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Abstract: Macrophages and microglia represent the primary phagocytes and first line of defense in
the peripheral and central immune systems. They activate and polarize into a spectrum of pro- and
anti-inflammatory phenotypes in response to various stimuli. This activation is tightly regulated to
balance the appropriate immune response with tissue repair and homeostasis. Disruption of this
balance results in inflammatory disease states and tissue damage. Adipose stem cells (ASCs) have
great therapeutic potential because of the potent immunomodulatory capabilities which induce the
polarization of microglia and macrophages to the anti-inflammatory, M2, phenotype. In this study,
we examined the effects of donor heterogeneity on ASC function. Specifically, we investigated the
impact of donor obesity on ASC stemness and immunomodulatory abilities. Our findings revealed
that ASCs from obese donors (ObASCs) exhibited reduced stem cell characteristics when compared
to ASCs from lean donors (LnASCs). We also found that ObASCs promote a pro-inflammatory
phenotype in murine macrophage and microglial cells, as indicated by the upregulated expression of
pro-inflammatory genes, increased nitric oxide pathway activity, and impaired phagocytosis and mi-
gration. These findings highlight the importance of considering individual donor characteristics such
as obesity when selecting donors and cells for use in ASC therapeutic applications and regenerative
medicine.

Keywords: adipose tissue; adipose stem cells (ASCs); obesity; polarization; macrophage; microglia;
immunomodulation; inflammation

1. Introduction

Adipose tissue-derived stem cells (ASCs), a type of mesenchymal stem cell (MSC),
possess significant anti-inflammatory and immunomodulatory properties that make them
an attractive therapeutic option for numerous inflammatory diseases. ASCs exert their ef-
fects on the adaptive and innate immune system via the secretion of soluble molecules and
extracellular vesicles (EVs), which alter the inflammatory microenvironment [1–4]. This
is partially accomplished by transitioning activated macrophages from pro-inflammatory
toward anti-inflammatory, pro-repair phenotypes [1,2]. Additionally, pre-treatment of
ASCs with pro-inflammatory factors or hypoxic conditions strengthens their immunomod-
ulatory abilities [3,5–8]. These stressful conditions mimic the post-transplant tissue niche
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and provide some evidence for their behavior in vivo. Because of these properties, ASCs
have been investigated as therapeutic agents in animal models of various diseases such as
multiple sclerosis (MS) [9,10], uveitis [11,12], kidney injury [13,14], inflammatory bowel
disease [15–17], and cutaneous wound healing [18,19]. Results from these studies sug-
gest that ASCs possess robust immunosuppressive potential in numerous disease states;
however, the application of ASC-based therapies to the clinic has met with limited success.

One hindrance to clinical translation may be the heterogeneity of ASC function among
different donors. It is known that individual donor characteristics such as age and comor-
bidities can alter the physiology and function of ASCs [20–27]. Research has shown that
generating pools of donor ASCs can mitigate some donor-to-donor variation and may
help combat these effects [28]. However, the examination of donor characteristics and
their impact on ASC function represents a valuable area of research that will inform donor
selection and prove important for future clinical trials. Specifically, the aim of this study
is to examine the impact of exposure to ASCs from either lean or obese donor pools on
circulating or tissue resident phagocytes. An investigation of phenotypic and functional
changes in these phagocytes will provide valuable insight into the differential effects of
ASCs dependent on obesity status.

Obesity is characterized by increased deposition of white adipose tissue in both the
subcutaneous and visceral fat depots. This increase in adipose tissue is a result of both
hypertrophy, an increase in adipocyte size, and hyperplasia, an increase in adipocyte prolif-
eration [29]. Obesity-related adipose tissue hypoxia also causes the activation of signaling
cascades that lead hypertrophic adipocytes to express pro-inflammatory cytokines [30,31].
These cytokines activate tissue-resident macrophages and circulating lymphocytes, leading
to a chronic state of tissue inflammation [32]. In response to the chronic inflammation and
hypoxia in obese adipose tissue, ASCs exhibit distinct physiological changes. Studies have
demonstrated that ASCs from obese individuals (ObASCs) produced elevated levels of
pro-inflammatory mediators [33–35], exhibit reduced stem cell characteristics [33,34,36–38],
and display reduced immunomodulatory abilities [39]. Our laboratory has previously
shown that ObASCs do not possess the same therapeutic efficacy as lean ASCs (LnASCs) in
a mouse model of MS [26]. We also showed that ObASCs produce an exaggerated immune
response following exposure to an inflammatory environment, which we suspect resulted
in increased CD4+ and CD8+ T-cell proliferation and the increased lesion area seen in the
mouse model of MS [26]. These findings are intriguing; however, the effects of ObASCs on
phagocytes of the innate immune system have not yet been elucidated.

