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Abstract: Histatin peptides are a family of small histidine-rich cationic polypeptides
produced by two genes, HTN1 and HTN3. They are found in salivary secretions from
the parotid, sublingual, and submandibular salivary glands. These peptides undergo
proteolytic cleavages to produce different histatin fragments which play multiple roles
including wound healing, maintenance of enamel, and regulation of balance in the oral
microbiome. In this review, we explored the expression, structural characteristics, and
metal-ion-binding capacities of these peptides and how their functions are modulated
by their structure. We also provide here an insight into the potential use of histatins as
biomarkers and therapeutic peptides in the management of oral and non-oral diseases
including cancer. Potential gaps in the current understanding of histatins that warrant
further research have also been highlighted.

Keywords: saliva; antimicrobial peptides; wound healing; histidine-rich basic protein;
tissue regeneration; caries prevention; therapeutic peptides; tooth remineralisation;
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1. Introduction
Saliva is a biological fluid present in the oral cavity composed of 99.5% water and various

components including ions, electrolytes, proteins, and hormones [1]. Ninety percent of all
saliva is produced by the major salivary glands including the parotid, submandibular, and
sublingual glands. The remaining 10% is contributed by the minor salivary glands which
together with the major salivary glands are responsible for the secretion of salivary proteins [2].
Due to the complexity of saliva, it exhibits multiple physiological functions, predominantly
underpinned by salivary proteins, including chemical digestion, lubrication, buffering, enamel
mineralisation, and protection of the oral cavity [3]. Recent proteomic analysis of saliva has
characterised over 3000 distinct salivary proteins and peptides, with 90% being derived from
the major salivary glands and resulting from proteolytic degradation [4].

Biomedical researchers today are increasingly focused on developing non-invasive
techniques for the diagnosis, monitoring, and treatment of diseases to mitigate the psy-
chosocial trauma and pain that patients often endure during the disease process [5]. Body
fluids, particularly saliva, containing a complex mixture of lipids, proteins, small peptides,
DNAs, RNAs, and electrolytes have become a key area of interest for non-invasive diagnos-
tic strategies [6]. In this context, antimicrobial peptides, such as histatins found in saliva
and ocular fluids, may have broader applications than previously explored [7].
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Histatin peptides are endogenous, small, cationic peptides which comprise a family
of antimicrobial proteins found in human salivary gland secretions at a concentration of
33.3 +/− 16.7 µg/mL, with histatin-1 contributing the highest concentration [8,9]. The
most common histatin molecules found in saliva are histatin-1, -3, and -5, consisting
of 38, 32, and 24 amino acids and with molecular weights of 4929, 4063, and 3037 Da,
respectively [10]. Each of these peptides share the same first 22 residues with the exception
of residue 4 (Glu) and 11 (Arg) in histatin-1. Containing seven histidine residues each,
these peptides play a role in wound healing and host defence immunisation of the oral
activity due to their antimicrobial properties, as well as remineralisation of the enamel
pellicle [11]. Extensive structural and functional studies of these peptides have elucidated
specific residues and domains with peculiar activities.

2. Gene Expression and Transcriptional Regulation
Amino acid and cDNA sequence analyses, together with evolutionary data, have indi-

cated that histatin peptides are encoded by at least two loci. These have been identified as the
HTN1 and HTN3 genes mapped to human chromosome 4q13.3 which encode histatin-1 and
histatin-3, respectively. Histatin genes have been revealed to arise from the same gene family
as statherin proteins from gene-duplication events [12]. HTN1 and HTN3 both comprise six
exons. Whilst all of the six exons in HTN1 are protein-coding, only exons 2–5 are translated
in HTN3. These protein-coding exons are alternatively spliced and ligated to give rise to
histatin-2, -4, -6, and -7–12 [13]. The transcriptional regulation of these genes remains elusive.
However, a HTN27 box located approximately 2.3 kb upstream of the first exon of HTN1 has
been shown to strongly stimulate HTN1 transcription in human salivary gland cells [14].

3. Post-Translational Modifications
The absence of histatin-2 and -4 in freshly collected saliva from the parotid gland and their

later appearance following autoproteolytic degradation of the major histatin peptides indicates
that these peptides undergo an intricate proteolytic processing [15]. Studies monitoring the
formation and degradation of histatin fragments in whole saliva identified the sites first
targeted for cleavage in histatin-1, -3, and -5, suggesting that proteolytic enzymes have a
greater affinity for these sites [16]. Reverse-phase high-performance liquid chromatography
and electrospray ionisation mass spectrometry techniques have confirmed that histatin-3
is the first histatin peptide to undergo proteolytic cleavage to generate histatin-5 and -6
which share sequence similarity except for the presence of an additional C-terminal arginine
residue [17,18]. It has been suggested that histatin-6 is the first fragment produced from
proteolytic cleavage based on tandem mass spectrometry studies on human saliva. As the
only C-terminal fragments identified corresponded to residues 26–32, 28–32, and 29–32 of
histatin-3, it is suggested that the initial cleavage occurring at residue 25 corresponds to an
arginine residue [19]. Human salivary proteases are also shown to target the arginine residue
at position 22 and tyrosine residue at position 24 during primary cleavage in histatin-3 [16].
Although cleavages at the lysine residues at position 13 and 17 in the C-terminal region are
observed in all of the three major histatin peptides and are primary targets in histatin-1 and
-5, these cleavages occur after those seen at position 22 and 24 in histatin-3, suggesting that
salivary proteases display higher affinity for these residues [16]. As the functional activities
of histatins, such as their antifungal, wound-healing, and metal-binding abilities, are mostly
unaffected by these primary cleavages, it indicates that these peptides maintain sustained
functionality within the proteolytic oral environment [16].

