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Abstract

Particle and object tracking is gaining attention in industrial applications and is commonly

applied in: colloidal, biophysical, ecological, and micro-fluidic research. Reliable tracking

information is heavily dependent on the system under study and algorithms that correctly

determine particle position between images. However, in a real environmental context with

the presence of noise including particular or dissolved matter in water, and low and fluctuat-

ing light conditions, many algorithms fail to obtain reliable information. We propose a new

algorithm, the Circular Symmetry algorithm (C-Sym), for detecting the position of a circular

particle with high accuracy and precision in noisy conditions. The algorithm takes advantage

of the spatial symmetry of the particle allowing for subpixel accuracy. We compare the pro-

posed algorithm with four different methods using both synthetic and experimental datasets.

The results show that C-Sym is the most accurate and precise algorithm when tracking

micro-particles in all tested conditions and it has the potential for use in applications includ-

ing tracking biota in their environment.

Introduction

Tracking micro-particles with computer-enhanced video microscopy is a common technique

in biophysics, micro-fluidics and colloidal research [1–3]. By monitoring the movement of a

particle using: fluorescence microscopy [4], brightfield microscopy [5] or darkfield microscopy

[6]; important information of the system under study can be revealed. Biological systems that

have been investigated using these methods are for example; mechanical properties of poly-

mers [4,5], diffusion of individual proteins [7], dynamic properties of DNA and interactions of

DNA with different molecules [8,9]. Tracking micro-particles is also common when designing

micro-fluidic devices [10].

To obtain reliable data of motion, it is important that particle positions are accurately deter-

mined [11]. Accuracy is limited by the detection algorithm [12] and the microscope spatial res-

olution, which is determined by the quality of the optics and the wavelength of the light. To

improve accuracy several algorithms have been developed during the years: e.g., Center-of-

Mass (CoM) [13], Gaussian fitting (GFit) [14,15], Cross-Correlation (XCorr) [16,17], quadrant
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interpolation (QI) [18–20] and the Hough transform (CHT) [21]. Though these algorithms are

commonly used, they all have important limitations.

The CoM algorithm locates particle centers by selecting an intensity threshold value and

generating a binary mask to evaluate the pixel positions of interest. This algorithm is fast and

simple, but very sensitive to shot noise and light fluctuations [22]. The GFit method is based

on approximating the point spread function (the spatial intensity distribution) of a particle

with Gaussian functions. The main limitations of this algorithm are that it is sensitive to

defocus and that particles much larger than the wavelength of light cannot accurately be

described by a Gaussian distribution. The XCorr algorithm is based on locating objects by

correlating different radial profiles to find the particle center of symmetry [23]. This algo-

rithm is sensitive to noise and interference patterns from surrounding particles. The QI algo-

rithm takes advantage of the circular geometry of non-diffraction-limited objects and uses

image interpolation to achieve subpixel accuracy. QI requires, however, an accurate initial

estimation of the particle position to perform well. Finally, the CHT algorithm is commonly

used for detecting geometrical patterns and several modifications have been made of the

algorithm to make it faster and more robust against noise; e.g., edge-drawing circles [24],

isosceles triangle circle detection [25,26], and ellipse detection [27,28]. The main advantage

of CHT is that it is capable of handling occlusions. However, it is still more sensitive to noise

than algorithms not based on edge features, and its accuracy is dependent on the size of the

circular pattern.

To improve the accuracy and precision of particle location we present a new approach,

the Circular Symmetry (C-Sym) algorithm. The algorithm uses correlation analysis to deter-

mine the degree of symmetry. We hypothesize that, by using spatial symmetry, the particle

position can be more accurately determined even in the presence of significant noise. Gen-

eral symmetry have previously been used and evaluated using techniques such as; phase

information [29], symmetry kernels [30], graphs [31], clustering [32], or partial medial axis

segments [33]. However, the C-Sym technique uses a different scheme: by subsequently

employing spatial filtering, piecewise Hermite interpolation and polynomial fitting can we

achieve subpixel accuracy and improve the robustness? We evaluated the performance of

C-Sym using: synthetic images that simulate spherical particles in different conditions; and

experimental data of micro-spherical particles in a bright field microscope. The results of

C-Sym algorithm are compared with that of CHT, CoM, XCorr, QI and GFit algorithms. The

results show that C-Sym has better accuracy and precision, especially when tracking particles

in environment with noise.

