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Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible
diseases, that share a number of common causative factors including cigarette smok-
ing. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, lead-
ing to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients
with COPD are most likely to die as a result of a cardiovascular event, with 30% of all
COPD-related deaths being attributed to cardiovascular disease (CVD). Both atheroscle-
rosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation
and oxidative stress, of which current pharmacological treatments have limited efficacy,
hence the urgency for the development of novel life-saving therapeutics. Currently these
diseases must be treated individually, with no therapies available that can effectively reduce
the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review,
the important mechanisms that drive atherosclerosis and CVD in people with COPD are ex-
plained and we propose that modulation of both the oxidative stress and the inflammatory
burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic
manifestations related to these diseases.

Introduction
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease that is currently the third
leading cause of deaths globally [1,2]. This debilitating, irreversible disease is attributed to a persistent
airflow limitation and overstated pulmonary inflammatory response, resulting from exposure to nox-
ious gases and particles [3–5]. COPD is responsible for ∼3 million deaths and an overwhelming €82
billion in global healthcare costs annually [1,6]. The huge financial burden associated with this disease
is largely due to the management of its comorbidities, other underlying medical conditions such as car-
diovascular disease (CVD), and acute exacerbations of COPD (AECOPD) which are defined as ‘an acute
worsening of respiratory symptoms that result in additional therapy’ [7]. It is established that comorbid
CVD is a key contributor to the morbidity and mortality associated with COPD, with approximately 30%
of all COPD patients dying as a result of cardiovascular manifestations [8]. Cigarette smoking accounts
for 95% of all cases of COPD in industrialized countries, however airborne pollutants and exposure to
noxious gasses may also lead to the onset or development of this disease [3,9,10]. COPD is a chronic
inflammatory disease of the lungs, and this inflammatory burden promotes structural remodeling and
damage to the small airways, large airways and lung parenchyma; impairing the elastic recoil of the lung,
and ultimately reducing lung function [4,11–13]. It is this persistent pulmonary inflammation and in-
creased oxidative stress from exposure to CS that is believed to drive atherosclerosis and CVD in COPD
patients. There is evidence to suggest that pro-inflammatory mediators and reactive oxygen species (ROS)
spill over into the systemic circulation, driving extrapulmonary pathologies. Studies have shown that CS
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promotes both pulmonary and systemic inflammation, systemic oxidative stress, pulmonary endothelial dysfunction
and enhanced levels of circulating pro-coagulant mediators [14–16]. Exposure to CS exerts deleterious systemic ef-
fects that contribute to the development of chronic comorbid diseases and further functional impairments which
reduce the overall quality-of-life of these patients.

Reduced lung function has been implicated in cardiovascular mortality in patients with COPD, with a study con-
cluding that a decline in forced expiratory volume in 1 s (FEV1) is strongly correlated with increased cardiovascular
mortality [17]. This reduced lung function is the result of airway remodeling due to repeated cycles of injury and
repair of the extracellular matrix (ECM) promoting dysregulated deposition of ECM proteins, enhancing airway
stiffness [17,18]. The mechanisms linking these COPD-induced pulmonary and systemic manifestations are largely
unknown, however it is clear that these conditions act synergistically, as COPD is the largest driver of pulmonary
hypertension, which has been linked to an increase in the likelihood of various cardiovascular complications includ-
ing chronic heart failure and myocardial infarction (MI) [19]. Pulmonary hypertension is the result of an increase in
blood pressure (BP) due to narrowing of the vessel lumen, inflammatory cell recruitment and excessive proliferation
of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts within the vascular wall [20,21].
The inflammatory burden within the lung due to both pulmonary hypertension and COPD puts these patients at an
increased risk of developing atherosclerosis and other extrapulmonary comorbidities.

Atherosclerosis is currently the leading cause of stroke, peripheral vascular disease (PVD) and coronary heart
disease [22,23]. Various other cardiovascular conditions have also been reported in greater incidence in COPD pa-
tients than the healthy population, these include: PVD, cardiac arrhythmias, congestive heart failure and coronary
artery disease, with persistent low-grade systemic inflammation being a common link between both CVD and COPD
[24,25]. In this review, the deleterious role of pulmonary inflammation and oxidative stress in atherosclerosis will be
explored, and we will outline potential novel therapeutic strategies to combat comorbid atherosclerosis and reduce
its morbidity and mortality in COPD patients.

