 5, 2024. The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Wenzhou Medical University. All studies were carried out in accordance with the principles 
stipulated in the Declaration of Helsinki, and all patients signed an informed consent form.

First, the total RNA of the frozen sample was extracted with TRIzol. Then, an equal amount of mRNA was reverse- 
transcribed to synthesize cDNA. Next, qPCR was performed using a 2x Universal Blue SYBR Green qPCR Master Mix 
Kit according to the following reaction system: predenaturation at 95 °C for 1 min; denaturation at 95 °C for 20s, 
annealing at 55 °C for 20s, and extension at 72 °C for 30s; the reaction was conducted for 40 cycles. Finally, the gene 
expression level was calculated using the 2–ΔΔCT method. The primer sequences used for the genes are provided in 
Supplementary Table 1.

Statistical Analysis
Bioinformatic analysis was conducted in the R software (v 4.1.0). All results were considered to be statistically 
significant at p < 0.05. To further validate the reliability of the statistical method, G * power (v 3.1) software was 
used for statistical efficacy analysis, with an effect size set to 0.5 and a significance level set to 0.05.24

Results
The MEred Module Contained 1048 Key Module Genes
Based on the calculation results, the statistical test power reaches 0.8 with 128 participants (Supplementary Figure 1). 
The actual total number of participants in this study is 160, ensuring robust statistical power. Based on the ssGSEA 
scores of the 24 CRGs, the ESCA samples were divided into a high-score group (171 samples) and a low-score group (53 
samples). Moreover, the K-M curves revealed significant differences in survival between these two score groups 
(Figure 1a). No outlier samples were observed in TCGA-ESCA (Figure 1b). When the optimal soft threshold was set 
to 4, the grid approximated the scale-free distribution (Figure 1c). The samples in TCGA-ESCA was subsequently 
classified into 10 coexpression modules (Figure 1d), among which the MEred module had the strongest correlation with 
the CRG ssGSEA score (cor = 0.3, p = 0.0011) and was considered to be the key module gene (Figure 1e). Additionally, 
1,048 genes in the MEred module were considered to be key module genes.

Candidate Genes Identified for Functional Enrichment Analysis
In TCGA-ESCA, we identified 1,529 DEGs, including 891 upregulated genes and 638 downregulated genes (Figure 2a 
and B). Moreover, 55 candidate genes were identified based on their intersection with key module genes (Figure 2c). GO 
enrichment analysis revealed that the candidate genes were enriched in 250 functional terms, including tertiary granule 
and collagen-containing extracellular matrix (Figure 2d). Additionally, 89 signaling pathways, such as cytokine‒cytokine 
receptor interactions and the chemokine signaling pathway, were enriched in the KEGG analysis (Figure 2e).
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OSM, FABP3, MICB, and FAM189A2 Were Used to Construct Risk Models
In the training set, four genes were identified via univariate Cox regression analysis (Figure 3a). Additionally, OSM, 
FABP3, MICB, and FAM189A2 were considered as prognostic genes in the LASSO regression analysis when the λmin 
value was 0.01054443 (Figure 3b). The risk model for prognostic genes was calculated using the following formula: 
riskScore = OSM × (0.543) + FABP3 × (0.228) + MICB × (0.169) + FAM189A2 × (–0.377). In the training set, the 
survival rate of the high-risk group was considerably lower than that of the low-risk group (Figure 3c). The AUC values 
of the risk model according to the ROC curve at one, two, and three years were greater than 0.7 (Figure 3d). The survival 
time of patients decreased as the risk score increased, as determined by the risk curve (Figure 3e). These results indicated 
that the risk model was reliable and accurate. The areas under the ROC curves (AUCs) at one, two, and three years were 