Post-translational processing of histatin-3 is thought to give rise to histatin-4 and
histatins-7–12, as these peptides consist of residue sequences identical to those seen in
histatin-3 [7]. For instance, the amino acid sequence of histatin-4 is identical to the last
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20 residues of the C-terminal end of histatin-3 and is suggested to arise from a trypsin-like
cleavage of histatin-3 between lysine and arginine residues 11 and 12 [7,13]. Histatin-7 and -8
which show sequence similarity to residues 12–24 and 13–24 of histatin-3 may be generated by
proteolytic cleavages at lysine and arginine 11 and 12, respectively, of histatin-3 or histatin-5
with an additional cleavage at tyrosine 24 if generated solely from histatin-3 [13]. Histatin-9
and -10 arise from cleavages at lysine 11 and arginine 12 and 25 of histatin-3, resulting in
fragments with sequence similarity to residues 12–25 and 13–25, respectively. Alternatively,
they may arise from cleavage of the same residues excluding the cleavage at position 24 from
histatin-6 [13]. Cleavages at residues 4, 11, and 12, corresponding to alanine, lysine, and
arginine, respectively, give rise to histatin-11, which is identical in sequence to residues 5–11,
and histatin-12, which shares a sequence of residues 5–12 [13].

Post-translational modification of histatin-1 includes the phosphorylation of serine
at position 2 which is not present in histatin-3 and -5, suggesting that the salivary gland
kinase is specific for histatin-1 [19]. Additionally, some histatin-1 derivatives found in
submandibular and sublingual gland secretions contain sulphated tyrosine residues [20].
Histatin-2 has been reported as a degradable product and non-phosphorylated form of
histatin-1 as it shares the same C-terminal 26 residues but lacks the phosphorylated serine
residue at position 2. This peptide is thought to be generated by a trypsin-like cleavage
of histatin-1 between arginine residues 11 and 12 [13]. Understanding the proteolysis of
histatin peptides is crucial for elucidating their biological activities.

4. Structure and Functional Domains of Histatins
There is little available literature on the secondary structure of histatin peptides; how-

ever, circular dichroism and nuclear magnetic resonance studies have revealed that histatins
adopt different conformations in different solvents [21,22]. The structural and chemical
configuration of histatins is linked to its ability to bind to multiple different ligands in-
cluding metal ions [23,24] and other molecules such as sigma-2 receptors [25]. In aqueous
solution, histatins display weak amphipathic character [12]. Histatin-5, in particular, adopts
a random coil conformation in aqueous solutions and a largely α-helical conformation
in non-aqueous solvents including methanol [26], dimethyl sulfoxide [27], and trifluo-
roethanol [22], suggesting that histatins adopt a helical conformation in a hydrophobic
environment [21,26]. Whilst helical structures are normally stabilised by side-chain hydro-
gen bonding and salt-bridge interactions in aqueous solution, this was not observed in
histatin-5 [27]. Histatin-3, on the other hand, showed a lower tendency to adopt a helical
structure in aqueous solution, and in a 50:50 mixture of water and dimethyl sulfoxide
solution, it became more ordered [21].

Out of the 24 amino acids in histatin-5, 13 can act as potential ligands for metal
coordination, leading to the formation of stable conformational complexes and bonds and
potential differences in their interactions with macromolecules. Structural and functional
characterisation of histatin-5 using two-dimensional proton NMR spectroscopy showed that
the binding of metal ions to the polypeptide leads to stabilisation of the helical conformation
in a solution of trifluoroethanol and water [28]. The N-terminal of histatin-5 contains a
Cu2+/Ni2+-binding motif, termed the ATCUN motif, which consists of a histidine residue
at position 3 (XXH, where X represents any residue), and a Zn2+-binding motif (HEXXH,
where X represents any residue) [29]. The ATCUN motif adopts a square planar geometry,
and upon metal ion binding, it has been shown to induce the production of reactive oxygen
species (ROS) in the presence of ascorbic acid or magnesium monoperoxyphthalate, which
may be potentiated in the antifungal activity of histatins [23].

The HEXXH motif is a common zinc-binding motif found in many proteins. Corre-
sponding to residues 15–19 in histatin-1, -3, and -5, it adopts a helicoidal conformation
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and has been shown to preferentially bind zinc ions in histatin-5, enabling the peptide to
fuse with negatively charged vesicles [28,29]. This causes histatin-5 to undergo a confor-
mational change which stabilises its α-helical structure, as revealed by circular dichroism
spectroscopy [28]. As the HEXXH motif is found twice in histatin-1 and once in histatin-3,
it is likely that the binding of zinc ions to these peptides exhibits similar properties to
those seen in histatin-5. An amyloid peptide containing an identical zinc-binding motif
to that present in histatin peptides was found to also stabilise α-helical conformation in
solvents [30]. NMR spectroscopy studies of P-113, a 12-amino-acid-long peptide span-
ning residues 4–16 of histatin-5, identified that zinc ions are coordinated to the HEXXH
motif by nitrogen donor atoms of alanine (position 1) and histidine (position 4, 5, and 12)
residues [31]. From this, it is possible to conclude that zinc ions are similarly coordinated
in full-length histatin peptides. Whilst zinc binding is preferential, cobalt ions are also
able to bind to the first HEXXH motif in histatin-5 via two histidine Nε atoms and one
Nδ atom and two histidine residues in the second HEXXH motif via one Nε atom and
one Nδ atom [32]. It has been proposed that the imidazole ring in the histidine residue
and the carboxylic acid group of glutamic acid in the HEXXH motif may also stabilise
hydrogen bonding with a water molecule [29]. With this, it is possible to theorise that metal
coordination may confer an optimal structural configuration to enable histatin peptides to
interact with other peptide molecules.

5. Domain-Specific Functions
5.1. Antifungal Properties

The warm, moist environment of the oral cavity is conducive to the growth of multiple
microorganisms and requires complex defences to prevent infection. Histatins help to
exhibit a broad spectrum of antifungal activity against fungal oral pathogens including Can-
dida albicans (C. albicans), Cryptococcus neoformans, and Aspergillus fumigates, with C. albicans
being responsible for the most common oral fungal infection, candidiasis [33].

