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ABSTRACT

Protein structural annotation and classification is
an important and challenging problem in bioinfor-
matics. Research towards analysis of sequence–
structure correspondences is critical for better
understanding of a protein’s structure, function,
and its interaction with other molecules. Clustering
of protein domains based on their structural simila-
rities provides valuable information for protein
classification schemes. In this article, we attempt
to determine whether structure information alone is
sufficient to adequately classify protein structures.
We present an algorithm that identifies regions of
structural similarity within a given set of protein
structures, and uses those regions for clustering.
In our approach, called STRALCP (STRucture
ALignment-based Clustering of Proteins), we gen-
erate detailed information about global and local
similarities between pairs of protein structures,
identify fragments (spans) that are structurally
conserved among proteins, and use these spans
to group the structures accordingly. We also provide
a web server at http://as2ts.llnl.gov/AS2TS/
STRALCP/ for selecting protein structures, calculat-
ing structurally conserved regions and performing
automated clustering.

INTRODUCTION

Most protein annotation and classification approaches
depend heavily on the degree of observed amino acid
sequence similarity to other related proteins. But even
when sequence similarity between two proteins is low,
structure similarity can be high. Thus, one of the most
important improvements in protein classification would be
protein homology/analogy identification at very low levels
of sequence similarity (1). As Redfern et al. (2) explain
‘despite the advances in sequence comparison methods,

remote homologs in the ‘‘Midnight Zone’’ of sequence
similarity (<15% identity) described by Rost, can
still only be identified through protein structure compar-
ison’. Redfern et al. also point out that ‘structure-based
classifications are becoming increasingly important
resources for recognizing these distant relatives and
providing datasets for more far-reaching analyses of
protein family evolution’. In our research and develop -
ment we follow these observations, and in order to detect
the benefits and limitations of using purely structure-based
approaches, we curently concentrated on structure simi-
larity analyses only.
The Protein Data Bank (PDB) (3) already contains

more than 45 000 experimentally solved protein structures,
and grows at a rate of more than 500 PDB entries per
month. Among current entries, approximately 40% are
multi-domain proteins (2) and, thus, there have been
several attempts to classify individual domains of PDB
protein structures into defined clusters (e.g. classes, folds,
superfamilies, families) based on structure similarity as
measured by various criteria. The most commonly used
protein classification databases are SCOP (4) and CATH
(5). The Structural Classification of Proteins (SCOP)
database, a manual classification of PDB structures, is
recognized by many as the gold standard of protein
classification. In SCOP, proteins are classified to reflect
both structural and evolutionary relatedness. Clustering is
based mainly on visual inspection of similarities between
conformations of secondary structure elements and on
sequence similarities. However, SCOP classification lags
the insertion of new structures in PDB, and manual
classification cannot scale to meet the demands of this
rapidly growing dataset.
There are several algorithms already proposed to