Macrophages and microglia, brain-resident macrophages, are primary components
of the innate immune system and represent the first line of defense against foreign
pathogens and tissue damage. In response to an array of extracellular signals, they ac-
tivate and adopt phenotypically and functionally distinct profiles. Initially, these were
described as either classically activated (M1), pro-inflammatory, or alternatively activated
(M2), anti-inflammatory phenotypes [40,41]. More recently, however, the spectrum of
macrophages has been expanded from this binary system to one which more accurately
encompasses the diverse phenotypic and functional behavior of macrophages [42]. Ap-
propriate pro-inflammatory macrophage and microglial response is essential for defense
against pathogens however, if left unchecked it can result in significant tissue damage.
Therefore, induction of anti-inflammatory, pro-repair, and regulatory macrophages are
essential for orchestration of the adaptive immune response, resolution of inflammation,
and initiation of tissue repair [41,43].

Considering the importance of macrophage polarization and function following tissue
damage or infection, this study aimed to determine whether obesity status of ASC donors
alters the phenotypic and functional characteristics of these highly mutable cells. We
hypothesized that ObASCs have been fundamentally altered by their chronically inflamed
tissue niche and that this results in an impaired ability to promote an anti-inflammatory
phenotype in murine macrophages and microglia. To investigate this, we compared
standard stem cell characteristics of LnASCs and ObASCs. Next, we determined the effects
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of indirect co-culture of LnASCs and ObASCs on both macrophages and microglia. Our
results provide additional evidence for the impact of obesity on ASC stemness, relate these
changes to the immunomodulatory capabilities of ASCs, and provide mechanistic insight
into previous findings that indicate a loss of therapeutic efficacy in an animal model of
inflammatory disease [26].

2. Materials and Methods
2.1. Cell Culture

Human female, subcutaneous, abdominal ASCs were obtained from LaCell LLC/Obatala
Sciences Inc. (New Orleans, LA, USA). Individual ASC cell lines were previously fully
characterized by our laboratory prior to being pooled [25,26,44–46]. Following pool-
ing an abbreviated characterization was completed to ensure expression of basic stem-
ness characteristics. Lean donors were considered those with a BMI less than 25 kg/m2

while obese donors were considered those with BMI greater than 30 kg/m2 as previ-
ously described by Sabol et al. 2019 [45]. Donor pools were created using lean donors
(LnASCs; n = 6; BMI = 22.45 ± 1.51; age = 36.33 ± 5.62) and obese donors (ObASCs; n = 6;
BMI = 33.97 ± 3.11; age = 40.50 ± 7.46). Cells were maintained in stromal media con-
sisting of Dulbecco′s modified Eagle′s media and nutrient mixture F12 (DMEM: F12;
ThermoFisher; Waltham, MA, USA) supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Hyclone; Logan, UT, USA) and 1% anti-mycotic, anti-biotic (ThermoFisher).
Cells were harvested at passage four (p4) with 0.25% trypsin, 1 mM EDTA (ThermoFisher)
and all experiments were conducted with p5 ASCs. As in previous studies, immortalized
macrophage and microglial cell lines were used in order to control the passage number
and to avoid the impact of accidentally co-isolated cell populations common in primary
culture [47–50]. The murine microglial cell line SIM-A9 was purchased from ATCC (Man-
assas, VA, USA) and maintained in DMEM: F12 culture medium supplemented with 10%
heat-inactivated FBS (ThermoFisher), 5% heat inactivated horse serum (HS; ThermoFisher),
and 1% anti-mycotic, anti-biotic. SIM-A9 cells were lifted for passage by incubating with
1xPBS supplemented with 1 mM EGTA (Sigma, St. Louis, MO, USA), 1 mM EDTA (Sigma),
and 1 mg/mL glucose (Sigma). The murine monocyte/macrophage cell line RAW264.7
was also purchased from ATCC and was cultured in high-glucose DMEM (ThermoFisher)
supplemented with 10% FBS and 1% anti-mycotic, anti-biotic. RAW264.7 cells were lifted
for passage by manual scraping when cells reached 80% confluence. All murine lines were
used between passage 5 and 10.