Histatin-1, -3, and -5 all exhibit antifungal activity against C. albicans; however,
histatin-5 has been shown to display the most efficient and strongest level of antifungal
activity by killing both blastopore and germinated forms [9,10,26]. Solid-phase procedures
identified that residues 9–24 of histatin-5 had higher levels of antifungal activity compared
to residues 1–16, indicating that antifungal activity is attributed to the C-terminal end of
the peptide. Increasing the length of the C-terminal peptide from 10 residues to 16 residues
displayed an increase in antifungal activity of the peptide with an increase of approximately
40–50% from 0% by lengthening the peptide from 10 to 12 residues at a concentration of
25 µM. Whilst the C-terminal fragments 11–24 and 9–24 displayed 80 and 90% antifungal
activity, respectively, compared to the full-length peptide construct, the shorter fragments
were far less active. Thus, increasing the chain length of the C-terminal sequence from 12
to 16 residues enhanced the antifungal activity of histatin-5, suggesting that a minimum
peptide length of 12 residues is required for optimal biological activity [26].

Several mechanisms of histatin-induced candidacidal activity have been proposed in-
cluding differences in the mode of interaction with the fungal cell wall and cell membrane, as
well as the ultimate cellular target of these peptides. One such mechanism of cellular uptake
is the ability of histatins to bind to and integrate with the negatively charged lipid bilayer
of the fungal cell membrane, resulting in the formation of transmembrane pores. This leads
to microleakage of the fungal cell contents including potassium ions and ATP, resulting in
osmotic imbalance and ultimately microbial cell death [9,34,35]. It has also been proposed
that histatins undergo a conformation change from a random coil in aqueous solution to an
α-helical conformation when in close proximity to the fungal cell membrane, suggesting that
antifungal activity may rely on the structural conformation of the peptide [26,36]. In contrast,
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replacement of specific residues in histatin-5 with proline to prevent alpha-helix formation and
insertion into the fungal cell membrane did not reduce the efficacy of its antifungal activity,
indicating that the fungicidal mechanism of histatin-5 is not reliant on its insertion into the
fungal cell membrane [37]. Histatins are also suggested to target the mitochondria of respir-
ing fungal cells based on early colocalisation analysis studies where they form ROS which
inhibit mitochondrial respiration leading to cell death [38–41]. Mass spectroscopy studies
have indicated that the binding of copper ions to the ATCUN motif in histatin-5 is required
for the production of ROS following its cellular uptake [23]. This candidacidal mechanism is
supported by studies using histatin-5, indicating that fungal cells subject to treatment with
energy inhibitors or mutation of the mitochondrial DNA resulted in a reduced susceptibility to
this peptide [42]. However, it has also been suggested that ROS play no role in the antifungal
activity of histatin-5 as the application of an ROS scavenger elicited no inhibitory effects on
the killing of C. albicans cells [43]. In vivo fungicidal assays of S. cerevisiae demonstrated that
the antifungal mechanism of histatin-5 involves binding to the heat shock protein, Ssa1/2,
which are envelope binding receptors on the cell wall of C. albicans cells [34,44]. The uptake of
histatin-5 following cell wall binding is proposed to utilise the cell wall polyamine transporters
Dur3 and Dur31 of C. albicans in an energy-dependent process [45]. Studies also suggest the
possibility that histatin-5 is localised into the vacuoles of fungal cells via an endocytic path-
way, as endocytic mutant C. albicans cells displayed reduced localisation; however, this is
not significant for the antifungicidal activity of histatin-5 [46,47]. The ability of histatin-5
(Figure 2) to show fungistatic and fungicidal activities against strains resistant to pore-forming
antifungal azole and amphotericin drugs in vitro including C. galbrata and C. krusei suggests
that histatins may be utilised as an alternative antifungal therapy against antifungal-sensitive
and antifungal-resistant strains of these microorganisms [48]. Yeast two-hybrid analysis also
highlights interactions between Ssa1/2 cell surface receptors and histatin-3, suggesting that
histatin-3 also exhibits a similar antifungal mechanism to histatin-5 [34].

P-113 (from residue 4–15 of histatin-5; a 12-residue peptide) was identified as the
shortest fragment of histatin-5 that can retain the antifungal activity of its full-length parent
peptide, using in vitro killing assays against C. albicans and other Candida species [49].
The substitution of two adjacent histidine residues (H7H8) in the full-length histatin-5
without subsequent change in the proteins’ structural conformation resulted in a 8–20-fold
reduction in its antifungal activity, suggesting that histidine residues are necessary for
the candidacidal activity of histatin-5 [48]. On the contrary, individual replacement of the
histidine residues at positions 4, 5, and 12 of P-113 with other hydrophobic residues did not
affect the anticandidal activity of this peptide, suggesting that histidine is not an essential
residue for eliciting antifungal activity in vitro [49]. The transport of P-113 into the cytosol
of C. albicans cells has been shown to rely on the cationic lysine residues at position 2 and
10 [50]. Further research is required to determine if histidine residues play a role in the
mechanism of action of P-113 in vivo, including its stability and ability for tissue binding.

5.2. Antibacterial Properties

Although some studies suggest that histatins exhibit limited or no antibacterial effects
against common oral bacteria such as Streptococcus mutans (S. mutans) [51], others show that
the cationic properties of histatin promote bactericidal effects [52–56]. The negative charge
on bacterial cell membranes is conferred by the large proportion of acidic phospholipids.
As histatin peptides are positively charged, they are thought to undergo electrostatic
interactions with target bacterial cell membranes and subsequently integrate into the lipid
bilayer. This ionic interaction leads to thinning of the cell membrane which is an essential
step for their antibacterial activity [57]. S. mutans is a Gram-positive facultatively anaerobic
bacterium and a major aetiological agent of tooth decay, as it forms biofilms on the enamel
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surface. The interactions of histatin-1 and another salivary protein, statherin, with the
enamel pellicle competitively inhibit the adsorption of adhesion-promoting high-molecular-
weight glycoproteins (HMWGPs) on the hydroxyapatite surface; these HMWGPs facilitate
the attachment of S. mutans onto the enamel surface [58]. This antibacterial property of
histatin-1 can be attributed to the negative charges present at the N-terminal of the peptide,
as removal of the negative charges diminished its inhibitory effects [58].

Periodontal disease is characterised by an increased level of inflammatory exudate
consisting of inflammatory mediators and tissue-breakdown products within the peri-
odontal pockets, owing to the presence of pathological bacteria. Porphyromonas gingivalis
(P. gingivalis) is a Gram-negative bacterium responsible for the development of periodontal
inflammation and peri-implantitis. It has been revealed that histatin-5 can inhibit the
production of inflammatory cytokines by this bacterium in human gingival fibroblasts by
altering its membrane function and metabolic processes and prevent its trypsin-like activity
on the periodontal tissues [59,60].