Pathogenesis of COPD
COPD is an incapacitating, irreversible disease of the lungs that leads to emphysema, narrowing of the small air-
ways, persistent pulmonary inflammation and fibrosis [26]. Diagnosis of COPD requires quantification of airflow
limitation by either bronchodilator tests or spirometric analysis, where patients with COPD display declined pul-
monary function as defined by FEV1/forced vital capacity (FEV1/FVC) ratio of less than 0.7 [27]. Hallmark features
of COPD include chronic cough, breathlessness, increased sputum production bronchial inflammation/mucous plug-
ging (obstruction of airways) and dyspnea which have unfavorable effects on the overall quality of life of these patients,
which is further worsened by virus and bacteria-induced AECOPD [10]. It is well established that CS promotes pul-
monary inflammation, due to enhanced immune cell recruitment to the lungs [28,29]. Recruited innate immune cells
include macrophages, neutrophils and eosinophils, stimulate the release of inflammatory cytokines, matrix metallo-
proteinases (MMPs) and chemotactic proteins [28,30–33]. Macrophages, respond to both endogenous and exogenous
stimuli and significantly increase proteinase activity leading to tissue degradation and injury, acting as a first line of
defense within the lungs. Fibroblasts and airway epithelial cells also play a crucial role in the secretion of MMPs, how-
ever, this is at a much higher concentration in COPD patients than in healthy individuals, hence worsened pulmonary
pathologies [34]. Neutrophilic inflammation is a key driver of lung tissue damage in COPD, due to neutrophils hav-
ing the ability to secrete proteases at high concentrations, with direct correlations being made between increased
lung neutrophil number and impaired lung function [35]. A study by Lapperre et al. utilized single-breath N2 test
(sbN2-test) to assess small airway pathology in COPD patients [36]. The study showed that an uneven ventilation of
the lung is a direct reflection of airway closure and tissue damage. Bronchial biopsies were also taken to investigate im-
mune cell populations and sputum content in this cohort. The study concluded that an increase in N2 concentration
was proportional to an increase in subepithelial neutrophil numbers, however this was not observed in any other im-
mune cell type, therefore the sbN2-test is an accurate indicator of neutrophilic inflammation-mediated small airway
dysfunction in COPD, highlighting the significant role of neutrophils in the development of COPD and pulmonary
dysfunction.

Eosinophilic inflammation is often associated with asthma rather than COPD, however emerging evidence suggests
that eosinophils may play a crucial role in mediating cell injury as a result of interleukin (IL)-33 and IL-13-induced
inflammation [37]. Both blood and sputum eosinophil number is advantageous clinically as it is often used as an
indicator of inhaled corticosteroid (ICS) efficacy, as the effect of ICS is greater in patients with eosinophilic airway
inflammation [38]. A randomized controlled trial by Siva et al. highlighted that through minimizing eosinophilic
airway inflammation there is a significant reduction in exacerbation instance and severity [39,40], highlighting the
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Figure 1. Flow-mediated vasoconstrictive and vasodilatory mechanisms

Luminal shear stress promotes Ang II-mediated vasoconstriction through the binding and activation of the Ang II–AT1 G-protein

coupled receptor complex, inhibiting the sarcomere phosphatase brake of MLCP and enhancing MLCK activity, promoting smooth

muscle-dependent vasoconstriction. Shear stress may also induce vasodilation through EC-mediated NO production and release,

driving the activity of guanylyl cyclase within the VSMCs and thus endothelial-dependent vasodilation occurring.

importance of targeted therapeutics in the treatment of COPD. Eosinophils become activated upon exposure to
pro-inflammatory mediators such as IL-3 and IL-5, promoting migration to sites of inflammation (i.e. the lungs upon
contact with virus) [37,41–44]. These recruited eosinophils then mediate the release of pro-inflammatory mediators
such as cytokines and growth factors, which induce persistent lung inflammation and worsened exacerbation sever-
ity [45,46]. It is believed that the spillover of these inflammatory mediators, resulting from this exuberant immune
cell recruitment occurring in the lungs drives extrapulmonary comorbidities such as CVD, therefore a clear under-
standing of the mechanisms underlying lung inflammation and the pathogenesis of COPD is crucial to defining these
complex comorbid diseases.

Blood vessel homeostasis
Under normal conditions, the vasculature plays a crucial role in the regulation of blood pressure and flow. The vas-
cular endothelium plays a pivotal role in this fine regulation, as hemodynamic forces exerted on the luminal vascular
surface (ECs) because of blood flow/sheer stress, promote endothelial signaling, which maintains homeostatic bal-
ance, BP and vascular resistance. This vascular tone homeostasis is the result of complex endothelial regulation and
signal transduction from the apical domain of the vascular lumen to the more superficial smooth muscle layer and
is achieved through interactions between the endothelial cytoskeletal framework, which comprises microtubules,
microfilaments and intermediate filaments [47]. The shear stress exerted on the lumen wall promotes vasodilation
through the activation of mechanosensitive ion channels, which trigger a rapid influx of Ca2+ into the EC cytoplasm,
triggering sheer stress-dependent calcium ion channels. Upon calcium influx, there is a sharp increase in the activ-
ity of the endothelial nitric oxide synthase (eNOS) enzyme, which promotes vasodilatory nitric oxide (NO) signal
transduction through myoendothelial gap junctions to the underlying VSMCs [2,10,47].