Figure 1 Screening of key module genes in the MEred module. (a) OS of patients in the high-score and low-score groups was determined from the K-M curves. (b) 
Weighted correlation network analysis of samples from TCGA-ESCC. (c) A scale-free network was constructed based on the filtered soft thresholds. (d) Classification of 
genes into different modules. (e) Correlations between CRGs and the modules assessed by the ssGSEA scores. 
Abbreviations: OS, overall survival; CRGs, crotonylation-related genes; ssGSEA, single-sample gene set enrichment analysis.
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greater than 0.7 and 0.6 in the test set (Figure 4a–c) and GSE53622 validation set (Figure 4d–f), respectively. The 
survival rate was significantly lower in the high-risk group than in the low-risk group (p < 0.05), and patient survival time 
decreased as the risk score increased. These results demonstrated the generalizability and validity of the risk model. The 
K-M survival curve of prognostic genes showed significant differences in the survival status of samples between high and 
low expression groups of OSM, FABP3, and FAM189A2 genes (Figure 4g–i).

Construction of a Nomogram
After P-tests for the risk scores and clinical indicators (sex, stage, age, T stage, N stage, and risk score) were performed, the 
indicators risk score, stage IV, and N1 stage were found to be significantly associated with the survival prognosis of ESCA 

Figure 2 Screening and pathway enrichment analysis of candidate genes. (a and b) DEGs screened from TCGA-ESCC. (c) Intersection of DEGs with key module genes to 
further screen candidate genes. (d) The results of the GO functional enrichment analysis of the candidate genes. (e) The results of the KEGG functional enrichment analysis 
of the candidate genes. 
Abbreviations: DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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Figure 3 Construction of the risk model and its validation in the training set. (a) Univariate Cox regression analysis of candidate genes was performed. (b) The prognostic 
genes (OSM, FABP3, MICB, and FAM189A2) used to construct the risk model were screened by LASSO regression analysis. (c) Survival in the low-risk and high-risk groups of 
the training set was determined by the K-M curves. (d) The accuracy of the risk model assessed in the training set was evaluated using ROC curves. (e) The survival status of 
different risk groups was analyzed in the training set based on survival curves. 
Abbreviations: LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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patients, as determined by univariate Cox analysis (Figure 5a). Next, we constructed a nomogram to predict patient survival 
at one, two, and three years (Figure 5b). The slope of the nomogram was close to 1 in the calibration curve (Figure 5c), and 
the AUC value was greater than 0.6 in the ROC curve (Figure 5d), which indicated that the nomogram had good predictive 
performance. Finally, the analysis of risk scores and clinical indicators showed that high risk scores were concentrated in the 
high-risk group, and the expression of OSM, FABP3, and MICB showed the opposite trend as that of FAM189A2 (Figure 5e).

Signaling Pathways Significantly Enriched in Different Risk Groups Included Steroid 
Biosynthesis and Others
In the functional enrichment analysis of different risk groups, the significantly enriched signaling pathways included 
steroid biosynthesis and terpenoid backbone biosynthesis (Figure 6a). In the GSEA of the prognostic genes, FABP3 and 
FAM189A2 were significantly enriched in neuroactive ligand-receptor interaction and the ribosome signaling pathway, 

Figure 4 Validation of the risk model in the test set and the GSE53622 dataset. (a) Survival in the low-risk and high-risk groups of the test set was evaluated based on 
K-M curves. (b) The accuracy of the risk model was analyzed in the test set with ROC curves. (c) The survival status of different risk groups was assessed in the test set with 
survival curves. (d) Survival in the low-risk and high-risk groups in the GSE53622 dataset was analyzed using K-M curves. (e) Accuracy of the risk model was assessed in the 
GSE53622 dataset with ROC curves. (f) The survival status of different risk groups was analyzed in the GSE53622 dataset with survival curves. (g–i) Survival curve of high 
and low expression groups of prognostic genes. (g) OSM gene. (h) FABP3 gene. (i) FAM189A2 gene. The horizontal axis represents survival time, and the vertical axis 
represents survival rate. 
Abbreviation: ROC, receiver operating characteristic.
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Figure 5 Construction of a nomogram and analysis of clinical features between risk groups. (a) Univariate Cox regression analysis was performed to identify independent 
prognostic factors (risk score, stage IV, and N1) among the risk score and variables obtained via P-tests. (b) A nomogram was constructed to predict the one-, two-, and 
three-year survival of ESCC patients. (c and d) The predictive performance of the nomogram was evaluated by calibration (c) and ROC (d) curves. (e) Differential risk 
scores based on different clinical indicators are shown. 
Abbreviation: ESCC, esophageal squamous cell cancer.
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whereas FABP3 and MICB were involved in the olfactory transduction signaling pathway. OSM was also significantly 
enriched in the chemokine signaling pathway and cytokine-cytokine receptor interaction (Figure 6b–e).