2.2. Characterization of ASCs

Flow Cytometry: Phenotypic characterization of pooled human ASCs was completed
using flow cytometric analysis of positive and negative surface markers as previously
described [51,52]. Briefly, cells were harvested, washed with 1xPBS, and incubated with
fluorochrome-conjugated primary antibodies at room temperature (RT) for 15 min. Cells
were then fixed in 1% paraformaldehyde (PFA) (Santa Cruz Biotechnology; Dallas, TX, USA)
for 5 min at RT and analyzed with a Gallios Flow Cytometer and Kaluza software (Beckman
Coulter; Brea, CA, USA). The following antibodies were purchased from BD Biosciences
(San Jose, CA, USA): anti-CD3-PE-Texas Red, anti-CD31 PE-Cy7, and anti-CD73-PE. Anti-
CD90-FITC and anti-CD105-APC were purchased from Invitrogen (Waltham, MA, USA).
Finally, anti-CD14-PECy5 and anti-CD45-AF700 were purchased from Beckman Coulter.

Adipogenic Differentiation and Quantification: ASCs were seeded at 1 × 105 cells per well
in a 12-well plate (Corning Inc.; Corning, NY, USA) and cultured in stromal media until
confluent. Cells were then switched into adipocyte differentiation media (ADM) consisting
of stromal media supplemented with dexamethasone (1 µM; Sigma), isobutylmethylx-
anthine (IBMX) (250 µM; Sigma), rosiglitazone (5 µM; Sigma), biotin (66 µM, Cayman
Chemical; Ann Arbor, MI, USA), calcium d-pantothenate (34 µM, Sigma), and human
insulin (200 nM, Sigma). ASCs were maintained in ADM for 21 days, with fresh ADM or
adipose maintenance media (ADM without IBMX and rosiglitazone) added every 3 days
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on an alternating cycle. After 21 days cells were fixed for 30 min with 4% PFA (Santa
Cruz) followed by incubation in a 0.5% solution of Oil-Red-O (Sigma)for 10 min at RT.
Neutral lipid droplets were imaged with a 10× objective on a Nikon Eclipse TE-200 (Nikon;
Melville, NY, USA) using Nikon′s ACT-1 software. Quantification of Oil-Red-O staining
was accomplished by destaining with 100% isopropanol and absorbance at 584 nm was
determined using a Synergy HTX plate reader (BioTek; Winooski, VT, USA). Differentiation
was reported as a percentage of control well staining.

Colony Forming Unit Fibroblast (CFU-F) Assay: ASCs were seeded at 5 × 102 cells per
10 cm plate (Corning Inc.) and cultured for 14 days. On day 14, cells were fixed and stained
with 3% crystal violet (Sigma) in methanol (Sigma) for 30 min at RT. Plates were then
washed with DI water until clear and the number of colonies with a diameter greater than
2 mm was manually recorded.

Population Doubling Time: ASCs were seeded at 1 × 104 cells per well in a 6-well
plate and cultured in stromal media. Every 24 h for a total of 8 days cells were harvested
with 0.25% trypsin and 1 mM EDTA (ThermoFisher), and viable cells were manually
counted using trypan blue exclusion (ThermoFisher). Population doubling times (DT)
were calculated using the previously described Equation [53]:

DT =
CT × ln 2

ln (N f /Ni)
(1)

where CT is culture time in hours, Ni is the initial cell number as counted on day 1, and Nf
is the final cell number. Doubling time was reported as the mean ± standard deviation.

2.3. Indirect Co-Culture Experiments

Co-Culture Conditions: Indirect co-culture of RAW264.7 or SIM-A9 cells with ASCs
was accomplished using polyethylene terephthalate (PET) Transwells with a diameter of
24 mm and a pore size of 0.4 µm (Corning Inc.). ASCs were seeded at 5 × 104 cells per
Transwell in stromal media. ASCs were treated with human interferon gamma (hIFNγ;
20 ng/mL; EMD Millipore; Billerica, MA, USA) for 48 h to activate them and enhance their
immunomodulatory activity as previously described [3,6]. Concurrently, RAW264.7 or SIM-
A9 were seeded into 6-well plates at 5 × 104 or 2 × 104 cells per well, respectively. After
48 h, all cells were rinsed with 1xPBS, fresh media was replaced, and ASC seeded Transwell
inserts were moved into the 6-well plate for a 48-h co-culture. After 48 h, inserts containing
ASCs were removed and RAW264.7 or SIM-A9 cells were imaged for morphology, lysed for
RNA isolation, or maintained for a further 48 h in culture to generate conditioned medium.
Control wells with no ASCs were run in parallel. All experiments were performed in
triplicate.

RNA Isolation and qRT-PCR: RNA was isolated from RAW264.7 and SIM-A9 cells
using a RNeasy Mini Kit (Qiagen). Following RNA isolation, 1 µg of total mRNA was
used to synthesize cDNA using the Applied Biosystems High-Capacity cDNA Reverse
Transcription Kit (ThermoFisher). Quantitative reverse transcription PCR (qRT-PCR) was
performed using SsoAdvanced Universal SYBR Green SuperMix (Bio-Rad; Hercules, CA,
USA) according to the manufacturer′s instructions. Oligonucleotide primer sets were
designed using PrimerBLAST software and manufactured by Integrated DNA Technologies
(IDT; Coralville, IA, USA) and sequences are listed in Table 1. Relative gene expression was
determined using the 2−∆∆Ct method and reported as fold change relative to untreated
controls following normalization to the housekeeping gene, 40 S ribosomal protein S29
(RPS29).
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Table 1. Primer Sequences.