Hemodynamic forces and flow-induced shear stress can also modulate the synthesis of vasoconstrictive factors
such as angiotensin II (Ang II). Angiotensin-1 receptor (AT1) stimulation by Ang II promotes G-protein activation
of phospholipase C (PLC) causing the hydrolytic conversion of phosphatidylinositiol-4,5-biphosphate (PIP2) into
diacylglycerol (DAG) and inositol-1-,4,5-tiphopshate (IP3) (Figure 1) [48]. This mediates the opening of cell surface
calcium channels as well as the release of Ca2+ from intracellular stores. The sudden spike in available Ca2+ triggers
the activation of myosin light chain kinase (MLCK), promoting phosphorylation and inhibition of myosin light chain
phosphatase (MLCP) and subsequent vasoconstriction due to increased myofilament tension. The Ras homolog fam-
ily member A (RhoA)/Rho-kinase pathway also plays a key regulatory role on vasoconstriction as it acts as a cellular
brake, preventing MLCP activity [49,50]. Similarly, the protein kinase C pathway acts by MLCP inhibition via protein
phosphatase 1 regulatory subunit 14A (CPI-17) [51,52]. However, a study by Lassgue et al. defined a novel role of
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phosphatidylcholine (PC) in Ang II-mediated smooth muscle contraction. Mechanistically, Ang II activates phos-
pholipase D (PLD) promoting hydrolysis of PC [53]. This PC is further converted into phosphatidic acid and choline,
where the phosphatidic acid is then converted into DAG which then goes on to activate the PKC pathway, promoting
vasoconstriction and in increase in BP, typical of Ang II stimulation. With a clear understanding of the homeostatic
regulators within the vasculature, and how these mechanisms are altered during diseases, such as atherosclerosis
where the balance is shifted in favor of vasoconstriction rather than vasodilation, we can potentially develop novel
life-saving therapeutics, preventing this dysregulation and reducing the likelihood of cardiovascular manifestations.
In the context of comorbid CVD in COPD, damage to the vascular endothelium is believed to mediate the onset of
disease, which we found is the result of enhanced oxidative stress and inflammation associated with COPD and CS,
putting these patients at a heightened risk of illnesses including atherosclerosis, MI and stroke.

There is emerging interest into perivascular adipose tissue (PVAT) and its ability to influence vascular homeostasis,
as it has been shown to contribute directly to vascular function. The PVAT is rich in stromal cells and adipocytes,
both of which have the potential to induce paracrine signaling on VSMCs, ECs and induce both ROS and cytokine
production upon vascular stimuli such as localized inflammation [54]. Like that observed in atherosclerosis, PVAT
dysfunction is largely the result of oxidative stress, hypoxia and inflammation due to immune cell invasion and T-cell
recruitment into the PVAT layer [55–57]. There are numerous hypotheses stating that the PVAT may play a crucial role
in atherogenesis, which sees activated PVAT causing a subsequent release of proinflammatory and chemotactic medi-
ators. It is believed that the secretion of these factors leads to enhanced immune cell activation and infiltration, plaque
formation and endothelial dysfunction [58]. A study by Spiroglou et al. showed that the expression of adiponectin,
visfatin and chemerin expression in human periaortic and pericoronary adipose tissues was increased significantly
in patients with both aortic and coronary atherosclerosis [59]. These findings suggest that the adipokines; the protein
products secreted from the PVAT and immune cell infiltration are directly associated with paracrine signaling and
the pathogenesis of atherosclerosis and CVD.

The detrimental role of COPD in the pathogenesis of
atherosclerosis and CVD
Currently the role of COPD in the pathogenesis of atherosclerosis is under investigation, as both diseases share numer-
ous common risk factors including a history of CS, persistent inflammation, a high oxidative stress burden, increased
BP and unrestrained platelet activation (Figure 2) [10,60]. A recent study by Chandra et al. implicated a persistent
air flow limitation and pulmonary endothelial dysfunction as strong independent predictors of atherosclerosis [61],
whereas Topsakal et al. identified that patients with COPD have an increase in the intensity and severity of atheroscle-
rotic disease, as more critical lesions were identified in patients with COPD when compared with those without the
underlying disease. It was also evident that patients with COPD displayed worse morphological properties (enhanced
calcification) within their stenotic lesions [62]. Topsakal et al. also speculated that both the chronic oxidative stress
and inflammation associated with COPD may be what is driving coronary atherosclerosis within these patients.