Materials and methods

Design of the experiment with synthetic light microscopy images

To evaluate the accuracy and precision, defined as the magnitude of the error and the spread

of the error, in particle location we used computer generated (synthetic) images based on the

intensity profile of particles under light microscopy. This allowed us to have control over the

experimental parameters without the errors introduced by experimental equipment; e.g.,

imaging system [34,35]. The datasets were, however, not used to build the C-Sym algorithm

but to validate the performance.

A preliminary analysis indicated that particle size and noise level are variables with a

strong impact on particle position estimation. Thus, in our experiments we independently

tested both variables by generating particles with a known radius and then exposed the

images to white-noise using a zero mean Gaussian distribution. We generated 1000 test

simulations for each particle size and noise level, using the signal-to-noise-ratio (SNR)
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defined as,

SNR ¼
Imax � Imin

4s
� 1; ð1Þ

where Imax and Imin are the maximum and minimum intensities of the image, and σ is the

standard deviation (SD) of the noise signal in the image. Examples for different SNR are

shown in S1 Fig, and the Matlab code to generate the synthetic images can be found in the

Supporting Information section S1 Dataset.

Additionally, we identified several other variables that slightly influenced the particle posi-

tion estimation and could act as a source of bias in the analysis, i.e., particle structure, ground

truth position, estimated initial position, and background color. The particle structure, i.e., the

visual appearance in the image, can vary considerably according to the experimental setup and

the nature of the particle itself. This can significantly change the accuracy of the algorithm

used for position estimation. We generated different patterns representing micro-particles,

which varied from a simple “spot” to diffraction patterns, see Fig 1. The diffraction patterns

were generated using a diffraction profile extracted from a real particle and by introducing

random variations such as; inversion of color, profile scaling and stretching. To avoid bias

when generating synthetic images, we set the ground truth position as a random floating-point

pixel position. For the initial estimation of particle position, we introduced a random error up

to 2 pixels to simulate the labeling or segmentation error. Finally, the background intensity of

each image was randomly selected from values between 0.25 and 0.75 representing typical test

conditions. Randomized synthetic images (512x512 pixels) for each particle size with the

above mentioned variables were generated. In addition, we added Gaussian noise with zero

means and variance σ2 to the images. A schematic diagram showing the generation of test

images of certain particle size and noise level is shown in Fig 1. Additional reference particles

are shown in the Supporting Information in S2 Fig.

In summary, to avoid biased results we conducted 1000 trials for each particle size and

noise level using: randomized background colors, particle patterns and particle positions with

a constant region of interest (ROI) size (set to 1.2 times the generated particle size). Each algo-

rithm was evaluated in terms of its accuracy and precision using the mean and standard devia-

tion of the Euclidean distance between the estimated position of the particle and the ground

truth.

Besides, we evaluated the accuracy and precision of two overlapping particles by generating

synthetic images of two diffraction patterns interfering with each other. This simulation was

conducted using two identical particles created by a Bessel function, varying the distance of

the particles and the level of noise. The results of this experiment are located in the Supporting

Information S1 File.

Design of the experiment with synthetic fluorescent images

To investigate the influence of patterns similar to fluorescent microscopy, when finding a par-

ticle position, we simulated images using an 2D Gaussian distribution function defined as,

gðx; yÞ ¼ g0 e
�

ðx� mx Þ
2sx2

þ
ðy� my Þ

2sy2

� �

; ð2Þ

where g0 is the amplitude of the function and represents intensity in the center of the particle,

(μx, μy) is the mean of x and y, and represent the center of the particle, and (σx, σy) is the stan-

dard deviation of x and y and represent the size of the particle.
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Fig 1. The block diagram of generating sample images. Two major variables, particle size and noise level, and other

relevant variables were used to create synthetic images.

https://doi.org/10.1371/journal.pone.0175015.g001
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We conducted the experiments changing the particle size and the image noise, using a con-

stant ROI with a size of 1.2 times the standard deviation of the generated particle, following

the procedures in the previous section.