Target Gene Forward Reverse

iNOS 5′-GCCACCAACAATGGCAACA-3′ 5′-CGTACCGGATGAGCTGTGAATT-3′

IL-1β 5′-CCTGCAGCTGGAGAGTGTGGAT-3′ 5′-TGTGCTCTGCTTGTGAGGTGCT-3′

TNFα 5′-ATGGCCTCCCTCTCATCAGTTC-3′ 5′-TTGGTGGTTTGCTACGACGTG-3′

Arg1 5′-GTGAAGAACCCACGGTCTGT-3′ 5′-CCAGCACCACACTGACTCTT-3′

Mrc1 5′-GTGGAGTGATGGAACCCCAG-3′ 5′-CTGTCCGCCCAGTATCCATC-3′

IL-10 5′-GCTCTTGCACTACCAAAGCC-3′ 5′-CTGCTGATCCTCATGCCAGT-3′

RPS29 5′-TTCCTTTCTCCTCGTTGGGC-3′ 5′-TTCAGCCCGTATTTGCGGAT-3’

Migration Assay: Migration efficiency of the RAW264.7 macrophages and SIM-A9 mi-
croglia in the presence or absence of LnASCs or ObASCs was determined using Transwells
with a diameter of 6.5 mm and a pore size of 5.0 µm (Corning Inc.). Transwells were coated
with rat tail collagen type 1 (Corning) at a concentration of 50 µg/mL for 2 h at 37 ◦C,
then dried and stored at 4 ◦C until use. Meanwhile, LnASCs and ObASCs were seeded
into 24-well plates at 1 × 104 cells per well and pre-stimulated for 24 h with hIFNγ as
described above. ASCs were then washed with 1xPBS and stromal media was replaced
with serum-free media. Transwell inserts were rehydrated with serum-free media for
30 min and RAW264.7 or SIM-A9 cells were seeded at 1× 105 or 5× 104 cells per Transwell,
respectively, in serum-free media. RAW264.7 macrophages were allowed to migrate for
72 h, and SIM-A9 microglia were allowed to migrate for 24 h. After migration, Transwells
were removed and stained with 3% crystal violet (Sigma) in methanol for 30 min at RT.
Transwells were washed with DI water and the upper surface of the Transwell was brushed
with a cotton swab to remove non-migrated cells. As previously reported by Yin et al. 2017
and Yu et al. 2018, three random fields were chosen and imaged using a 10× objective
for each Transwell [54,55]. The number of migrated cells was manually counted for each
image by a group-blinded researcher and reported as the average cells migrated per field.

Phagocytosis Assay: RAW264.7 and SIM-A9 cells were seeded separately into 96-well
plates at 2.5 × 103 cells per well in either control growth media or media supplemented
with 50% LnASC or ObASC conditioned media and cultured for 48 h. The CytoSelect
Phagocytosis Assay E. coli Substrate Kit (Cell Biolabs; San Diego, CA, USA) was employed
to assess phagocytic ability according to the manufacturer’s instructions. Briefly, cells
were incubated with E. coli for 4 h at 37 ◦C, followed by fixation, permeabilization, and
incubation with substrate to visualize phagocytosis. Absorbance was read at 450 nm on a
Synergy HTX plate reader (BioTek).

Nitric Oxide Production: After co-culture, RAW264.7 or SIM-A9 cells were cultured for a
further 48 h and conditioned media (CM) was collected and immediately frozen at −80 ◦C.
When thawed, CM was diluted 1:2 and a Griess assay was used to determine the levels of
NO metabolites according to the manufacturer’s instructions (Cell Signaling Technology;
Danvers, MA, USA). Briefly, samples were run in triplicate, incubated in sulfanilamide
solution for 10 min at RT, and absorbance was measured at 540 nm with a wavelength
correction at 690 nm using a BioTek Synergy HTX plate reader. Nitrite concentrations in
CM were extrapolated from a standard curve.