The innate immune system has a crucial role in the development of atherosclerosis, with lipid-rich cells known
as foam cells; derived from mononuclear phagocytes, being regarded as the key cell type responsible for the ini-
tial progression of disease due to their ability to uptake lipoproteins. It is the death of these foam cells that leads to
the formation of the necrotic core within atherosclerotic plaques [63,64]. The accumulation of these mononuclear
phagocytic cells drives local inflammation and the secretion of macrophage-derived pro-inflammatory mediators
such as cytokines as well as promoting a complex adaptive immune response involving T lymphocytes. Vascular ECs
have also been implicated in the early stages of atherosclerotic lesion formation due to their ability to secrete ad-
hesion molecules including vascular cell adhesion molecule-1 (VCAM-1) upon exposure to inflammatory stimuli
(cytokines) [65]. Chemokines also play a crucial role in the early stages of plaque development, chemokine (C–C
motif) ligand 2 (CCL-2) and interferon-γ (IFNγ) induce T-cell recruitment and its associated inflammation [66,67]
and macrophages are crucial to the development of the fibrous cap present on these plaques as a result of these cells
containing the enzymes required for collagen production [68]. A study by Galis et al. showed that the expression of
collagenases MMP-1, MMP-8 and MMP-13 is enhanced in atherosclerotic plaques, leading to thrombosis (favoring
coagulation and platelet hyperactivation) and destabilization of these plaques, increasing the likelihood of further
CVD complications such as ischemic stroke [69].

Under normal conditions, the vascular endothelium sustains blood vessel homeostasis, regulates cellular adhesion,
promotes fibrinolysis (prevent blood clots) and maintains leukocyte aggregation [47]. Conversely, upon exposure to
noxious stimuli such as CS, ECs lose their structural integrity leading to the secretion of pro-inflammatory media-
tors, enhanced secretion of VCAM-1 and a reduction in their anti-inflammatory ability, aiding in the recruitment of
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Figure 2. The role of CS and COPD in atherogenesis

Exposure to CS promotes pulmonary inflammation and COPD pathogenesis due to over-exuberant ROS and immune cell recruit-

ment into the lungs. These harmful inflammatory mediators and ROS can then spill into the blood leading to a systemic inflammatory

response driving various extrapulmonary pathologies including atherosclerosis, MI as well as altering the metabolic activity of the

liver, driving inflammation and the oxidation of low-density lipoprotein (LDL).

immune cells enhancing atherogenesis [70–73]. Hypoxia has also been shown to drive the development of CVD, with
several studies showing that declined pulmonary function (FEV1 < 0.8) leads to an increased risk of ischemic heart
disease and coronary artery risk in early adults [74,75].

A study by Fisk et al. recently highlighted various biomarkers which may be utilized in predicting cardiovascular
risk in COPD patients [76]. The study utilized 458 COPD patients and 1657 non-COPD controls, where they were
matched for age, sex and body mass index with the study finding that patients with COPD had an increase in aortic
pulse-wave velocity, systemic inflammation as evidenced by elevated C-reactive protein levels, an increase in carotid
artery thickness, arterial stiffness and subclinical atherosclerosis [76]. It has also been shown that both elevated levels
of cardiac troponin and natriuretic peptides; two key prognostic cardiac biomarkers may be effective in the prediction
of mortality in patients with COPD [77,78].

Although atherosclerosis and COPD are typically observed in the aging population, it is now understood that an in-
crease in age is an independent risk factor of atherogenesis [79]. However biological aging causes reduced cellular pro-
liferation, enhanced apoptosis and cellular senescence, which may explain why these two diseases are often observed
together. Aging-related inflammation is also a common risk factor associated with COPD, CVD and atherosclerosis,
therefore the role of systemic inflammation and oxidative stress in the manifestation of atherosclerosis needs to be
elucidated further [80].

Fueling the fire; inflammation and atherosclerosis
Comorbid CVD is currently the largest killer in patients with COPD, however the mechanisms underlying this disease
are complex and largely unknown [60]. It has been shown that COPD and CVD share various common risk factors
including CS, a sedentary lifestyle, low socioeconomic class and genetics [81]. Upon recruitment of immune cells
and low-density lipoprotein (LDL) to the endothelium, there is further chemotactic signaling, inflammation and al-
terations to blood vessel function [82]. An important clinical biomarker is the presence of oxysterols; oxidized choles-
terol, which has been observed in high concentrations in patients with atherosclerosis [83,84]. Atherosclerotic plaque
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formation generally occurs at vulnerable sites such as branch points where uniform blood flow is disturbed, allowing
for low pressure points larger vessels such as the thoracic aorta and carotid arteries [85]. As outlined earlier impaired
laminar flow causes oscillations and shear stress within the vessel, causing mechanical stress and mechanoreceptor
activation (vascular endothelial growth factor receptor 2; VEGFR2 and platelet endothelial cell adhesion molecule-1;
PCAM-1) by the vascular endothelium [86]. This subsequently promotes a spike in NO production, stimulating vas-
cular relaxation and a reduction in BP/sheer stress. Endothelial activation then causes an increase in MMP signaling
and immune activation. If the oscillating shear stress is persistent it causes mechanoreceptor activation and the in-
flammatory response is amplified, which implicates the nuclear factor κ-light-chain-enhancer of B cells (NF-κB)
pathway driving the secretion of cellular adhesion molecules such as (VCAM-1 and PCAM-1), growth factors such
as G-CSF and pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α) and IL-6 [86]. NF-κB signaling
in atherosclerosis highlights that this disease is largely due to chronic inflammation hence it being commonly seen
in patients with pre-existing inflammatory conditions such as COPD. The recruitment of platelets, immune cells and
cholesterol to the site of injury is key to the progression of these atherosclerotic plaques, however if NF-κB signaling
is inhibited does this help reduce the likelihood of atherogenesis?