Design of the experiment with micron-sized particles

To validate C-Sym we also generated experimental data by oscillating a micron-sized parti-

cle in a bright field microscope and evaluated the error of amplitude (peak-to-peak

displacement distance) by comparing the tracked position with the real piezo-stage motion.

We prepared our sample using silica micro-spheres (Catalog Code SS04N, Manufacturer

Lot Number: 7829 –Bang Laboratories) with a diameter of 2.0 μm suspended in a solution

of Milli-Q water. Micro-spheres were immobilized to a cover slide by drying 10 μl of the

suspension in room temperature. The samples were then placed in a microscope

(Olympus, IX71), modified for optical tweezers and flow chamber experiments, and imaged

using a water immersion objective (UPlanSApo 60x, Olympus) [36,37]. A representative

image of a micro-sphere is shown in Fig 2a. The micro-spheres were moved by a piezo stage

with sub-nm resolution (PI-P5613CD, Physik Instruments). We used a CCD camera

(C11440-10C, HAMAMATSU, 8 bit) with a conversion factor (1 px = 84.7 ± 0.5 nm,

mean ± standard error (SE) on the mean, and the standard deviation (SD) was 1.6 nm), to

record the motion.

To obtain interpretable results, we compared the displacement of the piezo stage with the

displacement obtained by fitting detected particle positions to a sinusoidal function

f ðiÞ ¼ asinð2pi=bþ 2p=cÞ þ d; ð3Þ

where i is the frame number, a is the amplitude of displacement in pixels, b is the period, c rep-

resents the phase and d is an offset. In this case, b is a constant defined by multiplying the cam-

eras sampling speed and the piezo stage oscillation period.

To transform the displacement in pixels to real space distance, an additional calibration

process is required. In an ideal projection system, like a pin-hole camera, distances from the

image plane can be transformed to the real plane of interest using a multiplication factor.

However, when using an imaging system a more complex calibration model is required to deal

with plane misalignment [38] or lens aberrations [39], and other systematic errors of the

instruments [40], For simplicity, we modelled the image to real-space-projection as a paramet-

ric polynomial function. Based on our results, we choose a 5th degree parametric polynomial

function depending on the amplitude of the displacement expressed as,

D ¼ p6a
5 þ p5a

4 þ p4a
3 þ p3a

2 þ p2aþ p1; ð4Þ

where D is the real amplitude of the particle displacement in nm, and pi are the calibration

parameters. We used 11 video sequences with a known D. Thereafter, all algorithms were used

to measure the amplitude a from the videos, and the calibration parameters pi were calculated

by minimizing the projection error (the distance between the projection of measured ampli-

tude a and D). By applying this approach, the resulting projection error was<1% and the cor-

relation with the ground truth was statistically significant (t-test, p<0.05) and with a

correlation value >0.999.

Design of the experiment with tethered particles

Using bright field experimental data of supercoiled tether DNA, we tested the accuracy of

C-Sym in comparison to the other algorithms. The video data was taken from the studies in

reference [41], In these experiments, supercoiled DNA (pSB4312) was immobilized at one
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Fig 2. (a) Example of an image from the experiment conducted with a 2.0 μm silica micro-sphere immobilized to a cover slip.

(b) Measured displacement of the particle with the proposed C-Sym algorithm (marked as circles) and the ground truth

sinusoidal function for the first 200 frames of the experiment (solid line).

https://doi.org/10.1371/journal.pone.0175015.g002
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end to a coverslip using PNAs while the other end was attached to a 0.51 μm Streptavidin-

coated micro-sphere (cat. no. CP01N, Bangs Laboratory). The motion of a micro-sphere

was recorded at 225 Hz in an inverted microscope (Model No. DM IRB, Leica) with a high-

speed camera (Pike F100B, Allied Vision Technology, conversion factor of 49.97 nm per

pixel). The length of the time series were optimized to 30 seconds according to an Allan

variance analysis of the setup [42], Representative images (62x62 pixel ROI) are shown in

Fig 3a.