Screening of Differential Immune Cells
The ssGSEA scores of 28 immune cells were calculated (Figure 7a); among these cells, 11 immune cells, including 
activated dendritic cells and central memory CD8+ T cells, exhibited significantly greater infiltration in the high-risk 

Figure 6 Functional enrichment analysis and pathway analysis of OSM, FABP3, MICB, and FAM189A2. (a) Functional enrichment analysis of different risk groups. (b–e) GSEA 
of OSM (b), FABP3 (c), MICB (d), and FAM189A2 (e).
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Figure 7 Screening of differential immune cells. (a) Enrichment scores of 28 infiltrating immune cells were calculated using the ssGSEA algorithm. (b) The differences in 
enrichment scores between the low-risk and high-risk groups. “*” represented p < 0.05, “**” represented p < 0.01, “***” represented p < 0.001, “****” represented p < 0.0001. 
(c) Correlations of OSM, FABP3, MICB, and FAM189A2 with different immune cells. “ns” represented no significance, “*” represented p < 0.05, “***” represented p < 0.001, 
“****” represented p < 0.0001. (d) The expression of 48 immune checkpoints extracted from the literature was analyzed with TCGA-ESCA, and differences in expression 
between the low-risk and high-risk groups were determined. “*” represented p < 0.05, “**” represented p < 0.01, “***” represented p < 0.001, “****” represented p < 0.0001. 
(e) Correlations between the immune score, stromal score, and ESTIMATE score of ESCA samples in TCGA-ESCA and risk scores were assessed using Spearman’s method. 
Abbreviation: ssGSEA, single-sample gene set enrichment analysis.
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group (Figure 7b). Additionally, MICB and FABP3 had the greatest positive correlations with natural killer T(NKT) cells 
(cor = 0.59), whereas FAM189A2 had the greatest negative correlation with gamma delta T (γδT) cells (cor = –0.37) 
(Figure 7c). Among the 48 immune checkpoints, 16 immune checkpoints were significantly different between the 
different risk groups (Figure 7d). The stromal score, immune score, and ESTIMATE score were significantly correlated 
with the risk score (cor > |0.3|, p < 0.05) (Figure 7e).

Regulatory Network of Prognostic Genes
In the TMB analysis, TP53 and TTN had the highest mutation frequencies among the risk groups, and among mutation 
types, missense mutation had the highest frequency (Figure 8a and b). The K-M curves revealed significant differences in 
TMB between risk groups (Figure 8c). ABT.888, an AKT inhibitor, was identified based on the GDSC database. VIII and 
AMG.706 were among the top 10 drugs most effective for treating ESCA patients (Figure 8d). We also investigated the 
regulatory mechanisms of the prognostic genes. First, 16 miRNAs were predicted, and based on these results, 75 
lncRNAs corresponding to miRNAs were obtained. The regulatory relationships contained in the lncRNA‒miRNA- 
mRNA network formed by them with prognostic genes were CYTOR-hsa-miR-2467-3P-FABP3, A1BG-AS1-hsa-miR 
-450b-5p-FAM189A2, etc. (Figure 8e). In total, 45 TFs were obtained from the ENCODE database, and they formed 
relationship pairs, including FAM189A2-EZH2 and OSM-E2F5 (Figure 8f).