2.4. Statistical Analysis

All data are expressed as mean ± standard deviation from at least three independent
experiments. The statistical differences between two groups was determined by a Mann-
Whitney test. Differences between three or more groups was determined by one-way
ANOVA followed by Dunnett’s multiple comparisons test. For all comparisons, a p < 0.05
was considered to indicate a significant difference. GraphPad Prism 8 software was used
for all statistical analyses (GraphPad; San Diego, CA, USA).
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3. Results
3.1. ObASCs Exhibit Reduced Stemness Characteristics When Compared with LnASCs

Human adipose stem cells (ASCs) were pooled from six lean (BMI < 25) or six obese
(BMI > 30) donors. No statistical differences were found in the age of donors between
groups (p = 0.513). Similar cell morphology was seen in both LnASCs and ObASCs (data
not shown). Following a 21-day adipogenic differentiation, both LnASCs and ObASCs
differentiated into adipocytes, which produced lipid droplets (Figure 1A). However, the
degree of adipogenic differentiation observed in ObASCs was significantly lower than
that of LnASCs (Figure 1B). Colony-forming unit fibroblast (CFU-F) assay indicated that
ObASCs had an impaired ability to form colonies relative to LnASCs (Figure 1C). Flow
cytometric analysis of the ASC phenotype based on positive (CD73, CD90, CD105) and
negative (CD4, CD14, CD31, CD45) markers was conducted for both groups (Figure 1D).
The data indicated that the ObASCs exhibited significantly decreased expression of CD90
and CD105 relative to LnASCs. Interestingly, ObASCs exhibited a slightly elevated level
of CD73 relative to LnASCs (p < 0.01). Finally, the average population doubling time was
determined for each pool over an 8-day period and revealed no significant differences
between groups (Figure 1E).
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Figure 1. Pooled ObASCs exhibit reduced stemness characteristics. (A) LnASCs and ObASCs were
differentiated with adipogenic media for 21 days and stained with Oil-Red-O and imaged at 10×
(scale bar is 200 µm for controls and 100 µm for adipogenesis). (B) Oil-Red-O destaining absorbance
was measured at 584 nm and normalized to the LnASCs. (C) CFU-F assay was completed with
both LnASCs and ObASCs and the results were normalized to the LnASC colony counts. (D) Flow
cytometry analysis of LnASCs and ObASCs using both positive and negative MSC markers. (E)
Average population doubling time of LnASCs and ObASCs expressed in hours. Values are presented
as means (N = 3) ± SD of three independent experiments using Mann-Whitney tests. Statistical
differences between the means are marked with * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations:
LnASCs, lean ASCs; ObASCs obese ASCs; CD, cluster of differentiation.
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3.2. Indirect Co-Culture with ObASCs, But Not LnASCs, Induces Polarization toward M1
Phenotype in RAW264.7 Macrophages

To determine the effect of LnASCs’ and ObASCs’ secretome on macrophage gene ex-
pression and function, indirect co-culture with RAW264.7 cells for 48 h was performed. The
morphology of RAW264.7 cells following co-culture was examined and no significant alter-
ations were noted between groups (Figure 2A). The gene expression analysis of key anti-
inflammatory (Figure 2B) factors revealed no significant changes in anti-inflammatory gene
expression following either LnASC or ObASC co-culture relative to untreated macrophages.
However, co-culture with ObASCs resulted in a roughly 50-fold increase in expression of
inducible nitric oxide synthase (iNOS) and a 26-fold increase in interleukine-1 beta (IL-1β)
expression (Figure 2C). Similarly, in comparison to LnASCs, ObASCs induced a 10-fold
and a 16-fold increase in iNOS and IL-1β expression respectively. Consistent with the
upregulation of iNOS transcripts, RAW264.7 cells co-cultured with ObASCs demonstrated
a 47-fold increase in iNOS metabolite production relative to untreated control cells as
measured by a Griess assay (Figure 2D). These findings were echoed in the 90-fold increase
in iNOS metabolites in ObASC exposed cells relative to LnASC exposed cells.
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Figure 2. RAW264.7 cells following indirect co-culture with ASCs in a Transwell system. (A)
Representative images of RAW264.7 morphology following either LnASC or ObASC co-culture for
48-h. (B) Changes in anti-inflammatory gene expression of RAW264.7 cells following 48-h co-culture
relative to untreated controls. (C) Changes in pro-inflammatory gene expression of RAW264.7 cells
following 48-h co-culture relative to untreated controls. (D) Griess assay determination of nitrite
concentration of 48-h conditioned media following 48-h co-culture relative to untreated controls.
Values are presented as means (N = 3) ± SD of three independent experiments using one-way
ANOVA followed by Dunnett’s multiple comparisons test. Statistical differences between the means
are marked with ** p < 0.01, *** p < 0.001. Abbreviations: Arg1, arginase 1; Mrc1, mannose receptor
C-type 1; IL-10, interleukin 10; iNOS, inducible nitric oxide synthase; IL-1β, interleukin 1 beta; TNFα,
tumor necrosis factor alpha.
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3.3. LnASCs and ObASCs Differentially Affect the Migration and Phagocytic Abilities of
RAW264.7 Macrophages