5.3. Enamel Fortification

The acquired enamel pellicle (AEP) is a thin biofilm covering the oral mucosa and tooth
surfaces. This layer is formed by the adsorption of organic and inorganic molecules from saliva
onto the enamel surface. The main function of AEP is the lubrication and protection of teeth
from demineralisation; in addition, it also helps in the remineralisation process. The AEP also
provides adhesion sites for polymicrobial colonisation during biofilm (plaque) formation [61].

Salivary peptides, especially histatins, are among the first peptides to be adsorbed on
the hydroxyapatite of enamel during AEP formation [62]. Histatins are multifunctional
molecules possessing antibacterial, antiviral [63], and antifungal properties [10,38,53]. As
discussed before [64], these peptides also inhibit adsorption of high-molecular-weight
glycoproteins on the tooth surface that provide adhesion sites for cariogenic bacteria. In
addition, these peptides also prevent crystal growth of calcium and phosphate salts in
saliva, thus maintaining high calcium and phosphate ionic levels. Collectively, these
features contribute to the maintenance of enamel integrity [65].

Although, normally, histatins are highly sensitive to proteolytic degradation in whole
saliva, binding to the AEP has been shown to exert a protective effect against further proteol-
ysis, possibly by preventing access of the proteases to their preferred cleavage sites, and also
by blocking precipitation of calcium and phosphate on the enamel surface [66,67]. Several
studies have shown that phosphorylated forms of histatins are more potent in protecting
enamel from demineralisation. It has been reported that the phosphoserine at position 2
in histatin-1 or synthetically introduced into histatin-3 conferred a significantly higher
degree of hydroxyapatite adsorption and protection of the enamel against demineralisation
compared to unphosphorylated histatins [66,68]. This is consistent with previous studies
indicating that adsorption to hydroxyapatite is greater in full-length histatin-1 compared to
recombinant histatin-1, lacking the phosphate at position 2 [69]. In the absence of histatins,
however, no reduction in demineralisation was reported, indicating that phosphoserine is
not the only determining factor affecting hydroxyapatite adsorption [70].

Adsorption to hydroxyapatite is an important feature of histatins, and, in fact,
histatin-1 was first identified when it was found to adsorb to hydroxyapatite powders [71].
The relatively lower affinity of histatin-3 and -5 to hydroxyapatite is proposed to be due
to the presence of an SXA motif (where X presents any residue) instead of the SXE motif,
which is present in histatin-1 [72]. The SXE motif can be phosphorylated and is considered
to be responsible for the binding of calcium ions [72]. Despite this, in vivo studies have
identified full-length histatin-3 and -5 peptides present within the AEP, suggesting that
upon binding to hydroxyapatite, these peptides are able to resist proteolysis, possibly by
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adopting a favourable conformation that resists trypsin-like protease activity [66]. The
identification of histatin-1 fragments in the human AEP in vivo may suggest that these
peptides may still exert protective properties following proteolytic cleavage [73,74].

The adsorption of histatins to the AEP in the presence of other proteins, however, has
been shown to influence the adsorption behaviour of these molecules; thus, further studies
are required to elucidate the functional effects of histatins in multi-protein systems [68].
Moreover, the precise mechanism by which histatins reduce demineralisation needs to be
explored further.

5.4. Immunomodulation

Periodontal bacteria can produce lipopolysaccharides, which trigger the activation of
immune signalling cascades, leading to periodontal destruction [75]. Histatins have been
revealed to display immunomodulatory and anti-inflammatory effects, thus protecting the
periodontium. In human oral fibroblasts, histatin-3 binds to the heat shock cognate protein,
HSC70, at its substrate-binding domain (residues 385–543) and inhibits the activation of toll-
like receptor signalling pathways and subsequent inflammatory cytokine production [76,77].
Histatin-1 has been shown to limit the inflammatory response in a different way by reducing
the production of nitric oxide triggered by lipopolysaccharides, inflammatory cytokines,
and other inflammatory mediators that participate in the c-Jun N-terminal kinase (JNK),
MAPK, and NF-kB inflammatory signalling pathways in macrophages [78]. Histatin-5 also
showed an inhibition of periodontal inflammation and alveolar bone resorption in rats with
experimental periodontitis; therefore, it is plausible that histatin-5 regulates periodontitis
in a similar manner in humans [60].

A hallmark of gingival and periodontal disease is an increase in both host and bacterial
proteolytic enzymes, including matrix metalloproteinases (MMPs), which play a role in the
destruction of periodontal tissues. Experiments comparing the activity of various histatin-5
fragments on host-derived MMP-2 and -9 concluded that residues 9–22 showed identical
inhibitory effects on MMPs as those of the full peptide, suggesting that these residues
comprise an antibacterial C-terminal functional domain [12,41]. Histatin-5 is also able to
deprive microorganisms of the copper and zinc ions necessary for enzyme function and
microbial growth by sequestering and binding to these ions via specific binding sites [12,79].
The low dissociation constants of histatin-5 with copper and zinc ions suggest that the
metal-binding motifs of the peptide can bind these ions in saliva under physiological
conditions [23,41]. It is suggested that histatin-5 can also bind these ions present within
the active domain of MMPs, resulting in their inhibition. It has been demonstrated that
histatin-5 is also capable of competitively and non-competitively inhibiting arginine- and
lysine-specific gingipains, which constitute a class of enzymes involved at the onset of
periodontitis produced by P. gingivalis [41]. The topical application of histatin-5 and its
fragment P-113 to beagle dogs with gingivitis was shown to significantly prevent plaque
formation, bleeding on probing, and the onset of gingival inflammation [80].

