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ABSTRACT
The nuclear lamina is a critical structural domain for the maintenance of genomic stability and whole-
cell mechanics. Mutations in the LMNA gene, which encodes nuclear A-type lamins lead to the
disruption of these key cellular functions, resulting in a number of devastating diseases known as
laminopathies. Cardiomyopathy is a common laminopathy and is highly penetrant with poor
prognosis. To date, cell mechanical instability and dysregulation of gene expression have been
proposed as the main mechanisms driving cardiac dysfunction, and indeed discoveries in these areas
have provided some promising leads in terms of therapeutics. However, important questions remain
unanswered regarding the role of lamin A dysfunction in the heart, including a potential role for the
toxicity of lamin A precursors in LMNA cardiomyopathy, which has yet to be rigorously investigated.
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Introduction

LMNA encodes the intermediate filament proteins lam-
ins A and Cwhich are generated by alternative splicing.1

While lamin C is translated as a mature protein, lamin
A is translated as a precursor, prelamin A, and requires
extensive C-terminal processing to reach maturation.
The B-type lamins are generated from 2 genes B1 from
the LMNB2 gene, and B2 and B3 from LMNB3.2 A-type
lamins polymerise into high order lattice structures
with the B-type lamins to form the nuclear lamina
(NL). The NL lies directly adjacent to the inner nuclear
membrane (INM) on the nucleoplasmic side and forms
a physical complex with SUN domain proteins and
nesprins, which together comprise the nuclear envelope
(NE) spanning LInkers of the Nucleoskeleton to Cyto-
skeleton (LINC) complex.3 On the cytoplasmic face of
the outer nuclear membrane (ONM) nesprins link to
cytoskeletal components, predominantly F-actin, and
provide a structural link between the nucleus and cyto-
plasm.4 This structural link can be viewed as reaching
as far as the extracellular matrix (ECM) if the sequential
links between F-actin and focal adhesion proteins are
considered. This tethering of the lamina with NE span-
ning proteins via the LINC complex is crucial for the

integrity of whole-cell mechanics, as well as mechano-
transduction to the nucleus from the cytoplasmic and
extracellular domains.5

Inside the nucleus, lamins associate with LEMproteins
(LAP2, Emerin, MAN) and heterochromatin.6 They
serve a scaffolding function in order to facilitate the cor-
rect expression of genes as well as enable efficient DNA
damage repair. When the integrity of the NL is compro-
mised, these processes become dysregulated with poten-
tially devastating results. Patients harbouring mutations
in LMNA can develop a number of different tissue-spe-
cific syndromes collectively termed laminopathies, many
of which can be broadly defined as ‘premature aging dis-
orders’ and include Hutchinson Gilford progeria syn-
drome (HGPS). One of the most common diseases
caused by LMNA mutations is cardiomyopathy, which
can occur as an isolated phenotype or frequently in com-
bination with a skeletal muscle dystrophy such as Emery
Dreifuss muscular dystrophy (EDMD) or limb girdle
muscular dystrophy.7-10 It has also been described in par-
allel with a number of other laminopathies (Table 1).11-16

Two key processes have been proposed to account for
cardiac dysfunction. The mechanical hypothesis pro-
poses that disruption to and uncoupling of structural
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proteins at the NL leads to increased pathologic suscepti-
bility to mechanical stress. Consequently, tissues that
endure high levels of mechanical stress, i.e. striated mus-
cle and heart, are most susceptible to disease. The gene
expression hypothesis implies that structural changes to
the NL not only lead to impaired transduction of signals
from the extracellular and cytoplasmic domains, but also
disrupted chromatin organization which impacts directly
on gene transcription. However, the molecular events
immediately downstream of lamin dysfunction are not
well understood, especially in the context of the whole
organ. Moreover these 2 mechanisms are unlikely to be
mutually exclusive (Fig. 1), so it is not clear which, if
either, is the key trigger. Importantly, the mechanisms
that promote premature aging associated with accumula-
tion of lamin A variants, such as increased levels of DNA
damage and senescence, as observed in other tissues,
have not been studied in the context of LMNA induced
cardiomyopathy. This review explores the role of A-type
nuclear lamins in the context of the clinical features of
cardiomyopathies caused by mutations in LMNA and
discusses the body of knowledge regarding pathologic
mechanisms, and future areas for development.