Selection, Cell Communication and Pseudotemporal Analysis of Key Cells
After quality control of the single-cell dataset, the first 2000 highly variable genes were screened (Figure 9a). In the 
principal component analysis (PCA), the first two principal components (PCs) in the tumor and normal samples could be 
fused, indicating that batch effects had little impact (Figure 9b). Moreover, the top 40 PCs were screened for subsequent 
analyses (Figure 9c). Then, the cells were divided into 14 cell clusters (Figure 9d). In total, 11 cell types, including 
neutrophils and fibroblasts, were annotated based on the marker genes (Figure 9e). Among them, significant differences 
were found in the expression of OSM and MICB in mast cells and neutrophils between tumor and normal samples 
(Figure 9f). Therefore, mast cells and neutrophils were used as key cells for subsequent analysis.

Based on the results of the cell communication analysis, mast cells and neutrophils presented greater interactions, as 
well as, greater numbers of cells in normal samples than in disease samples (Figure 10a). These cells showed the 
strongest communication interaction relationship among different groups, with the ligand-receptor pairs being ANXA1- 
FPR1 (Figure 10b). In the pseudotemporal analysis, neutrophils and mast cells differentiated into three and seven 
different states, respectively (Figure 10c).

Verification of the Expression of Prognostic Genes
We analyzed the expression of prognostic genes by qRT-PCR analysis, and the results revealed that MICB and 
FAM189A2 were significantly overexpressed in disease samples, whereas, OSM showed the opposite pattern of expres-
sion. Additionally, no significant difference was found in the level of expression of FABP3 between the control and 
disease samples (Figure 11).

Discussion
ESCC is the predominant histological subtype of esophageal cancer. ESCC cases account for about 90% of all 
esophageal cancers in developing countries.25 ESCC is associated with a poor prognosis and high mortality.26 

Crotonylation is a newly identified epigenetic modification and plays a role in various diseases and biological processes, 
such as carcinogenesis, tissue injury, and inflammation.27–29 However, the involvement of crotonylation in ESCC is not 
clear. Therefore, in this study, we identified CRGs in ESCC, established a CRG-related prognostic signature for ESCC, 
and assessed the clinical predictive value of this signature. By conducting bioinformatics analysis, we identified a novel 
signature comprising four CRGs (OSM, FABP3, MICB, and FAM189A2) to predict the prognosis of patients with ESCC.

OSM, a member of the interleukin-6 family of cytokines, plays important roles in several physiological and 
pathological processes, including mesenchymal stem cell differentiation, fibrosis, hematopoiesis, metabolism, and 
cancer.30 Several studies have shown that OSM is an ESCC-related gene and its level is negatively correlated with 
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Figure 8 Construction of the regulatory network of OSM, FABP3, MICB, and FAM189A2. (a and b) TMB analysis of the mutation status of the genes in the low-risk and high- 
risk groups, with the top 20 mutated genes in each group are illustrated. (c) The differences in TMB between the low-risk and high-risk groups were assessed using 
K-M curves. (d) The IC50 values of the common chemotherapeutic drugs for each sample were considered to screen drugs that are effective for treating ESCA patients. “*” 
represented p < 0.05, “**” represented p < 0.01. (e) Construction of the complete lncRNA‒miRNA‒mRNA network of OSM, FABP3, MICB, and FAM189A2. (f) Construction 
of the transcription factor–mRNA network of OSM, FABP3, MICB, and FAM189A2.
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risk of ESCC.31,32 Like previous studies, this study characterized OSM as a CRG for the prognosis of ESCC and found 
that it was downregulated in ESCC samples. FABP3 is a member of a large family of fatty acid-binding proteins that are 
expressed in a tissue-specific manner.33 FABP3 is highly expressed in aged skeletal muscles that exhibit loss of muscle 
mass and function, disrupting homeostasis through lipid remodeling; therefore, it is a valuable target for sarcopenia.34 

Another study suggested that high expression of FABP3 may be responsible for health problems related to cardiovascular 