facilitate automated protein structure classification. For
example, clustering can be done by selecting a single
metric (e.g. Z-score (6) used in FSSP (7) Dali Fold
Classification) or by combining different criteria to score
the level of similarity, some examples of which are sec-
ondary structure content and orientation combined with
calculated sequence similarities, and manual inspection, as
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used in the semiautomatic CATH database. Depending on
the algorithm, classification results may differ significantly
if different criteria are used to assess the level of similarity
between compared structures or if the clustering criteria
are focused on different structural features. The same set
of proteins could be grouped differently by automatic
sequence or structure comparison tools based on minor
modifications to cutoffs or classification parameters. The
Dali Fold Classification is based on exhaustive, all-
against-all 3D structure comparisons of proteins from
the PDB, and is constructed by average linkage clustering
of the structural similarity score derived from calculated
alignments of distance matrices. The tree (dendrogram) is
cut at Dali Z-score levels 2, 4, 8, 16, 32 and 64, where the
first level (Z> 2) can be used as an operational definition
of folds. A similar approach is used in CE (8) classifica-
tion. After performing all-against-all comparisons of
protein chains from the PDB, resulting CE Z-score
values of 4.5 and above are used to discriminate at the
family level, values between 4.0 and 4.5 at the superfamily
and/or fold levels, and values between 3.5 and 4.0 are
presumed to indicate possible biologically interesting
similarities. The authors of the STRuster (9) method
explore the calculation of root mean square deviations
(RMSD) and use their algorithm to cluster alternative
structural models from the PDB (i.e. models that
correspond to different structure determination experi-
ments). In addition to the traditional RMSD measure, the
STRuster method uses two filters to define the final
scoring metric called dissimilarity measure M (9). These
two filters are introduced in order to identify both large
and small (but significant) backbone conformational
changes by reducing the influence in local large distances
(only distances below 14.0 Å are considered) and also to
restrict the analysis to significant structural differences
(the distances above 1.0 Å). An approach for structural
comparisons, fundamentally different from those using
RMSD, was proposed by Rogen and Fain (10). They
introduced the SGM (Scaled Gauss Metric), which is a
metric derived from knot theoretical ideas to cluster
proteins according to their structural topologies. They
applied their method to predicting membership of proteins
in CATH and achieved 95% accuracy at all levels of the
classification hierarchy.
In order to achieve a high level of agreement with other

clustering schemes, some algorithms that use a multi-
criterion approach (weighted combination of different
scoring schemes), are initially trained on labeled data from
an existing structural hierarchy (SCOP or CATH) and use
cross-validation (or similar methods) to select the best
parameters for their classifiers. For example, ProtClass
(11) uses a nearest-neighbor-based classification scheme
and several structural features to classify proteins at the
fold level of the SCOP hierarchy. Their features include
secondary structure elements predicted by the Stride
program (12), the sequence length, and the percentage of
observed helices. SCOPmap (13) is an approach that
achieves roughly 95% accuracy when classifying proteins
into the superfamily level of the SCOP hierarchy. This
approach combines many existing protein sequence and
structure comparison tools, including PSI-BLAST (14),

MAMMOTH (15) and Dali (6). The classification results
depend on the accuracy of the individual tools, so the
authors use a variety of cutoffs and parameters optimized
by training schemes to apply these tools in a specific order.
In Ref. (16), the authors introduce a new structural
representation of proteins to predict the family member-
ship of proteins in the SCOP hierarchy. They define a
graph theoretic representation of protein structures with
nodes being residues and edges connecting residues when
the distance separating them falls below a specified cutoff.
Using these graphs as features, they train their Support
Vector Machine (SVM) classifier with proteins from
several SCOP families.

The ultimate goal of the work presented here was to
define criteria and to develop an algorithm that for a given
set of protein structures would automatically identify
structurally conserved regions and use them to create
clustering results similar to those that would be obtained
by manual inspection (e.g. SCOP curators). In our novel
approach, called STRALCP (STRucture ALignment-
based Clustering of Proteins), for a given set of protein
structures, we generate and combine detailed structural
information about automatically detected global and local
similarities between protein pairs, identify similar regions
that are conserved within the set of proteins, report these
regions, and use them to cluster the proteins according
to their similarities in such identified structural frames. We
use the Local-Global Alignment (LGA) algorithm (17) to
perform all necessary structure comparison calculations.

METHODS

Our algorithm starts from structure alignment cal-
culations performed by LGA (with a default value of
distance cutoff DIST=5 Å) to determine de novo (no
sequence information is used) residue–residue correspon-
dences between compared proteins. We use the LGA_S
measure as a scoring function to evaluate the overall level
of structure similarity and to allow an initial grouping
and structural clustering of proteins. In our STALCP
approach, an optimal number of clusters is determined by
grouping models according to their overall similarity
(LGA_S) combined with the information about local
similarities in detected structurally conserved frames (we
call them ‘spans’).