Cardiomyopathy

Cardiomyopathies are characterized by cardiomyocyte
(CM) dysfunction and tissue-wide remodelling of the

myocardium leading to functional decline.17 They are
mainly caused by familial mutations in structural pro-
teins, but are also caused by somatic de novo muta-
tions or external causes such as myocarditis,.18,19 toxin
exposure,20 chemotherapy21 and autoimmunity.22

They also arise due to age related changes to the vas-
culature leading to pressure overload of the heart. Car-
diomyopathies eventually progress to heart failure, the
point at which the heart is no longer able to pump suf-
ficient blood through the body to meet the metabolic
demands of the respiring tissues (Fig. 2).

Cardiomyopathies are classified according to their
functional and morphological features.23 The foremost
classifications are dilated- (DCM), hypertrophic- (HCM)
and arrhythmogenic right ventricular- (ARVC).24

Dilated cardiomyopathy

DCM is characterized by dilation of one, or both, ven-
tricular chambers. Functionally, it is accompanied by
reduced force of contraction leading to reduced car-
diac output. Structurally, DCM is characterized by
ventricular wall thinning, resulting from cardiomyo-
cyte death and myocardial fibrosis. DCM can be
caused by mutations in genes encoding proteins of the
sarcomere, sarcolemma desmosome and NE. Upwards
of 40 disease genes have been identified, most of which
are autosomal dominant mutations.25

DCM mechanisms can be categorised into
mechanical dysfunction, structural dysfunction and
dysregulation of Ca2C handling. In mechanical dys-
function mutations in genes encoding sarcomeric
proteins such as b myosin heavy chain (b-MHC),
reduce contractility whereas mutations in genes
encoding actin thin filaments cause a reduction in
Ca2C sensitivity by attenuating the affinity of myo-
filaments to calcium, resulting in reduced genera-
tion of force in the myocyte. Structural deficiencies
are caused by mutations in genes encoding cyto-
skeletal components, and include proteins of the
sarcomere and the costamere, which links the sar-
comere to the sarcolemma and ECM.26-28 Muta-
tions also occur in intermediate filament proteins
such as desmin, which link the sarcomere to the
cell periphery and also to the nucleus via the LINC
complex (Fig. 3).29 Disrupting any one of these
compartments inhibits transmission of force
throughout the myocyte. Dysregulation of Ca2C

handling is caused by mutations in PLN, the gene

Table 1. Laminopathies identified to have overlapping cardiomy-
opathy phenotypes.

Laminopathy Heart involvement Ref

Dilated cardiomyopathy with
conduction defects

Left ventricle dilatation, systolic
dysfunction, atrioventricular
conduction block, arrhythmia,
congestive heart failure

7

Emery Dreifuss muscular
dystrophy

Atrioventricular conduction block,
arrhythmia, systolic dysfunction,
congestive heart failure

8,9

Limb girdle muscular
dystrophy

Atrioventricular block, progressive left
ventricle dysfunction, arrhythmia

10

Variant progeroid syndrome
with right ventricular
cardiomyopathy

Right atrium and ventricle dilatation,
tricusped valve dilatation

11

Atypical progeroid syndrome
with cardiomyopathy

Right ventricle dilatation, arrhythmia,
tricusped valve regurgitation

11,12

Familial partial lipodystrophy
of dunningan type 2

Left ventricle dilatation, systolic
dysfunction, atrioventricular block,
complete left bundle branch block

13

Lipodystrophy with
hypertrophic
cardiomyopathy

Left ventricle hypertrophy, aortic valve
calcification, stenosis and
regurgitation

15

Charcot Marie Tooth type 2
axonal neuropathy

Left ventricle dilatation, systolic
dysfunction,

15

Severe metbolic syndrome� Left ventricle dilatation, systolic
dysfunction, ventricular extra
systole

16

�Caused by a ZMPSTE24 mutation
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encoding phospholamban, which regulates the sar-
coplasmic reticulum Ca2C ATPase (SERCA) activ-
ity. The PLN mutation p.Arg14del, that causes
DCM with arrhythmia, inhibits SERCA, resulting
in a reduction of Ca2C reuptake in diastole.30

The LMNA gene is commonly mutated in DCM
and accounts for approximately 6–8% of DCM
cases in humans.7,31 The resultant DCM pheno-
type is complicated by conduction defects result-
ing in arrhythmias.32 Genotype-phenotype
correlation is poor and the recurrence of common
DCM causing mutations in LMNA is low; one
study reported 165 unique DCM causing muta-
tions to LMNA,33 occurring in all 12 exons of the
gene. This diversity makes mechanistic analysis
challenging since it is difficult to hypothesize a
common mechanism based on specific lamin pro-
tein domains and the interactions that might be

disturbed by causal mutations. However, clues to
lamin mediated mechanisms may be evident in
unique aspects of LMNA cardiomyopathy, such as
conduction defects.