In these experiments, no ground truth of the particle position was available since a micro-

sphere will move stochastically due to the Brownian motion. However, since the appearance of

the microsphere in each frame, Fig 3a, only marginally changed from frame to frame because

the motion is more or less constrained in a plane, the algorithms were applied to each frame to

extract particle positions. A ROI of fixed size was applied around the detected particle in each

frame, see Fig 3b. The ROI from frame i was thereafter correlated with ROIi+1 resulting in a

number between 0 and 1, where the latter corresponds to perfect correlation. The consecutive

correlation time series of an experiment is shown in Fig 3c. Thus, if an algorithm is able to

accurately predict the position of the particle, the correlation value should be close to 1. Note

that this does not provide a direct measurement of accuracy for the algorithms; however, it

measures the similarity of ROIs with the particle positioned in the center and therefore reveals

the accuracy and precision of particle location.

In the original video sequences, we estimated the mean SNR of frames to be 10. To test the

algorithms for robustness against noise, we applied to each frame white-noise with zero mean

and different variance, σ, to obtain the mean SNRs in the range from 0.1 to 10. At each noise

level we evaluated each algorithm using the relative difference of correlation values. The parti-

cle position in a noisy image were found by the algorithms and used in the original image as

(xi.yi), see procedure in Fig 3.

Central-Symmetry algorithm (C-Sym)

Accurately extracting the particle position from images can be problematic if the images

have: a substantial amount of noise, changing background colors, or changing particle

appearance. Our approach to handle this, is to use geometrical symmetry to find the particle

position. A rough estimate of the particle position is first needed. This can be obtained using

standard methods, e.g., manual selection, template matching, or segmentation, but the

choice of method is not crucial for the performance and the final results. Since the algorithm

consist of several steps, we present these steps in the workflow chart in Fig 4, and each step is

described below.

(a) Template extraction: a search area A, defined as a two dimensional array, is positioned

around the initial center estimation, see Fig 4a. For each point (x, y) in A, a ROI is created

with a fixed size (n×n) defined by the user. In general, this ROI should be slightly larger

than the particle. The ROI is divided vertically at x, and a mirror image of each half is; cre-

ated, flipped and concatenated to each half to form two templates denoted TL and TR. A

similar process is conducted horizontally at y resulting in two new templates, TT and TB, as

shown in Fig 4a. The templates denoted T, are all functions of x and y, (i.e., TX ;YL ), for clarity

we choose not to write that dependency explicitly.

(b) Symmetry measurement: the 3D correlation map, CorrX(x, y), is derived from the tem-

plate pair TL and TR, representing the vertical symmetry of the particle at the candidate

point (x, y) in A. Likewise, the 3D correlation map CorrY(x, y) is derived from TT and TB,

representing the horizontal symmetry of the particle at (x, y). The correlation maps are
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Fig 3. Evaluation of the performance of the algorithms using a tethered micro-sphere. (a) The algorithms are used to

locate the micro-sphere position in each frame. (b) The micro-sphere is extracted from every frame using a constant sized

ROI centered on the detected position. Consecutive ROIs are correlated as denoted by the operator
. (c) The correlation

for each frame number. An algorithm with poor precision will give a low correlation value, thus, the evolution of correlation is

an indicator of the stability and robustness of the algorithm used to locate the micro-sphere.

https://doi.org/10.1371/journal.pone.0175015.g003
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defined as,

CorrXðx; yÞ ¼

Xnxn

i;j

ððTLði; jÞ � mLÞðTRði; jÞ � mRÞÞ

sLsR
; ð5Þ

CorrYðx; yÞ ¼

Xnxn

i;j

ððTTði; jÞ � mTÞðTBði; jÞ � mBÞÞ

sTsB
; ð6Þ

Fig 4. The workflow of the C-Sym algorithm. (a) For candidate points (x, y) in a search area A, a region of interest (ROI) is defined

and four templates of the particle are created, dividing the ROI horizontally and vertically and reconstructing the whole particle from

each template. (b) Pairs of templates are used in Eqs 5 and 6, to create the 3-D correlation maps, CorrX and CorrY. (c) 2-D symmetry

profiles, SymX and SymY, are created from correlation maps using average filtering defined by Eqs 7 and 8. (d) Symmetry profiles are

interpolated using the Hermite algorithm. (e) Correlation centers are obtained from interpolated Symmetry profiles with polynomial

fitting.

https://doi.org/10.1371/journal.pone.0175015.g004
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where TL, TR, TT, TB represent the four templates of size n×n built around the coordinates

(x, y); and μ and σ are the average and standard deviation of the corresponding template.