LGA_S structure similarity scoring function (overall
structure similarity)

To perform a particular clustering for a set of protein
structures, a suitable scoring function or, in general, a
scoring algorithm that takes into account a number of
characteristics of the compared proteins must be defined.
Depending on the goal of the clustering, this can be done
by selecting one measure or by combining different criteria
to score the level of similarity. The LGA_S scoring
function has two components, LCS (longest continuous
segments) and GDT (global distance test), defined for
the detection of regions of local and global structure
similarities between analyzed structures. In comparing two
protein structures, LGA superimposes a ‘model’ structure
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onto a ‘target’ structure (where the model is designated
‘M ’ and the target is ‘T ’). The LCS procedure localizes
and superimposes the longest segments of residues that
can fit under a selected set of RMSD cutoffs. The GDT
algorithm is designed to complement evaluations made
with LCS searching for the largest (not necessary
continuous) set of ‘equivalent’ residues that deviate by
no more than specified distance cutoffs. Let:

� m—the number of residues in M,
� t—the number of residues in T,
� R(r,M,T)=100/t �L(r,M,T) is the percentage of the

target’s (T’s) residues that are involved in the maximal
(longest) continuous segment that fits within an
RMSD of r Å. L(r,M,T) is the length of such
identified longest continuous segment of M:T residue
pairs,

� X(M,T )—the set of all M:T superpositions calculated
by the LGA algorithm,

� G(s,d,M,T )—the number of M:T residue pairs for
which the distance between Ca (alpha carbon) atoms
is not greater than d Å after the superposition
s2X(M,T) is applied,

� D(d,M,T)=100/t �max{G(s,d,M,T):s2X(M,T)} is the
maximal detected percentage of the Ca atoms in T
structure that are within a distance threshold of
d Å from M structure upon calculated s2X(M,T)
superpositions.

LGA_S(M,T) structure similarity scoring function is
defined as a function of two structures M and T calculated
as a combination of R(r,M,T) results from LCS(M,T)
calculations, and D(d,M,T) results from GDT(M,T):

LGA S M,Tð Þ ¼ 1� wð Þ � S LCS M,Tð Þð Þ

þ w � S GDT M,Tð Þð Þ

where

S LCSðM,TÞð Þ ¼
2

n� ðnþ 1Þ

Xn
j¼1

n� jþ 1ð Þ � R rj,M,T
�

Þ,

n ¼ 3, rj ¼ 1:0, 2:0, 5:0,

S GDTðM,TÞð Þ ¼
2

k� ðkþ 1Þ

Xk
j¼1

k� jþ 1ð Þ �D dj,M,T
� �

,

k ¼ 20, dj ¼ 0:5, 1:0, . . . , 10:0,

and w=0.75 is a parameter (04w4 1) representing a
weighting factor between S(LCS) and S(GDT) results.
S(LCS) is a weighted sum of R(r,M,T) values calculated
for n different RMSD cutoffs r (e.g. n=3; r=1.0, 2.0,
5.0), and S(GDT) is a weighted sum of D(d,M,T) values
calculated using k different distance cutoffs d (e.g. k=20;
d=0.5, 1.0, . . . , 10.0). In the formulae S(LCS) and
S(GDT), the weighting schemes weight higher those R
and D results that were calculated for smaller RMSD and
distance cutoffs, respectively.

The range of the LGA_S values is 0–100, and
hierarchical clustering experiments performed on various

folds from SCOP database showed that LGA_S alone can
serve as a good discriminator for the initial protein
structure clustering (see the results shown in Figure 5a).

STRALCP clustering approach (similarity in the set
of structurally conserved local regions)

The essence of the STRALCP algorithm is the ability to
compare hundreds of protein structures in a single
reference frame, identify similar fragments that are
conserved within a set of analyzed proteins, and use this
information to calculate the number of required clusters.
Each calculated cluster is assigned with its structural
fingerprint that can be defined by a representative struc-
ture and a set of spans that are shared among structures
grouped together. Comparison of a new structure with
a structural fingerprint determines whether the structure
should be included to the particular cluster or whether it
should be a member of another cluster. Our STRALCP
algorithm, which automatically clusters proteins and
identifies representative structures, can be described as
the following list of steps:

(i) LGA is used to perform all-against-all comparisons
in which, for a given set of structures, each structure
is used as a frame of reference for comparisons with
others.