The cardiac conduction system and
conduction defects

Electrical activity in the heart is controlled by special-
ized ‘pacemaker’ cardiomyocytes residing in the Sino-
Atrial node in the atria, which receive signals from the
autonomic nervous system. They initiate the propaga-
tion of electrical current through the myocardium of
the atria causing the cells to contract. At the same
time current flows to the Atrio-Ventricular node
which initiates the propagation of current down the
septum via fibers termed the bundle of His, and Pur-
kinje fibers, which pass current from the apex,

Figure 1. A model unifying the known mechanisms of LMNA cardiomyopathy.
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upwards and side-wards through the ventricular myo-
cardium.34 Cardiomyocytes are excitable cells and
have a negative resting membrane potential, allowing
current to be propagated cell to cell via gap junctions
made up of high conductance channels termed con-
nexins.35 Connexins operate at the polar ends of cardi-
omyocytes in a junctional complex with the adherens
junction (AJ) and desmosome, termed the intercalated
disc (ID). Conduction defects could result because of a
malfunction at any point during this process.

Notably, almost half of LMNA cardiomyopathy
patients succumb to sudden cardiac death as a
result of a fatal arrhythmia,36 and conduction

defects associated with LMNA mutations can sub-
stantially precede the onset of DCM symptoms,
meaning subtle but fatal arrhythmias may occur
before any noticeable change in function. This
makes diagnosis difficult in probands who only dis-
play cardiac disease.37 Patients displaying muscular
dystrophy phenotypes with known LMNA muta-
tions can be fitted with cardiac pacemakers/devices
as a pre-emptive measure.

Increasingly, patients with LMNA mutations also
present with nuanced cardiac defects that show fea-
tures of HCM and ARVC. Therefore, another means
of identifying LMNA mechanisms may be to look into

Figure 2. Etiology of Cardiomyopathy onset and progression. DCM is caused in primary and secondary fashion. In secondary it is due to
excessive remodelling of the myocardium because of sustained pressure overload caused by vascular remodelling leading to increased
overall blood pressure or aortic valve stenosis (hardening). This usually occurs via an intermediate step in which the heart tissue
becomes thicker, known as hypertrophy. Primary DCM is caused predominantly by mutations in proteins of the sarcomere, cytoskeleton,
or those involved in Ca2C handling. Additionally, viruses and toxins such as alcohol or chemotherapy agents can initiate DCM indepen-
dent of vascular remodelling. In this context hypertrophy is bypassed.
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the pathways commonly identified in HCM and
ARVC which are unique from DCM.

Hypertrophic cardiomyopathy

HCM is an autosomal dominant disease characterized
by hypertrophy of ventricular myocardium which is
not explained by pressure overload.24 There is associ-
ated fibrosis and myocyte disarray as well as high
prevalence of arrhythmia and is a common cause of
sudden cardiac death in young athletes.38

Like DCM, mechanisms involve mechanical and
Ca2C handling changes, although cytoskeletal involve-
ment is less prominent. HCM is usually considered as
a disease of the sarcomere. Of 10 genes identified as
causal, 9 encode sarcomeric proteins.39,40 The 2 most
important are MYBPC3 encoding cardiac myosin-
binding protein C (cMyBP-C), and MYH7 encoding
b-MHC, and account for the majority of cases.41

Mutations mostly lead to substitution of single amino
acids, though half of mutations to MYBPC3 are
known to cause truncations to the protein product
and lead to haploinsufficiency.42,43 Altered myosin

kinetics and increased calcium sensitivity of thin-fila-
ments lead to increased contractility,44-46 and activate
hypertrophic signaling pathways. Mutations in tropo-
nin T lead to elevated sarcoplasmic reticulum Ca2C

content in diastole,47 predisposing the myocardium to
arrhythmia,48 leading to aberrant downstream
signaling.49

Ca2C handling is disrupted by 2 main mechanisms.
Firstly, mutations in cMyBP-C and the troponin com-
plex increases the sensitivity of troponin C to Ca2C.50

Troponin is the principal calcium buffer in the SR,
therefore, increased affinity should increase calcium
levels in diastole.51,52 Contractile inefficiency can also
compromise the energetics of the cardiomyocyte. Sar-
comeric mutations that alter cross-bridge formation
kinetics may cause a deficit in ATP availability and
could impact upon other ATP requiring processes
within the cell, such as Ca2C uptake via SERCA during
diastole.53 A myocardial energetics hypothesis is sup-
ported by mutations in the g2 subunit of AMP-acti-
vated protein kinase, involved in energy sensing,
which lead to HCM.54