(c) Dimensional filtering: To increase the robustness against noise an average filter is applied

in each 3D correlation map. This reduces the correlation maps into two 2D symmetry pro-

files, SymX and SymY, as shown in Fig 4c and defined by

SymXðxÞ ¼
1

N

XN

y¼1

CorrXðx; yÞ; ð7Þ

SymYðyÞ ¼
1

N

XN

x¼1

CorrYðx; yÞ ; ð8Þ

SymX and SymY will have a maximum when TL and TR, and TT and TB are identical. This

maximum represents the center of symmetry of the particle, thus providing the center

position.

(d) Piecewise Hermite interpolation: To improve the accuracy, we use the Hermite piecewise

algorithm [43], which allows us to increase the resolution of the symmetry profiles and to

find the maximum in SymX and SymY with subpixel accuracy [44]. The advantage of using

piecewise Hermite interpolation in our algorithm is shown and discussed in the Supporting

Information S1 File.

In the interpolation process for SymX, the discrete points x1, x2, . . ., xn are used to create a

set of third-degree polynomials defined as,

pxkðtÞ ¼ ð2t
3 � 3t2 þ 1Þxk þ ðt

3 � 2t2 þ tÞmk þ ð� 2t3 þ 3t2Þxkþ1 þ ðt
3 � t2Þmkþ1; ð9Þ

where t are values in the interval [xk, xk+1]; mk is the slope of the tangent line of SymX at xk
andmk+1 is the slope of the tangent line of SymX at xk+1 respectively. The same procedure is

applied to the Y axis. The results of this process are two continuous curves with a continu-

ous first derivative which passes through the sampled values of SymX and SymY respectively.

These continuous curves are denoted as SX and SY.

(e) Peak analysis: The continuous curves SX and SY represent the symmetry of the particle in

A and their peaks represent the X and Y coordinates of the particle respectively. To find

these peaks, 2nd degree polynomials are fitted to SX and SY using 500 samples located in the

neighborhood of the discrete peak and with a sample interval of 0.01 pixels. Each polyno-

mial equation was solved using a Vandermonde matrix. Once the polynomial is obtained,

the center is calculated using the equation defined as,

polðxÞ ¼ q1x
2 þ q2x þ q3; ð10Þ

where qi are the polynomial parameters. The center of the particle in the X-axis, cX = −q2 /

2q1, is the peak of the fitted polynomial. The same procedure is used to locate the center of

the particle in the Y-axis. When the Hermite interpolation is omitted, the 2nd degree poly-

nomials are fitted to SymX and SymY using 5 discrete samples in the neighborhood of the

peak.

Results and discussion

The performance of the C-Sym algorithm in the particle location experiments with simulated

and real particles are outlined in detail below. These synthetic and experimental datasets were
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however not used to build our C-Sym algorithm but instead used to compare C-Symwith five

commonly used algorithms: CHT, CoM, XCorr, QI and GFit, details of these latter algorithms

are described in the Supporting Information S1 File.

Experiment with synthetic light microscopy images

In line with our hypothesis, C-Sym showed better accuracy and precision, especially for noisy

images. The evaluation was performed by using 110 000 simulated particle images with a reso-

lution of 512x512 pixels and by varying the SNR from 0.1 to 100 in 11 steps. The particle radii

varied from 10 to 100 pixels in 10 steps in these images. Estimated errors for each fixed particle

size and SNR are shown in Fig 5. To further illustrate the effect of SNR and particle radius, we

chose three selections of the results with a constant particle radius at 10, 50 and 100 pixels as

shown in Fig 6.