Figure 9 Mast cells and neutrophils were identified as key cells. (a) Highly variable genes of OSM, FABP3, MICB, and FAM189A2 were screened in the single-cell dataset 
(GSE196756). (b and c) PCA of GSE196756 was performed for dimensionality reduction. (d) UMAP clustering analysis of cells was conducted (the cells were divided into 14 
clusters). (e) Annotation of cell clusters as different cell types based on the marker genes. (f) The key cells (mast cells and neutrophils) were screened by analyzing the 
expression of OSM, FABP3, MICB, and FAM189A2 in different cell types in ESCA and normal samples. 
Abbreviation: PCA, principal component analysis.
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Figure 10 Analyses of mast cells and neutrophils. (a and b) Cell communication analysis of cell types, showing strong interactions between mast cells and neutrophils and 
the ligand-receptor pair of ANXA1–FPR1. (c) Pseudotemporal analysis of the differentiation status of mast cells and neutrophils.
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disease in patients who succumb to chronic schizophrenia.35 The expression of FABP3 is upregulated in ESCC cases; 
additionally, cell function and immunohistochemical staining assays suggest that FABP3 functions as an oncogene in 
ESCC by promoting the malignant progression of ESCC cells.36 In contrast, this study found no significant difference in 
FABP3 expression between control and ESCC samples. This difference may be due to the detection methods used. 
Different primers and different qRT-PCR methods (TaqMan qRT-PCR) should be used to detect the expression level of 
FABP3. In addition to qRT-PCR, RNA-Fluorescence in situ hybridization (FISH) and other techniques should also be 
applied to observe the differential expression of FABP3 at the tissue level. Besides, the detection of protein level can 
better reflect the relationship between FABP3 level and ESCC disease. Methods similar like Western blot and immuno-
fluorescence (IF) should be applied to detect FABP3 content to determine its relationship with ESCC. MICB belongs to 
the major histocompatibility complex class I chain-related gene B family, and its expression is induced in response to 
cellular stress.37 As a result, MICB is expressed by different types of human cancer.38 In line with our results, ESCC 
tissues are characterized by the significant overexpression of MICB compared to its expression in adjacent normal 
tissues.39 FAM189A2 is a unique activator of HECT-type ubiquitin E3 ligases that can regulate multiple aspects of 
cellular function by ubiquitinating various substrates.40 The prognosis of prostate cancer patients may be related to the 
abnormal expression of FAM189A2 since its expression was lower in the high-risk score group than in the low-risk score 
group.41 Additionally, the expression of FAM189A2 was found to be lower in endometrial carcinoma samples than in 
normal samples, whereas high expression of FAM189A2 predicted long overall survival in patients with endometrial 
carcinoma.42 Despite these findings, the expression and prognostic value of FAM189A2 in ESCC remain undetermined. 
This study provided the first evidence suggesting abundant expression of FAM189A2 in ESCC samples and identifying 
FAM189A2 as a potential CRG related to the prognosis of ESCC. Thus, these results may aid in the development of 
biomarkers for the early detection of ESCC.

By conducting functional enrichment analysis, we found that FABP3 and FAM189A2 were significantly enriched in 
neuroactive ligand-receptor interactions and the ribosome signaling pathway. FABP3 and MICB dominated the olfactory 
transduction signaling pathway. Additionally, OSM was predominant in the chemokine signaling pathway and cytokine- 
cytokine receptor interaction. Neuroactive ligand-receptor interactions are involved in the initiation and progression of 
several diseases, such as pulmonary arterial hypertension and colon cancer.43,44 Sevoflurane imparts cardioprotection in 
patients following coronary artery bypass graft, partly by regulating neuroactive ligand-receptor interactions.45 Genes 
involved in the regulation of neuroactive ligand‒receptor interactions are highly expressed in esophageal cancer.46 