Figure 3. Schematic representation of CM structure. The nuclear lamina associates with LEM proteins i.e., Emerin and heterochromatin
on the inner nuclear membrane (INM). Lamins also bind with SUN proteins and nesprins to form the LINC complex, which spans the
nuclear envelope (NE), and links to cytoskeletal components (actin, intermediate filaments) via binding domains such as plectin and cal-
ponin homology. F-actin extends to the cell periphery and links to membrane anchors such as dystrophin and focal adhesion proteins
(e.g. vinculin) thereby creating a mechanical links between the nucleus and ECM. In the context of CMs there may also be interactions
with sarcomere structures, which are currently undefined. IFs such as desmin may knit the NE-sarcomere-sarcolemma via the sarco-dys-
troglycan complex, and provide a mechanical link from the nucleus to the intercalated disc via the cytoskeletal components of the sarco-
mere and IFs.
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The LMNA C591F and LMNA R644C mutations
lead to phenotypes consistent with HCM.14,55 How
LMNA mutations can influence HCM related mecha-
nisms is not entirely clear. The loss of lamins A/C in
isolated cardiomyocytes does not impact Ca2C transi-
ents, but the shortening of cardiomyocytes is reduced.56

This implies that while the function of SERCA appears
to be normal, the activation of myofilaments is hin-
dered and may point to a mechanism involving
reduced availability of ATP to the myofilaments.

Arrhythmogenic right ventricular
cardiomyopathy

ARVC is characterized by pathological remodelling of
the right ventricle, dilatation of cardiac chambers and
systolic dysfunction57 in which myocyte death, inflam-
mation and fibrofatty replacement of the myocardium
are prominent features.58 Patients are also prone to
arrhythmia and ARVC is known to be another com-
mon cause of sudden cardiac death.59,60

Most ARVC mutations occur in desmosomal genes.61

The desmosome anchors the IFs of one cell to the cyto-
plasmic membrane of another at the ID in order to cre-
ate a lattice structure that provides mechanical strength
to tissue. Mutations in desmoplakin, plakoglobin, plako-
philin-2, and desmoglein-2 all cause ARVC.62-65 The
molecular mechanisms that regulate the progression to
ARVC are unclear, but 2 main hypotheses exist. Firstly,
desmosomal mutations compromise the integrity of cell-
cell interactions and as such make the tissue structure
susceptible to mechanical stress, leading to cell detach-
ment and necrosis, causing an inflammatory response.
In this setting, fibroadipose deposition is a reparative
response to injury. Second is the transdifferentiation
model, which proposes that desmosomal perturbations
can dysregulate the Wnt/b-catenin signaling pathway
leading to activation of adipogenic and fibrogenic genes
and a switch of cell fate from cardiomyocyte to
adipocyte.66,67

Recently, patients presenting with ARVC were found
to have LMNA mutations.11,68,69 It remains unclear
how NL disruption could be a cause of ARVC, but it is
plausible that disruption of the lamina could lead to
the destabilisation of cell contacts since the cell mem-
brane and nucleus are linked by a ‘molecular daisy
chain’ of structural proteins. With respect to the trans-
differentiation of fibrofatty tissue, emerin, a lamin A
binding partner, has a known association with b-cate-
nin and is thought to regulate its nuclear localization.70

Hypothetically, LMNA mutations which cause ARVC
could interfere with the interaction of emerin with
b-catenin and cause dysregulation of b-catenin signal-
ing leading to aberrant cell differentiation.

Though phenotypically divergent, the mechanistic
processes leading to DCM, HCM and ARVC share
important core principles, i.e., structural instability
and remodelling of tissue and ECM. LMNA mutations
are likely to contribute to these processes via disrup-
tion of the links between the nucleus and cytoplasm.
The mechanisms by which this occurs have been sub-
jected to investigation in a number of animal models.

Modeling LMNA cardiomyopathy

In vivomodels

Murine models with modified Lmna genes have
enabled insights into the possible pathological mecha-
nisms driving LMNA induced cardiomyopathies and
are summarised in Table 2.