5.5. Wound Healing

Wound healing is a vital biological process that restores tissue integrity after injury.
This process involves four coordinated phases: haemostasis (blood clotting), inflammation,
proliferation (characterised by new tissue formation through collagen synthesis and an-
giogenesis), and remodelling [81]. Wound healing in the oral cavity is notably faster and
more efficient than in the skin, partly due to the presence of histatin peptides [82,83]. His-
tatins can influence various stages of wound healing, including cell migration, spreading,
adhesion [84,85], angiogenesis [86], and the suppression of inflammation [59,77,78,87,88].
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Notably, histatin-1 and -3 actively promote epithelial migration, unlike histatin-5 [89];
this is different from classical mitogenic factors such as epidermal growth factor (EGF) [89,90].
One study has described the possibility of histatin-induced cell migration via G-protein-
coupled receptors (GPCRs), as the pertussis toxin inhibited histatin-stimulated keratinocyte
motility [91]. The influence of histatin extends beyond epithelial cells, facilitating migration
in multiple cell types, including fibroblasts [91,92], osteoblasts [93], adipocytes [94], and
endothelial cells [86,92]. The situation becomes more complicated by the results indicating
that histatins can induce cell migration in different cells, but the mechanisms are variable
and cell-specific; for example, in fibroblasts, the mammalian target of rapamycin (mTOR)
signalling pathway has been suggested to be involved [95], whereas in endothelial cells, the
ERK1/2 signalling pathway may be involved [86], similar to epithelial cells [89].

In addition to migration, histatins also support cell spreading and extracellular matrix
(ECM) attachment, a crucial step during wound healing and tissue regeneration. Studies
have used retinal epithelial cells, colorectal adenocarcinoma cells, and fibroblasts [84], as
well as endothelial cells, on ECM matrices [85,86].

Angiogenesis is a vital process in wound healing, where the stimulation and proliferation
of endothelial cells lead to the formation of new blood vessels, ensuring an adequate nutrient
supply for tissue regeneration [96]. In endothelial cells, migration and angiogenesis induced by
histatins involve VEGFR2 signalling [86,97]. The RIN2/Rab5/Rac1 axis, critical for vascular
morphogenesis [98], regulates histatin-1’s effect on endothelial cell spreading and barrier
integrity [86]. In vivo studies also confirmed that histatins promote wound healing through
angiogenesis, endothelial cell adhesion, and barrier integrity [85,86,99]. In a wound-healing
mouse model, topical application of histatin-1 (10 µM) demonstrated significantly improved
acute wound healing compared to an acellular dermal matrix paste [100].

Despite significant progress, histatin internalisation and trafficking remain insuffi-
ciently understood, warranting further investigation. They are suggested to be stereospe-
cific membrane receptor-mediated and energy-dependent (via GPCR/endocytosis/ERK
signalling process) [89,91], targeting the mitochondria, endoplasmic reticulum [91,101],
and endosomes (in endothelial cells) [86], thereby increasing metabolic activity and cell
activation. An endoplasmic reticular protein, TMEM97/sigma-2 receptor, involved in
cholesterol processing, cell migration, neurodegenerative diseases, and cancer has been
shown to be the downstream target (receptor) of histatin-1 (ligand) in epithelial cells [25].

The wound-healing properties observed in histatin-1, -2, and -3 are thought to be
attributed to their C-terminals. This is supported by in vitro studies demonstrating that
histatin-5, which is derived from the N-terminal 24 residues of histatin-3, does not display any
wound-closure activity compared to histatin-1 and -3 [16]. In vivo scratch assays of human
corneal limbal epithelial cells and serial truncation experiments on the efficacy of histatin-1, af-
ter progressively deleting residues, identified that residues 20–32 (SHREFPFYGDYGS) formed
the minimal active wound-healing domain of histatin-3. Histatin-5, on the other hand, was
shown to only retain the SHR portion of the histatin-1 wound-healing domain [102]. Similar
scratch assays performed in vitro identified that a 5-amino-acid-long C-terminus domain
(SHRGY) of histatin-5 is required to promote epithelial cell migration during wound closure,
as constructs without this sequence showed no significant changes to the rate of wound clo-
sure [102]. It has been demonstrated that cyclisation of histatin-1 increased its wound-closure
activity by approximately 1000-fold, revealing that recognition and binding of histatin-1 to its
cognate receptor requires the adoption of a specific spatial conformation [89,103].

5.6. Possible Role in Cancer

The promigratory and pro-angiogenetic roles of histatins can be potentially linked to
cancer development and progression, as previous studies have demonstrated the increased
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migration rates induced by histatins on epithelial tumour cells, including MCF-7 breast
carcinoma [92], Caco-2 colorectal carcinoma, and TR146 oral cancer cells [84–86]. Histatin-3
appears to regulate G1/S transition in oral cells through its association with HSC70 and
p27 (Kip1) [104]. Also, a high-throughput saliva proteomic analysis of HNSCC samples
showed that HTN3 fragments were highly expressed, indicating their involvement in
OSCC progression [105]. Furthermore, in a gene profile analysis of HNSCC tissue samples,
HTN1 was one of the top fifty dysregulated genes [106]. In addition, the gene expression
signature of oral squamous cell carcinoma samples based on a GeneChips array study
suggested that HTN1 and HTN3 were highly expressed in advanced-stage HNSCC [107,108].
Histatin-1 can enhance cell–cell adhesion markers like E-cadherin and ZO-1 in Caco-2 cells
while counteracting the effects of EMT-inducing agents such as EGF and TGF-β. These
findings were observed in spheroid assays using TR146 epithelial cells [85]. In addition,
immunohistochemistry analysis of 98 samples of head and neck squamous cell carcinoma
(HNSCC) showed higher expression of histatin-1, and a positive correlation between PD-
L1 and histatin-1 was associated with the progression of HNSCC [109]. Based upon the
available literature, it can be speculated that although histatins appear to be involved
in cancer progression, the precise gain or loss of functional roles remain unclear and
unexplored, particularly in oral malignancies. Future research is necessary to find out the
precise role of histatins in cancer progression and uncover their broader potential in cancer
biology. All possible/potential mechanisms of cancer progression that can be influenced by
histatins have been summarised in Figure 1.

 

Figure 1. Possible/speculated mechanisms through which histatins, especially histatin-1 and -3, can
support cancer progression.