A study by Chiba et al. investigated the effectiveness of the NF-κB inhibitor dehydroxymethyl-epoxyquinomicin
(DHMEQ) on atherosclerotic plaque formation and size in apolipoprotein E-knock out (ApoE−/−) mice [87]. The
study concluded that ApoE−/− mice treated with DHMEQ at both 4 and 16 weeks showed significantly lower
atherosclerotic area, however their serum profiles for both triglyceride and cholesterol remained unchanged. Ariga
et al. has also shown that DHMEQ also inhibits the activation of NF-κB signaling via TNF-α, preventing nuclear
translocation of active NF-κB [88]. This highlights the clinical potential for novel therapeutic treatments that specif-
ically target the pro-inflammatory mechanisms driving atherosclerosis.

Numerous studies have also shown that in the exhaled breath of both smokers and COPD patients there is an al-
teration of both NO and CO balance [89–92]. Montuschi et al. assessed if both exhaled CO and NO can be used
as a biomarker of pulmonary oxidative stress in vivo [89]. Results from this study showed no clear correlation be-
tween exhaled CO levels and pulmonary function, however exhaled NO was elevated in ex-smokers with COPD,
than in both healthy non-smokers and current smokers with COPD, with a negative correlation between NO levels
and FEV1 [89]. Analysis of exhaled NO may be a useful clinically relevant biomarker of airway inflammation and
oxidative stress in patients with COPD. Little is known about the effect of CS on systemic NO metabolism; however,
studies have shown that exposure to CS causes a significant down-regulation in the levels of bioavailable l-arginine
within the systemic vasculature [93–95]. A decrease in l-arginine concentration has adverse effects on the expression
of eNOS, as l-arginine is necessary for the generation of NO through the activity of eNOS [10]. The down-regulation
of l-arginine is primarily due to an increase in oxidative stress, with studies by Saisos et al. and Taddei et al. both
highlighting the detrimental effect of both cigarette smoke (CS) and age-related oxidative stress on reduced NO, re-
spectively [93,94]. Siasos et al., stated that l-arginine may be beneficial in the treatment of CVD as it improves overall
endothelial function in healthy smokers [93]. This was investigated further through the oral administration of an
l-arginine supplement. The results from this study showed that oral l-arginine was able to acutely improve endothe-
lial function and the elastic properties within the brachial artery. With l-arginine being the substrate necessary for
eNOS-dependent NO production as well as it improving endothelial function in patients susceptible to atheroscle-
rosis [96], it is clear that l-arginine supplementation may be beneficial in the treatment of CVD, due to NO being
crucial in the regulation of BP as well as potentially mediating thrombotic events and maintaining/preventing turbid
blood flow surrounding atherosclerotic plaques.

Platelet aggregation and atherothrombotic lesion formation
and destabilization
Patients with atherosclerosis are often at risk of developing an atherothrombotic lesion, which can be defined as an
atherosclerotic lesion that becomes disrupted due to a superimposed thrombus formation which is the leading cause
of cardiovascular deaths and acute coronary syndromes (ACS) [97]. Typically, atherosclerosis progresses through-
out the duration of a lifetime, starting in early childhood then progressing into adulthood, however this is largely
asymptomatic. The development of this disease into more severe disease states such as atherothrombosis, can lead to
complete vessel occlusions and subsequent ischemic stroke, coronary artery disease and peripheral arterial disease,
thus effecting various tissue types and vascular regions [97]. Like atherosclerosis and lipid accumulation, one of the
initial stages of atherothrombotic lesion formation is endothelial dysfunction, promoting systemic inflammation and
immune cell recruitment. This immune cell recruitment can lead to structural modification of both the tunica media
and the adventitial layers of the vessel wall [98]. Initially, atherosclerotic lesions can go undetected when a patient is
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Figure 3. Atherogenesis, plaque rupture and thrombosis