(ii) Each frame of reference is assigned a set of
sequential fragments, which are defined by splitting
the corresponding amino acid sequence into con-
secutive n-residue-long sub-sequences (n=10 is
used as a default parameter; e.g. a 120-residue-
long protein comprises 12 fragments).

(iii) After performing all-against-all structure compar-
isons (step 1) the following information is assigned
to each frame of reference:

(a) LGA_S values between the frame of reference
and all other structures,

(b) the number of residue pairs that are super-
imposed locally within RMSD cutoff 0.5 Å
(using 3-residue-long window). Continuous
structural segments formed by such residue
pairs that are at least five residues long are
marked as candidate spans,

(c) the number of non-empty fragments (non-empty
fragments are sequential fragments defined in
step 2 that overlap by at least one residue with
at least one detected span in compared
structures).

(iv) For each frame of reference, all structures having
at least 80% (default parameter) of the non-empty
fragments in common are identified. A list consist-
ing of maximum number of such structures is
created and assigned to each frame of reference.

(v) An optimal number of clusters is determined based
on the following criteria:

(a) the minimum number of clusters that yields a
complete set of proteins in the combined lists
from (4),
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(b) LGA_S between any pair of proteins from the
cluster is at least 60% (default parameter),
minimum value from (iii.a).

(vi) Within each cluster, a representative structure is
selected, which in comparison with other members
of the cluster has the highest values determined in
steps (iii.a), (iii.b) and (iii.c).

Note: In step (v.a) a minimum number of clusters are
defined based on local similarities in non-empty fragments
along the protein sequence using initially selected repre-
sentative frames of reference. Step (v.b) allows reassign-
ment of less similar structures from one cluster to another.
It also allows sub-division of clusters in order to satisfy the
requirement that within each cluster any pair of proteins
has at least 60% overall structure similarity. This way less
similar structures are not grouped together even if they
satisfy the requirement regarding a common set of non-
empty fragments (step 4).

RESULTS

A proper protein classification is critical for better
understanding and prediction of a protein’s structure,
function and interaction with other proteins. It is known
that sequence similarities nearly always correspond to
structure similarities, enabling structure and function
prediction for uncharacterized proteins. Structural simi-
larity, however, does not necessarily correspond to
sequence similarity (Figure 2). Through structural

comparison and classification, we identified a family of
crystal structures that failed to be detected (18) by
sequence-based methods like PSI-BLAST (14). Using a
structure-based method (e.g. DALI, LGA) it was found
that three EAP domains from Staphylococcus aureus (18),
which could not be properly classified by sequence-based
methods, shared a previously unrecognized similarity to
another class of bacterial toxins.

Here we present our structure classification approach,
STRALCP, applied to these domains. For each of the
EAP domains [Eap2 (PDB entry: 1yn3), EapH1 (1yn4),
EapH2 (1yn5)], we have performed structural PDB
searches using our LGA server (19). As a result, 134
domains from the SCOP superfamily d.15.6 (Superantigen
toxins, C-terminal domain) were identified as most similar
to EAP structures (only 20 structures are shown in
provided Figures 1, 3, and 4; 3 EAP domains and 17
domains from SCOP). Figure 1 shows that all 20 proteins
are very similar in detected structurally conserved frames
formed by 4 strands and 1 helix (Figure 2). The
superposition of 1yn4_A and d1m4va2 (1m4v_A in
Figure 2) corresponds to the fourth bar in Figure 1 and
shows that these two structures differ in several loop
regions only (structural deviations above 2 Å are colored
in yellow-red). Note that the level of sequence identity
between these two proteins is only �14% (Seq_ID),
whereas the level of structure similarity is �75% (LGA_S).