Both CHT and CoM showed lower accuracy than the other algorithms for SNR lower than

50, i.e. for images with more noise. GFit showed low accuracy for diffraction patterns in large

templates, that is >30. However, XCorr, QI, and C-Sym, all performed well down to a SNR of

1. Here, QI was slightly better than XCorr, whereas C-Symwas better than both the others and

able to provide high accuracy, 0.2 pixels mean error, at a SNR of only 0.1.

Particle size had a more complex effect on the result; implying for example that bigger parti-

cles are more influenced by noise. The response of CHT and GFit showed high error values for

some particle sizes even in low noise levels and CoM, XCorr and QI generated low accuracies

for particles smaller than 20 pixels in radius. However, C-Sym, does not show this limitation,

achieving a maximum mean error close to 0.1 pixel with particles of 10 pixel radius.

The precision of each algorithm was evaluated using the Standard Deviation (SD) of error

in particle position (Fig 7) and Fig 8 shows three selections of the results with a constant parti-

cle radius at 10, 50 and 100 pixels. The precision results were very similar to the accuracy

results. In particular, precision of CHT and CoM decreased significantly with noise, and the

precision of GFit decreased significantly with particle size, whereas XCorr and QI showed the

best precision with large particles and low noise levels. For these conditions, C-Sym showed

similar precision toQI, however, C-Sym outperformed QI for small particles and high noise

levels.

In conclusion, we have shown that CHT and GFit is, in general, inaccurate when measuring

particle positions. CoM has the disadvantage of being very sensitive to noise and GFit is sensi-

tive to the size of diffraction pattern. Yet, XCorr and QI perform better, where QI slightly out-

performed XCorr. This finding was expected, because QI uses XCorr in its first step and

thereafter refines the results. These results are also consistent with previous findings [45],

However, our data suggest that QI is not significantly better than XCorr. Overall, C-Sym
showed the best results, achieving generally similar or better accuracy and precision than the

compared algorithms, while still being able to measure smaller particles and being more robust

against noise.

Experiment with synthetic fluorescent images

In this experiment, C-Sym showed high accuracy and precision at low noise levels. We used

synthetic fluorescent like images as shown by a representative data set in S3 Fig. Estimated

mean and SD error in particle position are shown in Figs 9 and 10, respectively, and three

selections of mean and SD of error with a constant particle radius at 10, 50 and 100 pixels are

presented in Figs 11 and 12. CoM did not perform well providing an almost flat error surface.

This reflects the inability of the algorithm to refine the initial center estimation (containing a

±2 pixels random error). We found that only when using a significantly bigger ROI, where all
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Fig 5. Mean error in the center position of the particles measured using: C-Sym, CoM, CHT, XCorr QI and GFit

algorithms for different particle radius and noise levels. The bottom panel shows the scales and label of each axis.

A low value of the SNR indicates noisy images. S1 and S2 Figs show examples of the images used to generate these

data.

https://doi.org/10.1371/journal.pone.0175015.g005
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nonblack pixels of the particle are visible, and a pure black background and moderate levels of

noise, the CoM is able to obtain a behavior comparable to the other techniques.

Xcorr andQI showed large errors with increasing particle size. GFit achieved the best overall

results, which was expected since the particles were generated with the exact model GFit uses

for fitting. However, C-Sym showed relatively low errors in general and achieved almost the

same accuracy as the GFit at SNRs above 4 regardless of the size of the pattern.

Experiment with micron-sized particles

To validate and compare the performance of C-Sym using real data, 40 video sequences with

16 000 frames acquired at 500 Hz of 2 μm micro-spheres attached to a glass surface were ana-

lyzed. A micro-sphere was oscillated at 1 Hz with a sinusoidal function and varying peak-to-

peak amplitude, from 1 to 900 nm. The estimated SNR of the video sequences is 50. The com-

parison of the aforementioned algorithms was done by using a relative amplitude error analy-

sis (the absolute error divided by the amplitude of the displacement), as shown in Fig 13 and

Table 1. We excluded GFit from the result since the error was one magnitude higher than

other methods. This is consistent with the results we derived using synthetic transmitted light

microscopy images.