Enhanced shear stress, turbid blood flow, BP and inflammation mediate the formation of an atherosclerotic lesion. This then pro-

motes the recruitment of immune cells, proliferation and accumulation of VSMCs and the oxidative modification of LDL to form

harmful foam cells, a key component of the necrotic core of the lesion. Upon plaque rupture, a blood clot is formed, and thrombus

formation occurs, making these patients highly susceptible to a further cardiovascular event.

subject to angiography, as a result of positive remodeling (vascular enlargement), thus the vascular lumen remains
unaltered due to the combination of low levels of stenosis and compensatory enlargement of the lumen, thus the
patient being asymptomatic [99].

It is the disruption of these atherosclerotic lesions that promotes the detrimental thrombotic process, triggering a
multitude of effects inducing increased local shear blood flow, the release of apoptotic signals, increased monocyte
and immune cell recruitment, secretion of tissue factors and thrombotic factors, all of which contribute to the devel-
opment of the thrombus (Figure 3) [22,71,97,100,101]. Under normal conditions, the vascular endothelium plays a
crucial role in maintaining platelet aggregation and the balance between pro- and anticoagulant factors through the
secretion of prostacyclin (PGL2), NO, tissue fibrin inhibitors and regulating fibrinolysis. However, under pathological
conditions, this endothelium-mediated homeostasis is lost allowing for the development of atherothrombosis [71].
Atherothrombotic plaques have a thin fibrous cap, which is a layer of connective tissue that covers the lipid core. A
key constituent of the fibrous cap is the presence of inflammatory cells, particularly macrophages and foam cells. The
rupture of the fibrous cap is often observed in acute MI and ischemic stroke [102]. Cap degradation is largely due
to prolonged inflammation, degradation of the matrix by MMPs secreted by invading macrophages and a decline in
matrix synthesis as a result of decreased cap smooth muscle cells (SMCs) [103]. The SMCs within the vasculature
are known to produce connective tissue within the intimal layer of the blood vessel to increase plaque stability and
reduce the likelihood of rupture, although the efficiency of this can be altered as a result of inflammation and immune
cell recruitment [103–105]. Due to VSMCs having high levels of phenotypic plasticity which allows for adaptation to
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environmental stressors and changes, playing a crucial role in the regulation of atherosclerotic lesion formation and
stability (Figure 3).

A study by Alexander et al. showed that through genetic deletion of IL-1, ApoE−/− mice when fed a Western diet
displayed increased plaque stability and reduced plaque remodeling, reducing the likelihood of plaque rupture and
highlighting the clinical importance of targeted therapeutics which impair phenotypic alteration in VSMCs [106]. In
the initial stages of the above study, it was hypothesized that through the deletion of IL-1, there would be a subse-
quent reduction in localized inflammation and immune cell recruitment [106]. The findings from this study suggest
that by identifying the cell types within a lesion prior to treatment may confer better outcomes clinically, as plaque
stability and lesion progression may be able to be regulated therapeutically reducing the likelihood of morbidity and
mortality. Platelet-derived mediators such as platelet-derived growth factor BB (PDGF-BB) have been shown to in-
duce phenotypic transformations in cultured SMCs [107]. In a preclinical model of atherosclerosis, Kozaki et al. used
PDGF-receptor KO in ApoE−/− mice, which yielded promising data, with a 67% reduction in the overall atheroscle-
rotic lesion size as well as drastic reductions in SMC involvement and delayed fibrous cap formation [108].

Several studies have investigated the effect of genetic deletion of various inflammatory cytokines, with IL-1,
IL-17 and TNF-α KO models [109–111]. Findings from these studies suggest that through genetic depletion of
pro-inflammatory mediators there is a significant reduction in the atherosclerotic burden and severity. A review
by Hasselbalch highlighted that chronic inflammation can trigger the progression of accelerated atherosclerosis and
CVD in patients with underlying diseases such as cancer [110]. It was also mentioned that the use of both statins and
interferon-α2 (IFN-α2); the inflammatory protein secreted by cells subject to a viral infection and inhibitory to cancer
cell proliferation, has been shown to reduce thrombohemorrhagic complications as well as having strong anticancer
properties [110]. These data suggest that modulation of inflammation may be crucial in reducing the overexuberant
platelet activation observed in the development of atherothrombotic lesions. It has been well established that chronic
inflammatory diseases such as rheumatoid arthritis, diabetes mellitus and COPD have been associated with premature
atherosclerosis and the development of atherothrombosis [112–116], therefore the modulation of this inflammatory
burden may be a potential novel therapeutic strategy for the treatment of atherosclerosis clinically.