In general, all EAP domains have a high level of overall
structure similarity (LGA_S over 60%) to most of the
other analyzed structures, whereas the level of sequence
identity is very low (below 20%). In Figure 1, we show

PDB Seq_ID LGA_S

1yn4_A 100.00  100.00

1yn5_A 47.47   96.41

1yn3_A 36.46   92.15

d1m4va2 13.98   75.24

d1v1pa2 16.13   66.70

d1ewca2 14.44   64.95

d1et9a2 19.57   63.97

d1aw7a2 17.58   63.44

d1f77a2 14.61   63.38

d1bxta2 11.96   61.90

d1ck1a2 12.09   61.78

d1goza2 12.09   61.49

d1sebd2 13.64   61.18

d1uupa2 16.48   61.17

d2tssa2 17.78   60.51

d1fnua2 15.56   59.97

d1hqrd2 15.73   59.77

d1ty0a2 13.79   58.79

d1lo5d2 12.22   57.60

d1esfa2 14.77   57.56

Figure 1. Structure similarities between EAP domains from S. aureus (PDB: 1yn3, 4 and 5) and 17 protein domains from the SCOP superfamily
comprising superantigen toxins. All proteins were compared to the structure of EapH1 (1yn4_A), which serves as a frame of reference. Colored bars
represent Calpha–Calpha distance deviation between 1yn4_A [99 residues; from the left (N-terminal) to the right (C-terminal)] superimposed with 20
structures from PDB (first bar represents a 1yn4_A–1yn4_A self-comparison). Colors represent distances between aligned residues and range from
green (below 2 Å) to red (above 6 Å). The columns at the right contain information about the level of sequence identity (Seq_ID) and structure
similarity (LGA_S).
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the results from the structure comparisons of the set of
selected 20 proteins when structure 1yn4_A was chosen as
a frame of reference and in Figure 3 the structure SEH
(PDB: 1f77; SCOP domain d1f77a2) (20) was selected as
a frame of reference. From the comparison of these two
plots we can conclude that d1f77a2 may serve as a better
representation (average structure) for the analyzed set

of 20 proteins (at least for the top 13 of them) than the
structure 1yn4_A.
The obtained results suggest that a given set of 20

structures can be structurally divided into at least two
clusters. Our STRALCP system creates such a clustering
automatically (Figure 4). By this clustering the EAP
structures: 1yn3-5 are grouped together (Cluster2) with
four other protein structures: SET1 (PDB: 1v1p) (21),
SET3 (PDB: 1m4v) (22), and TSST1 (PDB: 1aw7, 2tss)
(23,24). Additional tests showed that if we had introduced
more strict structure similarity requirements [e.g. LGA_S
cutoff 80% (see step 5.b in STRALCP algorithm)], then
Cluster2 would have been split into two additional clusters
(data not shown) where all three EAP domains (1yn3-5)
were separated from the SET1, SET3 and TSST1
structures.

Performance

As described in the Methods section the STRALCP
clustering approach consists of two steps: (i) calculating
all-against-all structural alignments using LGA program,
and (ii) extracting from calculated alignments structurally
conserved regions and using them to group proteins
accordingly. The most cpu expensive is the first step.
For example, on a single linux workstation equipped
with AMD-64 5000 dual core processor, the calculations
of all-against-all pairwise structural alignments for 20
discussed above structures (3 EAP domains and 17
domains from SCOP) lasted about 10min, while the
clustering (step 2) was completed in less than 10 s.
In order to estimate the accuracy of a STRALCP

clustering approach, we have performed comparisons with
the SCOP (ver. 1.71) classification. We tested STRALCP
calculations on domains from 25 different SCOP folds:
a.5, a.7, a.8, a.24, a.29, a.137, b.2, b.42, b.43, b.68, b.80,

PD B Seq_ID LGA_S

d1f77a2 100.00  100.00
d1ewca2 99.12   99.86
d1esfa2 40.74   92.06
d1lo5d2 39.81   91.93
d1hqrd2 30.91   90.73
d1et9a2 34.26   90.51
d1bxta2 32.73   88.99
d1goza2 33.03   88.88
d1fnua2 36.94   88.08
d1uupa2 39.09   87.87
d1ty0a2 40.00   87.59
d1ck1a2 29.09   87.30
d1aw7a2 20.20   80.56
d1sebd2 32.32   79.15
d1v1pa2 24.49   78.39
d2tssa2 20.41   74.43
d1m4va2 19.59   74.17
1yn5_A 18.56   60.91
1yn3_A 17.78   57.20
1yn4_A 13.33   57.17