Following the changes in gene expression observed in RAW264.7 cells, we sought
to determine what impact LnASCs and ObASCs have on the functional properties of
macrophages, namely migration and phagocytosis. The number of macrophages able
to digest the collagen-coating and migrate through a 0.4µm-pore Transwell toward the
ASCs was used to determine their migratory abilities. Following 72-h co-culture, more
than three times as many RAW264.7 cells migrated through the collagen-coated Transwell
when cultured with LnASCs than untreated controls (p < 0.001) (Figure 3C). Likewise, a
comparison between LnASC and ObASC exposed groups resulted in more than four times
as many RAW264.7 cells migrated. There was no statistical difference between ObASC
co-cultured RAW264.7 cell migration and untreated control cells. The ability of RAW264.7
macrophages to phagocytose when cultured with LnASC or ObASC conditioned media
(CM) was assessed with colorimetric quantitative analysis of engulfed E. coli particles.
When cultured with ObASC CM, but not LnASC CM, macrophages exhibited a 24% de-
crease in phagocytic ability when compared to untreated control macrophages (Figure 3D).
The decrease in phagocytic ability between LnASC and ObASC groups was less extreme at
a 20% decrease, but still statistically significant.
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Figure 3. LnASCs and ObASCs differentially alter the migration and phagocytotic abilities of
RAW264.7 cells. (A) Representative scheme of RAW264. 7 cells following migration through a
collagen-coated Transwell in the presence of LnASCs or ObASCs. Created with Biorender.com (B)
Diagram of migration assay process including staining and imaging. (C) Quantification of the cells
migrated per field based on three randomly chosen fields for each Transwell migration performed.
(D) Phagocytosis of E. coli-substrate by RAW264.7 cells following 48-h treatment with LnASC or
ObASC conditioned media. Values are presented as means (N = 3) ± SD of three independent
experiments using one-way ANOVA followed by Dunnett’s multiple comparison test. Statistical
differences between the means are marked with ** p < 0.01, *** p < 0.001.

3.4. Indirect Co-Culture with ObASCs, But Not LnASCs, Induces Polarization toward M1
Phenotype in SIM-A9 Microglia

Microglia are the primary brain-resident macrophages and represent the second line
of CNS defense following the blood-brain barrier. Since we observed significant changes in
macrophage physiology and function, the impacts of LnASC and ObASCs on microglia
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were assessed to determine how consistent these effects are on cells of similar functionality
but differing origin. The morphology of SIM-A9 cells was consistent across all co-cultures
(Figure 4A). Following 48-h co-culture, alterations in gene expression of anti-inflammatory
(Figure 4B) and pro-inflammatory (Figure 4C) factors were examined in LnASC and ObASC
co-culture samples relative to untreated controls. Interestingly, both LnASC and ObASC co-
culture enhanced the expression of arginase-1 (Arg1) but lacked differences of expression
when compared with each other. However, another anti-inflammatory marker, mannose
receptor 1 (Mrc1; CD206) was downregulated to 0.7-fold following LnASC co-culture. This
effect was further decreased to 0.26-fold expression following ObASC co-culture and exhib-
ited a statistically significant decrease when compared with the LnASC group. Importantly,
expression of the anti-inflammatory cytokine interleukin-10 (IL-10) was upregulated 2.4-
fold by SIM-A9s following LnASC co-culture. This increase was not evident in the ObASC
group and was significantly less than the expression of the LnASC group. Examination of
pro-inflammatory genes yielded a significant increase in expression of iNOS (52-fold), IL-1β
(8.5-fold), and tumor necrosis factor alpha (TNFα) (2.8-fold) in ObASC co-cultures, and
a non-significant decrease in expression of these genes in LnASC co-cultures. In all three
pro-inflammatory genes examined, there was also a significant difference in expression
level between the LnASC and ObASC groups. A Griess assay was employed to examine
the nitrite concentration of SIM-A9 conditioned media following co-culture (Figure 4D). In
agreement with the RAW264.7 data, the ObASC co-cultured SIM-A9 microglia produced
2.7-fold higher levels of nitrite species than untreated controls. This was increased to a
4.6-fold difference when comparing LnASC to ObASC co-cultured SIM-A9 cells.
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Figure 4. SIM-A9 cells following indirect co-culture with ASCs in a Transwell system. (A) Represen-
tative images of SIM-A9 morphology following either LnASC or ObASC co-culture. (B) Changes in
anti-inflammatory gene expression of SIM-A9 cells following 48-h co-culture relative to untreated
controls. (C) Changes in pro-inflammatory gene expression of SIM-A9 cells following 48-h co-culture
relative to untreated controls. (D) Griess assay determination of nitrite concentration of 48-h condi-
tioned media following 48-h co-culture relative to untreated cells. Values are presented as means
(N = 3) ± SD of three independent experiments using one-way ANOVA followed by Dunnett’s
multiple comparison test. Statistical differences between the means are marked with * p < 0.05,
** p < 0.01, *** p < 0.001. Abbreviations: Arg1, arginase 1; Mrc1, mannose receptor C-type 1; IL-10,
interleukin 10; iNOS, inducible nitric oxide synthase; IL-1β, interleukin 1 beta; TNFα, tumor necrosis
factor alpha.
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3.5. LnASCs and ObASCs Differentially Affect the Migration and Phagocytic Abilities of
SIM-A9 Microglia