LmnaH222P/H222P mice

Global LmnaH222P/H222P mice were originally designed
to study EDMD, which the human LMNA H222P
mutation causes. DCM is acquired secondary to
EDMD in the human clinic and the LmnaH222P/H222P

homozygous knockin mice have proven a good model
of LMNA cardiomyopathy71 Born without phenotype,
they progress to a DCM phenotype at 16 weeks,

Table 2. Clinical LMNA mutations and associated mouse model phenotypes

LMNA Mutation Human Disease Mouse Model Disease phenotype Survival

N195K DCM-CD LmnaN195K/N195K DCM and Heart failure 12–14 weeks
H222P EDMD LmnaH222P/H222P DCM and heart failure Males: 4–9 months Females: 9–13 months
G608G HGPS LmnaG609G/G609G Progeria - LQT and arrhythmia 3–4 months
M371K EDMD MHC-LmnaM371K Acute and subacute heart failure embryonic lethal and 2–7 weeks
DK32 L-CMD LmnaDK32/C DCM and heart failure 5–6 weeks
L530P EDMD LmnaL530P/L530P Progeria- with cardiac remodelling 3–7 weeks
E82K DCM-CD MHC-LmnaE82K DCM long lived
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leading to heart failure and death in males at 5–9
months and females at 7–13 months. They have
reduced cardiac function and cardiac fibrosis.71

In one study, hearts from young pre-phenotypic
mice were subjected to gene expression microarray
analysis, which identified upregulation of MAPK sig-
naling pathways.72 Extracellular signal regulated
kinase (ERK1/2), c Jun N-terminal kinase (JNK), as
well as p38 branches of MAPK signaling were all upre-
gulated. Subsequent inhibition of JNK and ERK1/2 in
mice significantly improved LV functional parameters
and led to a reduction in fibrosis.73-75 The case for
hyperactivation of ERK1/2 was also supported by
post-mortem analysis of human heart tissue express-
ing 2 distinct mutations, LMNA DK261 and LMNA
IVS9 C 1 g>a.76 Additionally, hyperactivation of the
mammalian Target Of Rapamycin (mTOR) signaling
pathway inhibited autophagy, a crucial housekeeping
process that facilitates the degradation of unwanted
proteins and organic components of the cell during
severe stress.77 Treatment of LmnaH222P/H222P mice
with temsirolimus, an inhibitor of mTOR, led to acti-
vation of autophagy, and amelioration of cardiac
decline.78 Treatment with angiotensin converting
enzyme (ACE) inhibitors also improved myocardial
function in these mice. ACE converts inactive angio-
tensin I to angiotensin II which stimulates sympa-
thetic activation leading to increases in heart rate and
vascular tone resulting in pressure overload.79 These
data imply that by lowering mechanical stress in vivo,
LMNA cardiomyopathy can be delayed or attenuated.

LmnaN195K/N195K mice

The LMNA N195K mutation is known to cause DCM
with conduction defects in humans.80 Accordingly,
global LmnaN195K/N195K mice developed DCM with
associated conduction defects and died at 2–3 months
old as a result of arrhythmia.81 Abnormal desmin
localization was observed alongside a reduction in
mRNA of HF1b/Sp4, a transcription factor that is cru-
cial in the development of the cardiac conduction sys-
tem, suggesting a possible mechanism for the early
presentation of conduction defects in patients. Loss
and mislocalisation of connexins 40 and 43, leading to
reduced propagation of electrical current through the
myocardial tissue, was also observed. These findings
point toward a mechanism for conduction defects that
may be linked to mechanical susceptibility, as they

implicate lamina dysfunction as a cause for the disrup-
tion of cell-cell contacts. The observation that multiple
components of the cardiac conduction system are dys-
regulated in LmnaN195K/N195K mice may help to
explain why conduction defects are so prevalent in
LMNA cardiomyopathy.82

LmnaDK32/C mice

In man, LMNA disease mutations are mostly hetero-
zygous, leading to dominant negative phenotypes.
Many model systems of LMNA cardiomyopathy in
mice show phenotypic changes only when the muta-
tion is homozygous, meaning the contribution of wild-
type lamin in disease progression is overlooked.
However, global LmnaDK32/C mice were investigated
and found to be pathogenic.83 In humans deletion of
lysine at position 32 in the lamin A amino acid
sequence causes severe congenital muscular dystrophy
(L-CMD) phenotypes.84 Mice with this mutation
developed DCM that occurred in a 2-step process
resulting in death between 35 and 70 weeks. Initially
the toxic accumulation of DK32-lamin was avoided by
proteasomal degradation. However, this resulted in
reduced lamin A/C expression, which then initiated
the process of cardiac remodelling and DCM. After
DCM was established dysfunction of the ubiquitin
proteasome system occurred, leading to toxic increases
in DK32-lamin. These mice also showed earlier onset
DCM as a result of exercise- induced stress.85