Figure 3. The results from the analysis of structure similarities between EAP domains from S. aureus and proteins from the SCOP superfamily of
superantigen toxins (same domains as in Figure 1). SCOP domain d1f77a2 serves as a frame of reference for this comparison. The coloring scheme is
the same as in Figures 1 and 2.

1m4v

1yn4

N

C

Figure 2. A 3D plot of structural superposition between 1yn4_A and
1m4v_A (SCOP domain: d1m4va2) that corresponds to the fourth
colored bar in Figure 1. The level of sequence identity between proteins
Seq_ID: �14%, and the level of structure similarity LGA_S: �75%.
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b.85, c.8, c.51, c.56, d.52, d.68, d.79, d.110, d.129, f.1, f.4,
f.23, g.41, h.4. We have selected these folds as a
representative sample from all 7 SCOP classes with an
additional requirement that each fold consists of at least
four superfamilies. In the SCOP database ver. 1.71, there
are only 63 such folds that satisfy this requirement.
In total, our benchmark set consisted of Nd=4620
domains from Nf=343 families, and Ns=243 super-
families. Complete sets of results from this experiment can
be found at a server website: http://as2ts.llnl.gov/AS2TS/
STRALCP/. In Figure 5, we present the results
from STRALCP calculations applied to 24 domains
from SCOP fold a.8 (immunoglobulin/albumin-binding
domain-like).
In Figure 5a, we use SCOP fold a.8, as an example to

show some of the details from the hierarchical dependen-
cies among structures calculated using LGA_S as a single
measure for clustering. In Figure 5b, we show how the
structures from fold a.8 can be automatically separated
using our STRALCP (multi-criteria-based clustering)
approach. This example shows that by using STRALCP
we can clearly separate proteins into appropriate clusters
that correspond with a high agreement to the defined
SCOP families (see Figure 5b, right column; SCOP family
codes).
In order to assess the accuracy of our clustering

approach, we estimated the differences between SCOP
(ver. 1.71) and STRALCP clustering (for example on the
level of SCOP families) by introducing the following
measure. Let:

� Nc–the number of created clusters,
� Cf(i)–the number of different families clustered

together within the i cluster,

The score indicating the misclustering effect MC
(when domains from different SCOP families are grouped
together) can be calculated using the formula:

MC ¼ 1:0�
1

Nc

XNc

i¼1

1

CfðiÞ

 !
� 100:0

The range of this measure is 0.04MC< 100.0, where
0.0 indicates no misclustering (i.e. agreement with SCOP
families separation).

The MC measure allows the comparison of different
clustering schemes by their agreement in separating
proteins from different clusters. The goal of this measure
is not to calculate how many domains are clustered
differently, but rather how many of the created clusters
are compromised (proteins that are separated in another
clustering scheme being merged). The results from the
evaluation of the differences between SCOP and
STRALCP clusters at the level of SCOP families showed
that on average the level of misclustering (MC) is �3%.
It suggests that the proposed strictly structure-based
clustering method can be considered robust in that it
detects relationships at the family level with a good
agreement with the manually maintained SCOP database.

DISCUSSION

As discussed in Ref. (13), a strategy combining informa-
tion from both sequence and structure comparisons would
be expected to perform better than either method alone.
However the analysis of the clustering approach applied
to the benchmark set of 25 SCOP folds leads to the
encouraging conclusion that the STRALCP algorithm,