Changes in the functional properties of microglia following ASC co-culture were deter-
mined. The migration efficiency of SIM-A9 cells was examined using the aforementioned
collagen-coated 5 µm pore Transwells. After 24 h, 37% more microglia had migrated in the
LnASC co-culture than the untreated controls. ObASC co-cultured SIM-A9s demonstrated
an increased trend in migration but failed to reach significance (Figure 5C). Comparisons
between the LnASC and ObASC groups also failed to reach significance. The ability of
SIM-A9 cells to phagocytose E. coli following exposure to LnASC or ObASC conditioned
media was also examined (Figure 5D). Exposure to ObASC CM resulted in a 48% decrease
in the phagocytic abilities of SIM-A9 cells relative to untreated controls and a 65% decrease
relative to LnASC CM exposure.
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Figure 5. LnASCs and ObASCs differentially alter the migration and phagocytic abilities of SIM-
A9 cells. (A) Representative images of crystal violet stained SIM-A9 cells following migration
through a collagen-coated Transwell in the presence of LnASCs or ObASCs. (B) Representative
scheme of migration assay process including staining and imaging. Created with Biorender.com
(C) Quantification of the cells migrated per field based on three randomly chosen fields for each
Transwell migration performed. (D) Phagocytosis of E. coli-substrate by SIM-A9 cells following 48-h
treatment with LnASC or ObASC conditioned media. Values are presented as means (N = 3) of three
independent experiments ± SD using one-way ANOVA followed by Dunnett’s multiple comparison
test. Statistical differences between the means are marked with * p < 0.05, ** p < 0.01.
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4. Discussion

Adipose stem cells have tremendous therapeutic potential because of their remarkable
ability to migrate to sites of inflammation where they recruit immune cells and orchestrate
tissue repair [56–58]. Adipose stem cells are isolated from donor tissue following liposuc-
tion or lipectomy and, as such, are often from obese adipose tissue. Obese adipose tissue
is chronically inflamed and hypoxic; therefore, the resident ASCs may be fundamentally
altered relative to ASCs from lean donor tissue. Our initial characterization of stemness
traits of ObASCs relative to LnASCs yielded results in agreement with numerous previ-
ous studies including: reduced adipogenic differentiation capacity [33,59–61]; impaired
self-renewal ability [36,38]; and diminished expression of standard stem cell phenotypic
markers [36,60]. Additionally, our group’s previous work demonstrated an exaggerated
immune response of ObASCs to inflammatory stimuli [26], suggesting that the chronic
inflammatory environment of obese adipose tissue may alter not only ASC phenotype
but also their immunosuppressive function. In support of this theory, an in vivo study
conducted by our lab demonstrated a loss of therapeutic efficacy of ObASCs in a mouse
model of MS as demonstrated by the lack of symptomatic improvement, lack of lesion
reduction, and increased in pro-inflammatory cytokine expression [26]. Therefore, we hy-
pothesized that the ability of ObASCs to induce an anti-inflammatory, pro-repair phenotype
in macrophages and microglia would be impaired relative to LnASCs. In the present study,
we examined, in vitro, the gene expression profiles, migration, and phagocytic abilities of
both macrophages and microglia in the presence of ASCs. We concluded that exposure to
ObASCs, but not LnASCs, resulted in pro-inflammatory phenotypes in both macrophages
and microglia.