6. Biomedical Applications of Histatins
6.1. Histatins as Biomarkers

A biomarker, also known as a molecular marker or signature molecule, is a biolog-
ical molecule present in blood, other bodily fluids, or tissues. It serves as an indicator
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of a normal or abnormal process, condition, or disease. Biomarkers can also be used to
assess how effectively the body responds to a treatment for a specific condition or ill-
ness (https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biomarker;
accessed on 20 April 2025). In addition to being recognised as antimicrobial peptides,
histatin salivary levels also correlate with different physiological and pathological dis-
ease processes. This makes them valuable as diagnostic and disease-monitoring potential
biomarkers, as outlined in Table 1. Their zinc and copper ion-binding domains can poten-
tially be conjugated to metal ions with fluorescence or magnetic properties to be utilised as
fluorescent biomarkers for diagnostic and monitoring purposes. However, this capability
has yet to be utilised in clinical applications.

Table 1. List of studies describing histatins as the biomarkers of different diseases/processes.

Histatin Type Disease Name References

Histatin-1 Type I diabetes [110]

Histatin-1 Periodontal disease [111]

Histatin-1 AIDS [112,113]

Histatin-5 Caries [114,115]

Histatin-3 or
Histatin-5 Alzheimer’s disease [116]

Histatin-5 Stress [117]

Histatin-2 Addictions including cocaine [118,119]

Histatin-3 Obesity in pregnancy with periodontitis [120]

Histatin-1 Bone diseases [121]

Histatin-1 Aqueous-deficient dry eye disease
(ADDE) [122]

Histatin-3 Oral squamous cell carcinoma [109]

6.2. Histatins as Therapeutic Peptides
6.2.1. Antimicrobial Therapy

Histatin peptides, being antimicrobial, can be used in oral as well as non-oral disease
management as an alternative to conventional drugs. For therapeutic applications, these
are especially recommended where the infection is localised and accessible via topical
delivery, such as for the treatment of candidiasis (thrush) and mucositis in the oral cavity.
Non-oral diseases include resistant skin infections and lung infections [123,124].

The antimicrobial potential of histatins can also be exploited in artificial salivary prod-
ucts for the management of patients with salivary dysfunction or xerostomia. The potential
for histatins to be used in artificial saliva substitutions in patients with salivary gland
dysfunction is indicated by the increased incidence of oral fungal infection in the absence of
histatin molecules. Moreover, their antifungal properties suggest their effectiveness as topi-
cal histatin preparations and histatin-containing denture base acrylics to prevent C. albicans
infection. Further research is, however, necessary to determine optimal expression systems
for the construction and later purification of histatin variants with enhanced antimicrobial
properties, which can be used to deepen our understanding of their functional mechanisms
and aid the manufacture of novel histatin-based therapeutic agents on a grander scale.
There is one putative active domain in histatin-5 called Dh5 (residues 11–24) that has been
used as a scaffold in the design of new peptides when looking for new medicines [125].
The therapeutic applications of histatin-5 are summarised in Figure 2.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biomarker
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Figure 2. Histatin-5’s applications as a biomarker and therapeutic peptide. Histatin-5 therapeutic
peptides can be modified to overcome unstable activity.

6.2.2. Caries Prevention Therapy

As histatins, especially histatin-1 (Figure 3), help with remineralisation and restrict
microbial biofilm formation on teeth, histatin-based therapeutic products such as gels,
toothpastes, and varnishes can be synthesised for caries prevention.

 

Figure 3. Biomedical applications of histatin-1. Histatin-1 can be used in caries prevention as it
remineralises enamel and enables tissue regeneration and implant osteointegration. Histatin-1 also
supports cancer progression, especially in head and neck cancer; however, the precise mechanism is
inexplicit and warrants further research.
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6.2.3. Tissue Bioengineering

Tissue engineering is an emerging field, and histatins are attractive components
for tissue regeneration due to their antimicrobial actions [10,126], supportive role in an-
giogenesis [86], involvement in epithelial cell migration [89,91], and anti-inflammatory
potential [77,78]. In vivo studies involving rodent burn models [127] and skin wound
models in diabetic rats [128,129] have confirmed histatins’ potential applications in tissue
regeneration and wound healing. The antimicrobial properties of histatins can be exploited
in the synthesis of novel therapeutics that can replace conventional antibiotics to overcome
wound infections and antibiotic resistance. For example, the recent development of an
antibacterial, self-healing adhesive nanocomposite hydrogel possessing ideal mechanical
and biological properties was shown to promote skin full-thickness wound regeneration in
mouse models [130,131]. These hydrogels, which significantly promote wound closure, col-
lagen deposition, and angiogenesis, may be modified to efficiently release histatin peptides
to accelerate wound healing, including those infected by bacteria.

Histatins exhibit remarkable potential in bone repair and regenerative medicine by
activating pre-osteoblasts and inducing the expression of key osteogenic markers, including
osteocalcin, osteopontin, and Runx2, while also increasing alkaline phosphatase (ALP)
expression and enzymatic activity [121,132]. Additionally, histatin-1 supports tissue re-
generation by enhancing surface adhesion and migration in non-osteogenic cells, such as
primary mesenchymal cells from dental pulp and tooth apical papilla [121].

Histatin-1 has also been found to improve the efficiency of bone morphogenetic
protein-2 (BMP-2) in stimulating ectopic bone formation in vivo, although the underly-
ing mechanisms remain unexplored [133]. Its regenerative potential has been validated
across several experimental models, including an orthotopic bone-healing model [134], a
monosodium iodoacetate (MIA)-induced osteoarthritis rat model [135], and a model of
bisphosphonate-related osteonecrosis of the jaw (BRONJ), where it has been shown to coun-
teract the cytotoxicity induced by zoledronic acid (a bisphosphonate) on pre-osteoblasts
and endothelial cells [136].

Advancements in bioengineering suggest that conjugation of histatins with biocom-
patible materials may further enhance their therapeutic potential. For instance, histatin-5
conjugated with a titanium-binding peptide effectively prevents P. gingivalis adherence
and biofilm formation on titanium implants, thereby mitigating peri-implantitis and im-
proving osteointegration [137]. These insights underscore the promising applications
of histatin-1 in osteogenic differentiation and functional tissue regeneration, paving the
way for novel strategies in bone and pulpal regenerative medicine. Future investigations
could focus on elucidating the molecular mechanisms governing histatin-mediated bone
regeneration and optimising its integration with biomaterial scaffolds for next-generation
regenerative therapies.