Additionally, the pathway is associated with significant ratios of target genes of Hedyotis diffusa Willd. for treating 
esophageal adenocarcinoma.47 The ribosome is responsible for protein synthesis in all cells.48,49 An increase in ribosome 
biogenesis contributes to aberrant increases in nucleolar size and number, which are hallmarks of cancer and are linked to 
a poor prognosis of diseases, including ESCC.50 According to a recent study, olfactory transduction was identified as the 
top signaling pathway enriched with genes exclusively expressed in TCGA-ESCC patient tumor tissues.51 Moreover, the 
hypomethylated and highly expressed genes in the tissues of ESCC patients are associated primarily with the cytokine- 
cytokine receptor interaction pathway.52,53 Several studies have provided evidence that the activation of chemokines 
greatly contributes to aggressive tumor behavior in ESCC.54–57 Based on these findings, targeting these pathways may 

Figure 11 Verification of the expression of OSM, FABP3, MICB, and FAM189A2 in normal and EC samples. The expression of OSM, FABP3, MICB, and FAM189A2 was 
measured in normal and EC samples by qRT-PCR analysis. “*” represented p < 0.05, “**” represented p < 0.01, “***” represented p < 0.001, “****” represented p < 0.0001. 
Abbreviation: EC, Esophageal carcinoma.
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have a prognostic value and therapeutic potential in ESCC. In summary, our model achieves higher accuracy through 
a unique feature selection approach that combines single-factor Cox regression and LASSO, effectively identifying 
biomarkers with strong prognostic relevance. Secondly, we conducted both internal and external validation to ensure the 
model’s reliability. Internal validation evaluates the model’s stability and accuracy within the constructed dataset, 
mitigating overfitting risks, while external validation assesses its generalizability using independent datasets. This dual- 
validation approach enhances the model’s robustness compared to those relying on limited or single validation methods. 
Additionally, we utilized tools such as nomograms, calibration curves, and ROC curves to comprehensively assess and 
verify the model’s predictive accuracy. The integration of these validation tools provides a thorough evaluation of its 
performance. In summary, our prognostic model distinguishes itself through its robust construction, rigorous validation 
processes, and superior predictive capabilities compared to existing models.

Crotonylated X-linked gene 2(BEX2) plays a key role in lung cancer cells by promoting mitochondrial autophagy to 
inhibit drug-induced apoptosis during chemotherapy. Mu et al58 found that brain expressed BEX2 is overexpressed in 
lung adenocarcinoma and is associated with a poor prognosis in patients with cancer without lymph node metastasis. 
Therefore, drug therapy targeting BEX2-induced mitosis in combination with anticancer drugs may be an effective 
strategy for treating non-small cell lung cancer. Jiang et al59 constructed nine genetic risk profiles associated with the 
prognosis of head and neck squamous cell carcinoma (HNSCC) based on a regulator of Kcr. The risk profile model 
predicted five-year OS more accurately than traditional clinical parameters (age, sex, T stage, N stage, and histological 
grade). Thus, it may provide a more scientific basis for the stratification of prognosis in patients with HNSCC and 
promote the optimization and upgrading of treatment regimens. A review of the relevant studies revealed that crotonyla-
tion is an important post-translational protein modification mode that probably plays a pivotal role in the prognostic 
assessment of diseases and the formulation of treatment strategies. This discovery not only broadens our understanding of 
the mechanism of protein function regulation but also provides a strong scientific basis to explore new methods for 
disease treatment.