The obtained results were generally consistent with previous finding [13,16,18], CoM
obtained the worst results, with an mean error >3 nm, and with a relative error>20% for

smallest displacements. XCorr and QI performed better, but they still obtained an error>10%

for the smallest displacements. The proposed C-Sym algorithm showed significantly better

results, achieving an mean and standard deviation of error<1 nm, with a maximum relative

error of 5%. Notably, these results do not support the statements in reference [45] which

claims that CoM was unable to track particles in a similar scenario and that XCorr obtains

large errors compared to QI.
The results are consistent with the synthetic experiments, and indicate that C-Sym is more

stable and obtains smaller errors than the other algorithms. In this experiment C-Symwas the

only algorithm able to measure amplitudes of nm order.

Experiment with tethered particles

Experiments using brightfield video sequences of a micro-particle attached to a coverslip

through DNA strands were also conducted. In general, CHT and was not able to locate the par-

ticle positions, therefore these algorithms were excluded from the comparison. This was

expected since the CHT requires a well-defined circular pattern; and this is not found in the

Fig 6. Comparison of the mean error in the center position of a particle of constant radius for different SNR

values. S1 Fig 1–2 show examples of the images used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g006
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Fig 7. Standard deviation of the error in the position of the center of particles measured with C-Sym, CHT, CoM,

XCorr, QI and GFit, algorithms according to the particle radius and the noise level. S1 and S2 Figs show

examples of the images used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g007
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images since the micro-particles show a diffuse intensity distribution. GFit was only able to

locate the particle position with accuracy in low noise conditions, and the achieved SD correla-

tion was two orders of magnitude higher than the other techniques. All other algorithms per-

formed well with a correlation >0.95 and a SD correlation <0.02 in all the SNR range as

Fig 8. Comparison of how the standard deviation of the error in the position of the center of particles measured with different

algorithms change with noise level while using a constant particle radius of 100 (left) 50 (center) and 10 (right) pixels. S1 and S2

Figs show examples of the images used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g008

Fig 9. Mean error in the center position of the particles measured using: C-Sym, CoM, XCorr QI and

GFit algorithms for synthetic fluorescent images using different particle radius (presented in terms of

the standard deviation of Gaussian distribution) and noise levels. S3 Fig show examples of the images

used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g009
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Fig 10. Standard deviation of the error in the position of the center of particles with C-Sym, CoM, XCorr, QI and GFit, algorithms

according to the particle radius (presented in terms of the standard deviation of Gaussian distribution) and the noise level. S3 Fig

show examples of the images used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g010

Particle position refinement algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0175015 April 12, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0175015.g010
https://doi.org/10.1371/journal.pone.0175015


shown in Fig 14. All algorithms also achieve an overall mean correlation>0.99 and SD correla-

tion<0.01, as summarized in Table 2. As in our previous results, C-Sym performed overall bet-

ter than the other algorithms, especially under high noise levels. Noticeably, QI showed slightly

worse results than XCorr, and CoM performed better under high noise levels (SNR < 1) than

both XCorr and QI.

Conclusion

We propose a new algorithm, denoted the Circular Symmetry algorithm (C-Sym), for accu-

rately locating the center of a circular particle. C-Sym uses the symmetry of the particle to

achieve robust sub-pixel accuracy, capable of handling general circular patterns obtained from

images. The strength of the algorithm is that even in noisy conditions, useful information of

the particle is kept in the spatial distribution of the symmetry feature.

We compared the algorithm with other state-of-the-art methods: Circular Hough Trans-

form (CHT), Center-of-Mass (CoM), Cross-Correlation (XCorr), Quadrant Interpolation (QI)

Fig 11. Comparison of how the mean error in the position of the particle centers measured with different algorithms change with

noise level while using a constant particle radius of 100 (left) 50 (center) and 10 (right) pixels. S1 Fig 3 show examples of the images

used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g011

Fig 12. Comparison of how the standard deviation of the error in the center position of particles measured with different

algorithms change with noise level while using a constant particle radius of 100 (left) 50 (center) and 10 (right) pixels. S1 Fig 3

show examples of the images used to generate these data.

https://doi.org/10.1371/journal.pone.0175015.g012
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and Gaussian Fitting (GFit) algorithms using synthetic and experimental images. The results

show that C-Sym is more robust and achieves a higher accuracy and precision when measuring

particle positions for a wide range of noise levels.