Other models of LMNAmutations

In man, the LMNA M371K mutation causes EDMD.86

In MHC-LmnaM371K mice, cardiac specific overex-
pression of LMNA M371K led to mice with very low
survival at birth. Mice that survived died between
2–7 weeks from cardiac defects.87 This study suggests
that accumulation of mutant M371K lamin A is toxic
in the presence of endogenous wildtype lamins in a
cardiomyocyte specific setting. Importantly, this study
also investigated overexpression of wildtype lamin
A/C in the heart. These mice displayed no phenotypic
defects and were long lived, supporting the idea that
mutant LMNA is a toxic driver of disease phenotypes,
perhaps operating by disrupting lamin structure and
function, by dysregulation of lamin processing and
binding, or even by disrupting the balance of lamin
isoform expression.
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The DCM causing mutation, LMNA E82K, has also
been investigated in vivo in a cardiac specific manner.
MHC-LmnaE82K mice showed evidence of cardiac dys-
function at 6 months of age indicated by a reduction
in cardiac function and myocardial remodelling.88 Fas
and mitochondrial pathways of apoptosis were identi-
fied as the mechanisms responsible for cardiac decline
in this model.

In the clinic, the LMNA L530P mutation leads to
EDMD. In vivo global LmnaL530P/L530P mice had a pro-
geria phenotype and also showed a cardiac phenotype,
described as displaying features consistent with pul-
monary hypertension. They had enlarged hearts and
fibrosis, suggesting a program of pathological cardiac
remodelling was induced.89 Moreover, when modeled
in C. elegans the corresponding mutation Lmn-1
L535P caused a muscular dystrophy characterized by
increased resistance of muscle nuclei to mechanical
strain alongside structural disorganisation of muscle
actin filaments.90

Lmna knockout models

Though not clinically relevant, global Lmna¡/¡ mice
die between 6–8 weeks of age because of DCM and
heart failure56 and share mechanistic traits with
LmnaH222P/H222P mice including impaired auto-
phagy.91 Intervention with the mTOR inhibitor rapa-
mycin significantly improves cardiac function and
survival in Lmna¡/¡ mice, and strengthens the argu-
ment for aberrant mTOR activation in LMNA
cardiomyopathy.

Further investigation showed that Lmna¡/¡ cardio-
myocytes were structurally compromised. This occurs
via the disruption of nesprin1a resulting in uncou-
pling of the nucleus from the cytoskeleton leading to
mechanical instability and defective transmission of
force.92 In support of this finding, desmin was also
mislocalised.56 Activation of hypertrophic genes was
attenuated, suggesting that Lmna¡/¡ mice were unable
to adapt to DCM progression with compensatory
hypertrophy, accounting for rapid disease progression.
Connexins were also mislocalised contributing to
attenuated contractility and also arrhythmia.93,94

Lmna haploinsufficiency was also investigated.
LmnaC/¡ mice displayed early onset cardiac conduc-
tion system disease and late onset DCM,95 which
could be alleviated by exercise and b-blockers.96

Application of pathological hemodynamic stress led to

a blunted hypertrophic response due to impaired acti-
vation of the mechanosensitive gene, Egr1,97 and pro-
vided evidence that mechanotransduction signaling
pathways and pathophysiological adaptations to stress
can be inhibited by lamina disruption.

In vivo models have been invaluable in the observa-
tion of critical molecular events, which underpin the
pathology of LMNA cardiomyopathy, especially with
regard to conduction defects. However, a complete
understanding of mechanisms will likely require rigor-
ous investigation of early, pre-phenotypic timepoints
to identify the earliest possible molecular changes
immediately downstream of lamin dysfunction.

In vitromodels

Analysis of LMNA cardiomyopathy mutants in single
cell models have also provided important mechanistic
insights into disease mechanisms at the molecular
level.