Pro-inflammatory macrophages and microglia exhibit unique gene expression pro-
files, in part characterized by high levels of iNOS and the production of several cytokines,
including IL-1β, IL-6, and TNFα [62]. The secretion of these cytokines results in a pro-
inflammatory microenvironment that initiates the polarization of other macrophages and
the recruitment and differentiation of naïve T cells toward pro-inflammatory phenotypes. In
the present study, we demonstrated that, following co-culture with ObASCs, macrophages
significantly upregulated iNOS and IL-1β gene expression when compared with LnASCs
and untreated controls. Similarly, microglia exhibited significant upregulation of iNOS,
IL-1β, and TNFα transcripts. In contrast, the co-culture of microglia and macrophages with
LnASCs demonstrated no significant changes in the expression of pro-inflammatory cy-
tokines in comparison to untreated controls. Direct comparisons made between LnASC and
ObASC-exposed cells demonstrated similar significant upregulation of pro-inflammatory
genes in the ObASC group. Nitric oxide (NO), the product of iNOS enzymatic activity on
L-arginine, is one of the effector molecules of pro-inflammatory phagocytes. It produces
metabolites that can be examined as an indirect measure of NO activity. In both cell lines,
there were significantly more nitrite species produced following incubation with ObASCs
indicating enhanced activity of NO in ObASC exposed cells. No change in NO activity
was observed in cells co-cultured with LnASCs. These data suggest that ObASCs, but
not LnASCs, promote gene expression resembling the pro-inflammatory polarization of
macrophages and microglia in vitro. Interestingly, although the ObASC-exposed SIM-A9
cells significantly downregulated their expression of the anti-inflammatory gene Mrc1,
they maintained an elevated expression of Arg1 and similar levels of IL-10 expression as
control cells. In addition to being a traditional anti-inflammatory cytokine, IL-10 also has
significant effects on the adaptive immune response by promoting the development of
regulatory T-cell populations [42]. This combined pro-inflammatory, regulatory microglial
phenotype is an illustration of the diversity of potential responses to a complex extracellular
signaling milieux. Further, it illustrates the inability of an oversimplified characterization
system to appropriately describe these responses.

Gene expression analysis tells an incomplete story and does not demonstrate the effect
that ASCs have on the function of macrophages and microglia. As immune surveillance
and effector cells, macrophages and microglia must be able to migrate to areas of dam-
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age and phagocytose invading pathogens and cell debris. Anti-inflammatory, pro-repair
phenotypes express an array of anti-inflammatory cytokines and are responsible for the
phagocytosis of cellular debris and orchestration of tissue repair. Our migration assay
demonstrated a significant increase in migration of both macrophages and microglia in
the presence of LnASCs, which was absent in the presence of ObASCs. These findings
are in agreement with several in vitro studies that demonstrated increased speed and
distance of migration in a synthetic extracellular matrix by both M2 macrophages and
microglia relative to M1 macrophages and microglia [63,64]. Similar results were also
found in a rat microglial migration study, which noted significant M2 microglial migration
through a matrix relative to M1 [65]. Phagocytosis is another function of macrophages
and microglia and is essential for pathogen defense and tissue regeneration. Previous
studies have demonstrated a decrease in the ability of macrophages to phagocytose E.
coli following polarization to M1 [66,67]. Similarly, our results demonstrated decreased
phagocytosis in the macrophages and microglia exposed to ObASCs. The cells that were
exposed to LnASCs exhibited phagocytic abilities very similar to untreated control cells.
Taken together, the decrease in mobility and phagocytic abilities of both macrophages and
microglia are suggestive of polarization to an M1 phenotype as a result of exposure to
ObASCs. Persistent M1 polarization results in a pro-inflammatory extracellular milieux
which is essential for fighting infection and recruitment of additional immune cell popula-
tions, but it can also result in extensive tissue damage. M2 polarization is important for the
reduction of inflammation, degradation of cellular debris, and initiation of tissue repair
mechanisms. Thus, ObASCs may possess limited therapeutic potential because of their
promotion of pro-inflammatory phenotypes.

The data from these studies suggest that ObASCs are fundamentally altered by their
environment. This alteration manifests as a phenotype that preferentially induces a pro-
inflammatory polarization in both macrophages and microglia, as evidenced by elevation
of pro-inflammatory transcripts, decreased mobility, and diminished phagocytosis. The
results of this study illustrate the importance of understanding the impact of the tissue niche
on ASC phenotype and immunomodulatory function. In the context of an inflammatory
disease such as MS, the skewed immunomodulatory function of ObASCs which promotes
pro-inflammatory activation of innate immune cells may help explain the lack of therapeutic
effect in previous studies. However, MS is only one of the numerous potential disease
applications for ASCs, each of which are defined by unique pathogenic mechanisms. An
ASC therapeutic ideally functions as a biological immunomodulator. One that enhances the
pro-inflammatory function of macrophages or microglia may be beneficial for situations in
which normal immune function is diminished or compromised. Successful translation of
ASC therapeutics to the clinic will require the selection of ASCs that best fit the desired
immunomodulatory response and produce the intended therapeutic outcome.
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