Current pharmacological treatments of atherosclerosis
Statins, angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers
The most common treatments for atherosclerosis are cholesterol-lowering statins, angiotensin-converting enzyme
(ACE) inhibitors and/or angiotensin receptor blockers (ARBs), which are often used in conjunction with one an-
other. Statins have been shown to increase HDL, reduce LDL, triglyceride concentration and the incidence of CVD
and coronary heart disease and its associated mortality [117,118]. Studies have been conducted into the potential
adverse effects of statins, which concluded that there were no associated effects on outcomes including autoimmune
diseases, thromboembolism or infection susceptibility, while showing promising benefits in cases of vascular disease
[119]. Statin treatment is effective as it works through targeting hepatocytes, by irreversibly binding and inhibiting
the activity of hydroxymethylglutaryl coenzyme A reductase inhibitor (HMG-CoA) reductase [120]. HMG-CoA re-
ductase is responsible for the catalytic conversion of HMG-CoA into the cholesterol precursor mevalonic acid, thus
causing a reduction in intracellular cholesterol and impaired secretion of triglyceride-rich lipoproteins. It is believed
that statins may also have antioxidant properties, as they can prevent superoxide formation within ECs and attenuate
the oxidation of LDL via preservation of antioxidant enzymes such as superoxide dismutase (SOD) [121,122].

Talbot et al. conducted a multiethnicity population-based perspective study consisting of 5280 participants of var-
ious ethnicities from multiple sites across the United States, investigating the role of lipid-related pathways and statin
treatment in reducing mortality in atherosclerotic disease in a 5-year study [123]. The results from this study showed
that statin treatment reduced the likelihood of coronary heart disease and CVD by 14 and 23%, respectively, while re-
ducing the incidence of mortality by 18%. Statin treatment had no significant effect on altering HDL and triglyceride
levels, however there was a significant reduction in overall LDL concentration, thus the reduction in morbidity and
mortality observed in this study was attributed to modulation of LDL [123]. More recent evidence has emerged in re-
gard to the clinical use of statins in COPD patients [124]. Lu et al. found that use of statins drastically reduced all-cause
mortality, AECOPD and heart disease-associated mortality, while reducing CRP levels and pulmonary hypertension
severity [124], therefore statin use may be beneficial in the treatment of both the pulmonary and cardiovascular
manifestations associated with COPD/AECOPD.

Both ACE inhibitors and ARBs have been used extensively in the clinical treatment of hypertension and atheroscle-
rosis. Ang II is formed by the conversion of angiotensinogen into angiotensin I by renin that is secreted by the kidney,
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which is further converted into Ang II by ACE. Ang II can then increase vasopressin production within the central
nervous system as well as promote vasoconstriction within VSMCs, thus increasing BP. ACE-inhibitors act directly on
the renin–angiotensin system by preventing the conversion of Ang I into Ang II as well as inhibit the degradation of
bradykinin; a potent vasodilator that mediates NO release, lowering BP [125,126]. Due to the complex nature of cel-
lular signaling, these drugs are often used in conjunction with other drugs as Ang II production can occur through
alternate pathways which are unaffected by ACE inhibition, thus ARBs are generally better at inhibiting the effect
of Ang II due to their ability to react specifically with Ang receptors [125]. ARBs, have a similar therapeutic effect,
however they block the effect of Ang II through competitive inhibition of the Ang II receptor on the VSMC surface,
preventing vasoconstriction [125,127]. An observational study by Kim et al. investigated the benefits of ACE inhibi-
tion/ARBs in combination with statin treatment in patient’s post-MI [128]. A total of 11706 patients were enrolled and
separated into two groups; ACE-inhibitor + statin-treated and ARB + statin-treated groups, with endpoints described
as mortality/major cardiac events, coronary revascularization or recurring MI. This study concluded that revascu-
larization and MI frequency was unaltered among groups, however ACE-inhibitor + statin group had a significantly
lower level of all-cause mortality than the ARB + statin group during a 2-year period [128], therefore combination
treatment using ACE-inhibitors and statins is more beneficial in reducing long-term CVD-associated mortality.

The use of statins has also been associated with a reduction in acute exacerbation risk. A randomized clinical trial
by Ingebrigsten et al. identified 5794 COPD patients in the Copenhagen General Population Study and measured
their CRP levels, recorded exacerbations, hospital admissions and their use of oral corticosteroid treatment for 3
years post-study [129]. This study identified that statins in fact reduced the likelihood of acute exacerbations and
CRP levels in COPD patients with comorbid CVD [129]. Use of these BP-lowering drugs has proven to be beneficial
in reducing the incidence of cardiovascular mortality as well as the likelihood of atherosclerotic lesion formation
while aiding in the treatment of other systemic manifestations and diseases such as COPD [130–133].