Cluster   Name .#..#.#####...##.#######################...########...#####...###############...####.
Cluster:1  d1f77a2 .G..V.VDGIQ...RT.KKNVTLQELDIKIRKILSDKYKI...KGLIEFDM...YSFDI...YEIDKIYEDNKTLKS...DVNL.
Cluster:1  d1ck1a2 .L..V.ENKRN...QT.KKSVTAQELDIKARNFLINKKNL...TGYIKFIE...FWYDM...SKYLMIYKDNKMVDS...EVHL.
Cluster:1  d1goza2 .T..V.EDGKN...QT.KKKVTAQELDYLTRHYLVKNKKL...TGYIKFIE...FWYDM...SKYLMMYNDNKMVDS...EVYL.
Cluster:1  d1bxta2 .T..V.EDNEN...TT.KKQVTVQELDCKTRKILVSRKNL...TGYIKFIE...FWYDM...SKYLMLYNDNKTVSS...EVHL.
Cluster:1  d1uupa2 .V..V.IDGIQ...ET.KKMVTAQELDYKVRKYLTDNKQL...TGYIKFIP...FWFDF...SKYLMIYKDNETLDS...EVYL.
Cluster:1  d1fnua2 .V..V.IDGIQ...ET.KKMVTAQELDYKVRKYTIDNKQL...TGYIKFIP...FWFDF...SKYLMIYKDNETLDN...EVYL.
Cluster:1  d1esfa2 .P..L.LDGKQ...KT.KKNVTVQELDLQARRYLQEKYNL...RGLIVFHT...VNYDL...NTLLRIYRDNKTINS...DIYL.
Cluster:1  d1ewca2 .G..V.VDGIQ...RT.KKNVTLQELDIKIRKILSDKYKI...KGLIEFDM...YSFDI...YEIDKIYEDNKTLKS...DVNL.
Cluster:1  d1ty0a2 .V..L.IDGVQ...KI.KPIFTIQEFDFKIRQYLMQTYKI...KGQLEIAI...ESFNL...SDIFKKYKDNKTINM...DIYL.
Cluster:1  d1et9a2 .P..V.DKSKQ...TV.KPKVTAQEVDIKVRKLLIKKYDI...KGTVTLDL...IVFDL...NSMLKIYSNNERIDS...DVSI.
Cluster:1  d1lo5d2 .P..L.LDGKQ...KT.KKNVTVQELDLQARRYLQEKYNL...RGLIVFHT...VNYDL...NTLLRIYRDNKTINS...AIYL.
Cluster:1  d1sebd2 .T..V.EDGKN...QT.KKKVTAQELDYLTRHYLVKNKKL...TGYIKFIE...FWYDM...SKYLMMYNDNKMVDS...EVYL.
Cluster:1  d1hqrd2 .L..L.ISGES...IL.KDIVTFQEIDFKIRKYLMDNYKI...SGRIEIGT...EQIDL...SDIFAKYKDNRIINM...DIYL.

Cluster   Name ...####.......#####....#############.........#################..........###########..
Cluster:2  d1m4va2 ...VIKK.......YIYKE....KELDFKLRQYLIQ.........KIKVIMKDGGYYTFELN..........DGRNIEKMEAN..
Cluster:2  d2tssa2 ...KVKV.......KFDKK....STLDFEIRHQLTQ.........YWKITMNDGSTYQSDLS..........NIDEIKTIEAE..
Cluster:2  d1aw7a2 ...KVKV.......KFDKK....STLDFEIRHALTQ.........YWKITMNDGSTYQSDLS..........NIDEIKTIEAE..
Cluster:2  d1v1pa2 ...FVNK.......LIQKE....KELDFKIRQQLVN.........KIIINLKDENKVEIDLG..........NSKDIRGISVT..
Cluster:2  1yn3_A ...TITV.......TFNKN....KDLEGKVKSVLES.........KYTVNFKNGTKKVIDLK..........NSSDIKSININ..
Cluster:2  1yn4_A ...TISV.......VFPEN....QEIDSKVKNELAS.........TYTLTLNDGNKKVVNLK..........DPSTIKQIQIV..
Cluster:2  1yn5_A ...TIAV.......NLPKD....LDLGNKVKALLYD.........VYTITWKDGSKKEVDLK..........DSNSIKQIDIN..