6.2.4. Anticancer Therapy

Histatins have emerged as promising anticancer peptides, with studies demonstrating
their potential to enhance the efficacy of traditional chemotherapeutic agents. Specifi-
cally, histatin-1 has been shown to increase the sensitivity of HNSCC cells to cisplatin,
allowing for a reduction in the required drug concentration while maintaining therapeutic
effectiveness [138].

Beyond their role in chemotherapy efficacy, histatins exhibit nuclease-like activity
and possess metal-binding sites, positioning them as attractive candidates for artificial
metalloscissors in cancer therapy [12]. Metal complexes, a key category of artificial met-
alloscissors, can facilitate nucleic acid strand cleavage, offering a targeted approach to
disrupting disease-related DNA/RNA. Unlike conventional drugs, these metalloscissors



Int. J. Mol. Sci. 2025, 26, 5019 13 of 23

act without enzyme-like functions, providing a distinct mechanism for oncological and
antimicrobial interventions. This concept draws inspiration from natural metallonucleases
and metallopeptide antibiotics [139].

By leveraging their intrinsic nuclease activity and metal-binding properties, histatins
hold potential as therapeutic peptides capable of executing nucleic acid modifications for
cancer treatment. Further investigation into their molecular mechanisms and integration
with bioengineered drug delivery systems may unlock new avenues for precision oncology.

7. Overcoming Limitations in Therapeutic Applications of Histatins
7.1. Combined Histatin Preparations for Enhanced Functionality

Varying concentrations of different histatin peptides may facilitate the differentiation
of diseased and healthy states without surgical intervention; therefore, different histatin
peptides can be combined together to enhance their therapeutic efficiency. Their natural
presence in human saliva and lack of known cross-reactivity with host tissues render
these peptides advantageous for use in the oral cavity as potential therapeutic agents
compared to conventional therapies. Clinical studies have demonstrated that modified
histatin preparations show high biocompatibility in the oral cavity and can slow down
plaque formation, thereby reducing the severity of oral diseases [38].

7.2. Overcoming Proteolytic Instability

The therapeutic potential of histatins against fungal infections is restricted by their
instability against proteolysis [16]. For instance, a study demonstrated that histatin-5 is
cleaved and inactivated by secretory aspartic proteases (Saps) produced by C. albicans. The
same study also identified that a single-residue substitution, K17R, in histatin-5 confers
increased resistance to proteolysis by Saps, whilst K11R substitution enhanced its antifungal
activity [140]. Thus, structural and functional analysis of histatins is crucial for identifying
their proteolytic susceptibility and will impact their use as therapeutic agents. Modification
of histatins’ structures, including shortening the peptide or substituting amino acids, may
confer resistance to proteolytic degradation whilst retaining their activity and can help to
reduce the cost of their manufacture and production [64,140,141].

7.3. Achieving Gradual and Constant Release of Histatins

One of the major drawbacks in using histatins as therapeutic peptides is that they
cannot be constantly and gradually released. Histatins can form complexes with other
proteins, rendering them non-functional; for example, histatin-5 is shown to form a complex
with amylase in saliva that does not display antifungal activity [142]. Thus, developing a
mode of gradual and constant release of histatins is needed in the treatment of oral and
non-oral lesions.

7.4. Improving Histatin Delivery in Therapeutics

Histatins as therapeutic peptides can be combined or incorporated into different vehi-
cles for improved delivery and bioavailability. Unremitting identification of a suitable and
efficient drug delivery system which supports stabilisation of histatins is fundamental for
their promotion as a therapeutic agent. Histatins can be engineered into nanocarriers, e.g.,
liposomes or micelles, to improve drug stability and targeted release in oral tissues [143].
The use of liposomes as carriers for histatins has many advantages because of their high
biocompatibility, attributed to their phospholipid membranes, and their ability to protect
their contents from proteolytic degradation [144]. Based on this, synthetic histatin-5 pep-
tides have been synthesised using solid-phase synthesis techniques and purification and
incorporated into liposomes using a thin-film hydration technique. It was observed that
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these liposomes were able to gradually release histatin-5 over a period of 96 h and control
yeast growth for 72 h, thus promoting its availability at the site of action and prolonging its
antifungal effects [145].

7.5. Modifying Peptide Length to Ensure Best Possible Drug Efficiency

Histatin bioengineered therapeutic peptides of varying lengths can be made while
keeping their functionality to improve their therapeutic efficiency. Fragments derived
from full-length histatin-3 and -5 peptides display the same or similar levels of antifungal
activity, possibly highlighting their use as short-term antifungal peptide drug therapies.
Animal studies and human clinical trials showed that P-113, the 12-residue-long amidated
fragment of histatin-5, has the potential to prevent the development of gingivitis, with no
side effects. It shows its potential use as a safe daily mouth rinse, as demonstrated in a
study which revealed that a dose level of 0.01% of this peptide was effective in significantly
preventing the development of plaque and gingivitis in an experimental human model
of periodontal disease [146]. The lack of mucosal irritation, staining, and other notable
side effects of common daily mouth rinses highlights the potential of P-113 to be used
as a therapeutic product against periodontal disease [146]. The potential for histatins in
the treatment of vulvovaginal candidiasis in mouse models has been highlighted by the
design of small antifungal peptides inspired by the structure of histatin-5 which show a
selective preference for fungal cells over bacteria and mammalian cells and promote fungal
cell death by targeting the nucleus and mitochondria [147].

Bioengineered peptides synthesised to enhance the activity and bioavailability of
histatin therapeutic peptides are summarised in Table 2. Antimicrobial peptide modifica-
tions intended to improve their activity against a pathogen may have unpredictable and
undesirable side effects on other pathogens, as summarised in Table 3.

Table 2. List of modified salivary histatins.