Evidence for the mechanical hypothesis

Studies performed in fibroblasts showed that the DCM
causing LMNA mutations M371K, DK32 and N195K
failed to restore nuclear stiffness after deformation,
and the mutant lamin proteins were more soluble
than wild type lamin A. Moreover, DK32 and N195K
mutant lamin proteins failed to assemble into fila-
ments in vitro, instead forming aggregates, and mim-
icked the loss of lamin function.98

Structural analysis of DCM mutations E161K and
R190W showed alterations in secondary and tertiary
structures leading to perturbed intrinsic self-assembly
of high order lamin structures.99 At the level of elec-
tron microscopy, the lamin lattice networks showed
substantial organisational changes and reduced elas-
ticity. Another LMNA DCM mutation S143P, com-
mon in Finnish patients, was also found to undergo
reduction in self-assembly behavior in vitro and was
associated with an elevated unfolded protein response
according to whole genome analysis.100

An hypothesis has been put forward to explain the
impact of these findings. In fully differentiated mechan-
ical structures such as striated muscle, lamins A and C
are highly expressed. It is thought that their flexible
rheological (gel-like) behavior, acts as a ‘valve’ for the
B-type lamins which, in contrast, resist deformation.101

Therefore, if a proportion of the A-type lamins are
mutant, and the ability of the nucleus to soften in

24 D. BRAYSON AND C. M. SHANAHAN



response to strain is reduced, then the lamina network
is likely to collapse in response to a relatively low
mechanical stress threshold. Accordingly, a number of
myopathic LMNA mutations have been tested in an in
situ model of D. melanogaster body wall muscle, and
an in vitro model of mouse embryonic fibroblasts,
which found increases in nuclear strain and decreases
in nuclear displacements in response to mechanical
stretch.98

Evidence for the gene expression hypothesis

A number of studies have investigated the role of
lamin dysfunction on mechanotransduction path-
ways—signaling mediated by physical interactions—
by examining gene expression responses. Investigation
of Lmna¡/¡ mouse fibroblasts found impaired activa-
tion of mechanosensitive genes Iex1 and Egr1 in single
cell models of mechanical stretch.102,103 It has also
been shown that the NL may be able to detect pertur-
bations in force and convert these into adaptive or
pathological gene expression responses. For example,
disruption of the NL by Lmna deficiency attenuated
NF-kB mediated transcriptional response to mechani-
cal or cytokine stimulation despite increased tran-
scription factor binding, implying that lamins are
crucial for transcriptional activation.104-106

In vitro studies have also provided detailed insight
on the impact of LMNA disruption on the mechanical
properties of cells and have identified that these can
elicit abnormal gene expression and signaling
responses. However, despite the wealth of investiga-
tions into LMNA cardiomyopathy mutations in iso-
lated models, analyses have rarely been undertaken in
isolated cardiomyocytes; thus the cardiomyocyte spe-
cific effects of these mutations are largely undefined.
One study has addressed this by investigating induced
pluripotent stem cell derived cardiomyocytes from a
patient harbouring the LMNA R225X mutation and
found that when cardiomyocyte contraction was initi-
ated by electrical stimulation, the cells underwent
apoptosis.107

In summary, data from the clinic and model sys-
tems suggests that structural defects drive the onset of
disease by contributing to defective electrical signal-
ing, and also by inhibiting efficient molecular signal-
ing responses to mechanical stress. In addition, a
common theme in models investigating LMNA car-
diomyopathy is the activation of cellular stress

responses—apoptosis, autophagy and the unfolded
protein response—indicating that certain lamin
mutants may be toxic to cells, a feature which has until
now been understudied.

Lamin toxicity in cardiomyopathy

One model yet to be tested in the context of LMNA
cardiomyopathy is the prelamin A toxicity model.
Prelamin A toxicity is central to a number of laminop-
athy sub-types, primarily the premature aging disor-
ders. In HGPS, for example, the final enzymatic
cleavage of prelamin A, performed by ZMPSTE24, is
abolished and the protein remains permanently farne-
sylated, meaning it cannot be inserted efficiently or
completely into the NL.108 In the most common form
of HGPS, this occurs because of a mutation that leads
to the deletion of 50 amino acids which contain the
ZMPSTE24 cleavage site,109-111 resulting in a truncated
prelamin A mutant protein called progerin. Loss of
function mutations to ZMPSTE24 lead to prelamin A
accumulation and can also drive HGPS phenotypes.112

Prelamin A accumulation is also an important media-
tor in normal aging in a number of tissues, including
the vasculature.113 It is not known, however, whether
this is relevant in myocardial aging.