The robustness against noise in images is in particularly useful when studying systems with

low light conditions. For example, fast processes that require short shutter times, and optical

systems with high f-numbers. In addition, studying fast moving particles in micro-fluidic envi-

ronments are often subjected to low SNR and particle sizes may vary due to displacements in

Fig 13. Relative error of the amplitude of particle displacement with C-Sym, CHT, CoM, XCorr and QI, algorithms.

https://doi.org/10.1371/journal.pone.0175015.g013

Table 1. Absolute amplitude errors for the different algorithms in nm.

Algorithm Absolute Amplitude Error (nm)

Mean SD Maximum

C-Sym 0.71 0.45 1.57

CHT 2.43 2.19 9.66

CoM 3.55 4.57 18.30

XCorr 1.82 1.92 8.11

QI 1.67 1.69 7.59

https://doi.org/10.1371/journal.pone.0175015.t001
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Fig 14. Correlation results in the experiment with tethered particles using C-Sym, CoM, XCorr, QI and

GFit algorithms. For readability, the SD correlation for the GFit (two orders of magnitude higher than the

other techniques) is not represented in the chart.

https://doi.org/10.1371/journal.pone.0175015.g014
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depth. Therefore, C-Sym is expected to be a new useful algorithm for colloidal research, various

biophysical systems, giving a reliable estimation of particle location, even though the environ-

ment is noisy or the resolution of particles is low.

In this work we have shown that by using 2D spatial symmetry features of micro-particles

we can accurately determine their center position. A future work is to expand this symmetry

algorithm and investigate if it can find the bilateral axis of symmetry, i.e., the center line of a

geometrical object with identical left and right sides. This can prove very useful in several bio-

logical applications, e.g., when classifying animals, handling occlusions, and when determining

the direction of movement of fish or insects in biological assays.

Supporting information

S1 Fig. Synthetic transmitted light microscopy images at different SNR levels.

(TIF)

S2 Fig. An example of 30 synthetic light microscopy images.

(TIF)

S3 Fig. Synthetic fluorescent images with three different sizes (top, middle, bottom) at dif-

ferent SNR levels.

(TIF)

S4 Fig. Mean error in the center position of the particles measured using C-Sym: Four dif-

ferent versions of the algorithm were used to study the influence in the results of a median

filtering and of the Hermite interpolation step.

(TIF)

S5 Fig. Standard Deviation of the error in the position of the center of the particle mea-

sured with C-Sym: Four versions of the algorithm were used to analyze how a median fil-

tering and the Hermite interpolation step influence the results.

(TIF)

S6 Fig. Synthetic overlapping images with particle pairs of two different sizes (top and bot-

tom) at different distances from each other ranging from 1 to 3 times the Rayleigh limit L.

(TIF)

S7 Fig. Mean error in the center position of the particles measured using C-Sym, CoM,

XCorr, QI and GFit algorithms according to the particle distances (presented in terms of

the multiple of Rayleigh limit L) and the noise level.

(TIF)

S8 Fig. Standard deviation of the error in the center position of the particles measured

using C-Sym, CoM, XCorr, QI and GFit algorithms according to the particle distances

Table 2. Correlation values for the different algorithms.

Algorithm Correlation

Mean SD Minimum

C-Sym 0.9932 0.0053 0.8950

CoM 0.9905 0.0066 0.8706

XCorr 0.9916 0.0067 0.8888

QI 0.9915 0.0071 0.8742

GFit 0.9577 0.1401 0.0002

https://doi.org/10.1371/journal.pone.0175015.t002
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(presented in terms of the multiple of Rayleigh limit L) and the noise level.

(TIF)

S1 File. This is the main supporting information document. It contains additional details of

the experiment design, the algorithms of this paper, and the additional conducted experi-

ments.

(DOCX)

S1 Dataset. Matlab scripts used to generate the synthetic images in the conducted experi-

ments.

(ZIP)
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