Figure 4. STRALCP clustering applied to the same set of 20 structures as in Figures 1 and 3. STRALCP calculations were performed using default
parameters (LGA_S=60%, DIST=5 Å). Each row begins from the cluster number, followed by the domain name, and the set of amino acids that
are extracted from detected structurally conserved spans. Dots indicate regions that structurally deviate in at least one pairwise comparison between
members of the cluster. Note: dots do not indicate the actual number of residue pairs between detected spans. They are introduced for formatting
purposes only.
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even if it is based purely on structure comparisons,
exhibits a low (on average �3%) misclustering effect:
domains from different SCOP families were clustered
separately. It is important to keep in mind that a purely
structure-based approach to clustering may result in two
proteins that are identical in sequence being clustered
separately if the two structures differ in conformation; we
observed that the STRALCP algorithm is able to detect
the structural differences between domains from the same
SCOP family and cluster them separately. It is for this
reason that our clustering approach may produce more
clusters than the number of SCOP families. For example
the family a.8.6.1 (Figure 5b) was separated by STRALCP
into two clusters: cluster3 (Staphylocoagulase first domain)
and cluster4 (Staphylocoagulase second domain), and the
family a.8.4.1 was divided into two clusters: cluster5
(DnaK domain from Escherichia coli) and cluster2 (DnaK
domain from Rat). The STRALCP algorithm will also
group proteins in different clusters if they significantly
differ in length or if multi-domain structures are in
different conformations (e.g. ‘open’ and ‘closed’ versions
of the same protein). We also can observe additional sub-
clustering of protein families when criteria for structure
comparison are sufficiently stringent (e.g. a higher LGA_S
cutoff is introduced). We consider this ability a beneficial

one to the developed STRALCP approach. It provides
valuable information about the regions that are structu-
rally in the same conformation, which could be useful
in various studies and classification schemes. The separa-
tion of similar or identical proteins, but in different
structural conformations, could be reduced by introducing
a sequence similarity analysis into the STRALCP algo-
rithm. However, in this study, in order to detect the limits
of purely structure-based approaches we do not include
sequence information to the scoring and clustering
algorithm. The sequence-based analysis may be consid-
ered as an option in future development efforts.
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Cluster:3  d1nu9c1  a.8.6.1
Cluster:3  d1nu9f1  a.8.6.1
Cluster:3  d1nu7d1  a.8.6.1
Cluster:3  d1nu7h1  a.8.6.1
Cluster:4  d1nu9f2  a.8.6.1
Cluster:4  d1nu7h2  a.8.6.1
Cluster:4  d1nu9c2  a.8.6.1
Cluster:4  d1nu7d2  a.8.6.1
Cluster:1  d1oksa_  a.8.5.1
Cluster:1  d1r4ga_  a.8.5.1
Cluster:1  d1bdc__  a.8.1.1
Cluster:1  d2spza_  a.8.1.1
Cluster:1  d1h0ta_  a.8.1.1
Cluster:1  d1deeh_  a.8.1.1
Cluster:2  d1ud0c_  a.8.4.1
Cluster:2  d1ud0d_  a.8.4.1
Cluster:2  d1ud0a_  a.8.4.1
Cluster:2  d1ud0b_  a.8.4.1
Cluster:6  d1htya1  a.8.3.1
Cluster:6  d1r34a1  a.8.3.1
Cluster:5  d1dkyb1  a.8.4.1
Cluster:5  d1dkya1  a.8.4.1
Cluster:5  d1dkza1  a.8.4.1
Cluster:5  d1dkxa1  a.8.4.1(a) (b)

Figure 5. (a) Dendrogram showing the results of an LGA_S-based (single measure) clustering of 24 SCOP domains from fold a.8. Each code
(entry_family) represents one protein from the SCOP classification: entry and family number. We used the R package (version 2.1.1; http://www.
r-project.org/) for the hierarchical clustering and visualization of calculated LGA_S results from all-against-all structure comparisons. (b) Clustering
created using STRALCP algorithm with default cutoff LGA_S=60%.
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