Progerin and prelamin A are thought to drive dis-
ease phenotypes by disrupting nuclear morphology
and heterochromatin distribution as well as DNA
damage repair pathways resulting in premature senes-
cence.114-116 Heterochromatin instability appears to be
partly responsible for the defective recruitment of
repair factors to sites of DNA damage.117,118 In addi-
tion, prelamin A accumulation causes nuclear pore
complex dysfunction which also impairs recruitment
of DNA repair proteins.119 Interestingly, one study
investigated the LMNA L306R mutation, which caused
a premature aging syndrome with severe ARVC pre-
sentation; cells with this mutation had dysmorphic
nuclei, elevated levels of DNA damage and underwent
premature cellular senescence.11 Moreover, stem cell
derived cardiomyocytes with the LMNA R225X muta-
tion displayed nuclear morphology defects and pre-
mature senescence under stress.107 These studies
provide the clearest evidence yet that premature aging
mechanisms may be partly responsible for LMNA car-
diomyopathy phenotypes.

There is evidence to suggest that prelamin A/pro-
gerin accumulation is important in the establishment
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of cardiac disease phenotypes. For example, HGPS
patients were observed to suffer cardiomegaly and car-
diac dilatation toward the end of life120 and HGPS
patients who survived to older ages displayed cardiac
remodeling and atrial enlargement.121 A mouse model
of HGPS has also shown evidence of cardiac dysfunc-
tion.122 Recently, a mutation in ZMPSTE24 was iden-
tified that caused a substantial reduction in
ZMPSTE24 activity and led to DCM associated with
metabolic syndrome.16 Meanwhile, Zmpste24¡/¡ mice
showed evidence of myocardial disruption at
3 months of age.123 The LMNA p.T655fsX49 mutation
caused accumulation of non-farnesylated prelamin A,
leading to cardiac conduction defects in humans.13

Accordingly, accumulation of non-farnesylated prela-
min A led to late onset DCM in mice expressing a
homozygous ‘non-farnesylated prelamin A only’
allele.124 DCM mutations have also been shown to
accumulate prelamin A in model systems, as expres-
sion of the LMNA R89L mutant caused accumulation
of prelamin A in vitro.125 Moreover, some of the
murine LMNA cardiomyopathy models have shown
nuclear morphology defects and heterochromatin dis-
organisation, both hallmarks of prelamin A/progerin
toxicity. Further investigation is now required to
determine how prevalent the accumulation of lamin A
precursors is in cardiomyopathy patient hearts.

Therapeutic potential

Modulation of mTOR signaling currently provides the
most promising way forward for the treatment of
LMNA cardiomyopathy specifically.126,127 For lamino-
pathies as a whole, exon skipping128 and influencing
the splicing of LMNA toward lamin C to avoid the
dominant negative effects of lamin A mutants,129 are
being investigated as potential therapies and may have
relevance to LMNA cardiomyopathies. In prelamin A
accumulating diseases such as HGPS, farnesyl transfer-
ase inhibitors (FTIs) have been through clinical trials
with modest success.130 This was followed up by trials
of a combination therapy of FTIs with statins and
bisphosphonates, which inhibit upstream processing in
the Acetyl-CoA pathway of cholesterol synthesis and
protein prenylation (which includes farnesylation), but
again showed limited benefit.131 Inhibition of prelamin
A processing enzymes such as ICMT, which controls
carboxymethylation of prelamin A, may instead be
beneficial in the context of prelamin A toxicity, via

regulation of mTOR.132 Moreover, Remodelin, a small
molecule inhibitor of N-acetyltransferase 10 (NAT10),
alleviates many cellular abnormalities in HGPS, poten-
tially operating via a novel mechanism involving
microtubule reorganisation, and shows much promise
at the pre-clinical stage.133

Future directions

The gene expression and mechanical hypotheses have
been well investigated in LMNA cardiomyopathy, and
important cell signaling pathways have been estab-
lished. However, questions regarding the role of Ca2C

signaling and myocardial energetics remain unan-
swered. Moreover, the pleiotropic effects of single
LMNA mutations, such as the R644C mutation
involved in EDMD, DCM, HCM and ARVC progres-
sion,134 suggest that external factors may be important
in the establishment of disease. The nature of these
stimuli may impact the direction of disease progres-
sion, implying that the study of epigenetics and inter-
cellular communication, for example, may also be
important in LMNA cardiomyopathy.

The toxicity of prelamin A or other lamin var-
iants is also potentially important and requires
further investigation. Associated pathways involv-
ing DNA damage and premature senescence
should also be considered both in the context of
cardiomyopathies and normal myocardial aging.
Therapies for laminopathies driven by accumula-
tion of unprocessed prelamin A or truncated
lamin mutants are currently under investigation
with some having been to clinical trials. If LMNA
cardiomyopathy is driven by toxic accumulation
of lamin variants, these therapies may also be
important in the future treatment of some LMNA
cardiomyopathies.
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