Name Modification/
Engineering

Purpose/
Applications References

Repeat-histatin-3
Repeat-histatin-3-repeat

Functional domain was repeated in
tandem 5 times increased candidacidal activity [148]

DR9-RR14 Hybrid of histatin-3 with statherin Inhibit enamel demineralisation [149]

Three histatin-5 proline variants
1:H21P
2:H19P/H21P
3:E16P/H19P/H21P

One or more residues were replaced
with proline (potent
α-helix breaker)

α-helix may not be important for
candidacidal activity of histatin-5 [37]

ATCUN-C16 (modified
histatin-5)

Contains two metal-binding centres,
ATCUN motif (Cu-binding) and a
Zn-binding motif

Assumes a more stable conformation and
possesses nuclease activity, making it a
suitable candidate for anticancer
treatment and a biotechnological tool

[12]

Dhvar2 and modified
dhvar2 (L7F) (modified
histatin-5)

L7F (KRLFKEFLFSLRKY), required
to facilitate peptide self-assembly
into ordered nanostructures

Antimicrobial peptides with the ability to
self-assemble into ordered amyloid-like
nanostructures, facilitating their
antibacterial activity and stable
antifungal activities

[150]

P-113
Histatin-5 (C-terminal
modification)

12-amino-acid sequence
amidated on C terminus,
reducing propensity to make an
α-helix

Two-fold increase in fungicidal activity
after amidation.
LD50 = 2.3 ± 0.65 µg/mL

[49]

Histatin-5 (K17R) Lysine at position 17 substituted for
arginine in histatin-5

Confers increased resistance to
proteolysis by Saps [151]
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Table 2. Cont.

Name Modification/
Engineering

Purpose/
Applications References

Histatin-5
(K17L)

Lysine at position 17 substituted for
leucine in histatin-5 Enhanced antifungal activity [151]

Histatin-5 (K11R) Lysine at position 11 substituted
for arginine Enhanced antifungal activity [151]

W-histatin-5 Tryptophan (W) added in
histatin-5 sequence Prolonged fungicidal activity [145]

Patents of histatin-5 and derivatives

Cyclic analogues of
histatin-5 U.S. Patent. 2011
November 10
(US
2014/0065119A1)

The invention focuses on the use of
cyclic analogues of histatin-5 for the
treatment of wounds. Cyclable
amino acids can be incorporated to
induce cyclisation in histatin-5 and
its derivatives.

Cyclisation improves stability and
cellular uptake of histatin-5.
Therapeutically effective doses range
from 0.01 mg to 100 mg per kg of
body weight.
A suitable absorbent hydrogel can be
developed for topical application.
Histatin-5, along with other therapeutic
agents, can be used for wound healing.

[152,153]

WO
2016/060916 A1

The invention focuses on the
utilisation of combined histatin-5
and histatin-1 as therapeutic agents
for ocular surface diseases such as
dry eyes.

Histatin-5, being a modulator of
inflammatory cytokines, can be
incorporated in anti-inflammatory
formulations along with
other therapeutics.
The preferred weight-to-weight ratios of
histatin-5 to cHistatin-1 were 1:1, 6:1, 1:10,
and 1:15. Histatin-5 and histatin-1 were
combined in ranges from 1 µg
to 10 mg/mL.
Both histatins were mixed with 0.1% to
1% glycerin to form sterile eye drops.
Histatin-5, along with rapamycin, can be
administered to treat dry eyes in patients
suffering from autoimmune diseases
such as Sjogren’s syndrome.

[152,154]

US 7781531 B2

Dentures conventionally made from
poly (methyl methacrylate) lead to
denture-induced stomatitis in the
user due to adhesion of C. albicans.

This invention focuses on the
incorporation of histatin-5 with
phosphate-containing co-polymers
in dentures.
Phosphate anions facilitate the adhesion
of cationic histatin molecule overdentures
to limit the induced complications.
Adsorption of histatin-5 increases with an
increase in the negative charge on
the polymer.

[152,155]

WO
2009/005798 A2

The invention is a histatin-5
derivative-based mouth rinse
formulation with
improved antifungal activity.

Amidation at the carboxyl terminus of
the histatin-5 derivative resulted in a
two-fold increase in
antimicrobial activity.

[152,156]

US
2010/0202983
A1

The invention describes
the utilisation
of carrier agents for the delivery of
histatins and their derivatives for
the treatment of
periodontal disease.

Carrier agents and histatins are
covalently coupled to form a complex.
The formed complex ensures sustained
release of histatins with
better penetration
and retention.

[152,157]
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Table 3. Modified histatins with side effects.

Name Modification Application Reference

M21 (modified histatin-5) K13T Reduced fungicidal activity [22]

M71 (modified histatin-5) K13E Reduced fungicidal activity [22]

Dhvar2 (modified histatin-5)
Increased HIV-1 replication by
promoting the envelope-mediated
cell entry process

Modification of antimicrobial peptides in
order to improve their activity against a
pathogen may have unpredictable and
unwanted side effects on other pathogens

[158]

LL37 and melittin (modified
histatin-5)

Enhanced antifungal activity with
increased growth of
Lactobacillus species

Unwanted side effects on
other commensals [147]

Histatin-5—
Histatin-5;
Histatin-5—C16, C16—C16)

More potent histatin-5 molecules
may be achieved by duplication of
the functional domain of histatin-5
(C16, residues 9–24 of histatin-5)

Decreased candidacidal activity [159]

8. Conclusions
Histatins, a remarkable group of histidine-rich cationic peptides, hold immense

promise in biomedical applications. Their ability to prevent enamel demineralisation,
accelerate wound healing, and combat C. albicans and bacterial infections underscores
their potential as transformative therapeutic agents. As research continues to unravel
their precise 3D structure and functional mechanisms, the possibilities for innovation ex-
pand. Future advancements in bioengineering could leverage histatins for next-generation
nanomedicine, enabling targeted delivery of antimicrobial and anticancer therapies at a
molecular level. Their regenerative properties may inspire breakthroughs in tissue engi-
neering and biomaterial development, fostering self-healing dental implants or bioactive
wound dressings. Additionally, histatin-based gene-editing tools could enhance precision
medicine, modulating cellular responses to fight resistant infections. By harnessing these
extraordinary peptides, development of more personalised therapies for cancer, infectious
diseases, and other medical challenges can be advanced.
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