NKT cells are large granular lymphocytes of the innate immune system.60,61 They can produce cytokines and 
chemokines that modulate the immune response and play pivotal roles in cancer, autoimmunity, and inflammation.62 

γδT cells are a specialized subset of T lymphocytes that can directly recognize and kill target cells independently of 
human leukocyte antigen presentation; thus, they are a promising effector immune cell type for cancer 
immunotherapy.63,64 Among the different types of innate immune cells involved in esophageal cancer progression, 
NKT and γδT cells have antitumor functions because of their strong cytotoxicity.65 The immune analysis results of this 
study revealed that both MICB and FABP3 had the greatest positive associations with NKT cells, whereas, FAM189A2 
had the greatest negative association with γδT cells. These findings revealed the predictive value of CRGs in ESCC. 
Studies66 have shown that the level of expression of OSM and the mutation status of the TP53 gene play key roles in 
regulating the infiltration of immune cells into tumor tissues and are directly related to the survival prognosis of 
patients with cholangiocarcinoma. Another study revealed that MICB, as a key molecule in the activation of NK cells, 
promotes the recognition and killing of tumor cells by NK cells by binding with NKG2D and is an important 
mechanism underlying the function of the immune system against cancer metastasis.67 Additionally, low-dose radio-
therapy (LDR) influences the destruction of the immunosuppressive tumor microenvironment (TME). FABP3 is a key 
molecule whose expression level influences tumor cell sensitivity to LDR and the subsequent immunotherapy 
response.68 Jiakun Liu et al reported that the FAM189A2 gene plays a role as a tumor suppressor in lung adenocarci-
noma, which is achieved by regulating tight junction protein (TJP) and CXCR4. Moreover, FAM189A2 is strongly 
associated with the immune microenvironment of lung adenocarcinoma, which may be related to patient prognosis and 
immunotherapeutic effects.69

Subsequent single-cell RNA-seq analysis based on the CRGs suggested that mast cells and neutrophils are key cells in 
ESCC. Mast cells are tissue-resident effector cells of immune responses; they accumulate in the tumor stroma of 
numerous types of human cancer, and an increase in mast cell density is associated with a good or poor prognosis, 
which depends on the tumor type and stage.70 High mast cell density at the invasive edge of ESCC is responsible for 
aggressive tumor behavior and a decrease in the survival rate of patients.71 Neutrophils, characterized as short-lived 
effector cells, elicit cancer initiation, progression, and metastasis through direct effects on cancer cells or indirect effects 
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on the TME.72,73 An increase in the number of neutrophils after neoadjuvant therapy is associated with a poor prognosis 
in patients with esophageal cancer.74 Therefore, depletion of these cells or inhibition of their function can be assessed as 
therapeutic strategies for ESCC.

However, this study had several limitations. Model development based on the TCGA database is limited to covering 
the genetic and environmental complexity and diversity of ESCC, which affects the wide applicability and representa-
tiveness of the model to a certain extent. Due to the lack of direct clinical validation, the reliability and validity of the 
model need to be confirmed. Although we evaluated the efficacy of the model via external datasets and verified 
differences in the expression of prognostic genes between the disease and control groups by qRT-PCR, these results 
did not fully reveal the actual expression of prognostic genes in the clinical setting. To overcome these limitations, we 
aim to strengthen the following aspects in future studies: first, expand the scale and diversity of clinical validation and 
evaluate the applicability of the model across patient populations; second, investigate the role of genes in ESCC in detail 
to improve the scientific model. Moreover, in vitro cell experiments and in vivo animal model experiments need to be 
conducted to better understand the effect of these prognostic genes on ESCC cell behavior and tumor growth.

Conclusion
Four genes (OSM, FABP3, MICB, and FAM189A2) were identified as prognostically crotonylation related genes for 
ESCC and might be involved in its pathogenesis. Specifically, OSM may negatively regulate crotonylation, thereby 
inhibiting cancer progression. FABP3 and MICB may be positively related to crotonylation and promote tumor progres-
sion as ESCC marker genes. In this study, FAM189A2 is also considered to be a potential CRG related to ESCC 
prognosis, but its content in ESCC samples did not prove statistical difference, and its role in regulating ESCC remains to 
be studied. In addition to providing biomarker diagnostic genes for clinical diagnosis of ESCC, our study also suggests 
basic research to explore the role and mechanism of crotonylation-related genes in ESCC, including these four genes in 
our results.

In conclusion, these findings can help optimize the risk prediction model and provide stronger support for precision 
medicine for ESCC.
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