ICS
Another common treatment for COPD is via ICS. These drugs have potent anti-inflammatory effects with a long du-
ration of action within the airways than oral corticosteroids given their targeted delivery directly into the lungs [134].
However, there is concern surrounding potential off-target effects, due to the potential of these ICS being absorbed
systemically, driving hypertension and glucose intolerance [135–137]. However, findings from a recent randomized
controlled trial have shown that treatment with ICS significantly reduced all-cause mortality in COPD, and a re-
duction in the number of cardiovascular-associated deaths when compared with the non-ICS treated control group
[138] The anti-inflammatory effects associated with ICS may be useful in the treatment of comorbid atherosclerosis
in patients with COPD, as the use of corticosteroids can reduce systemic inflammation, improve cardiac function and
reduce ventricular dysfunction [138,139]. In-line with this it has been shown that treatment with ICS in patients with
COPD reduces the likelihood of coronary heart disease [140]. However, it has been suggested that corticosteroids can
inhibit the activity of immune cell recruitment and adhesion to the vascular wall through negatively regulating the
activity of VCAM-1, E-selectin and ICAM-1 [141,142], severely impacting the onset and development of atheroscle-
rosis.

Diuretics, β-adrenoceptor and calcium-channel blockers
Clinicians utilize an array of diuretics and calcium channel blockers to reduce BP and the shear stress exerted on the
vascular wall. Thiazide diuretics (TDs) have been used extensively for the treatment of hypertension and are com-
monly used in patients with salt-resistant hypertension [143]. TDs work by reducing both diastolic and systolic BP,
alleviating fluid congestion and the likelihood of cardiovascular morbidity. One downfall for the use of diuretics is
that depletion of blood magnesium levels (hypomagnesemia) is often evident due to the increase in fluids expelled
from the body. A randomized controlled clinical trial by Cunha et al. investigated endothelial function in patients
with atherosclerosis that were treated with TD as well as exploring the effectiveness of oral magnesium supplemen-
tation [144]. The findings from this study showed that patients treated with TD + magnesium supplementation had
a significantly greater decrease in both systolic and diastolic BP allowing for an increase in flow-mediated dilation,
while having no adverse effects on plasma lipid or glucose content or worsened arterial stiffness. Conversely, pa-
tients treated with TD without magnesium supplementation showed much lower reductions in BP and surprisingly
showed a significant increase in carotid-intima thickening, indicative of vascular remodeling due to elevated BP, and
hence this group displaying impaired flow-mediated dilation. The study concluded that there was in fact a direct
correlation between both intracellular magnesium concentration and flow-mediated dilation [144], thus magnesium
supplementation provides improved endothelial function and drastically reduces the risk of atherosclerosis in at-risk
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hypertensive patients currently under TD treatment. If untreated, hypertension exerts excess shear force on the arte-
rial wall, leading to arterial damage and causing the vasculature to be more susceptible plaque build-up and structural
remodeling, hence atherosclerotic lesion formation. When coupled with other risk factors such as cigarette smoking,
high cholesterol, or other underlying diseases such as COPD it then places these patients at an even higher risk of
developing atherosclerosis and other cardiovascular comorbidities.

Hypertension has also been often implicated with alterations to ion transport, including the movement of both
calcium and potassium, which promote vasoconstriction, VSMC proliferation and hypertrophy. Arterial remodeling
is due to both increase in VSMC number (hyperplasia) and increased VSMC mass (hypertrophy), which occur as a
result of enhanced BP [106,145]. The vascular ECs under normal conditions regulate the proliferation and growth
of the underlying VSMCs, however under pathological conditions like that in hypertension and atherosclerosis, this
regulation is lost due to endothelial damage and thus there is subsequent narrowing of the vascular lumen [145]. It is
also important to highlight that hypertension promotes localized oxidative stress within the vascular wall and a sub-
sequent reduction in eNOS expression [146] and that coupling this with exogenous ROS from exposure to pollutants
such as CS places these patients at a heightened risk of CVD and worsened hypertension [147,148]. β-adrenoceptor
blockers have also been used extensively in the treatment of hypertension and atherosclerosis. These drugs antago-
nize sympathetic activity within the heart while inhibiting the activity of ACE, reducing heart rate and BP, improving
hemodynamic parameters such as cardiac output and stroke volume [149,150]. Quite commonly, β-adrenoceptor
blockers are used post-cardiac and vascular surgery as they reduce the incidence of cardiac complications includ-
ing angina and MI. However in the context of COPD, the prescription of β-adrenoceptor blockers is uncommon
due to these drugs having deleterious effects on the pulmonary symptoms associated with this disease by blocking
β2-adrenoreceptors and promoting bronchoconstriction [151], however there is compelling evidence to suggest that
the administration of cardioselective β-adrenoceptor blockers is safe in patients with comorbid CVD and COPD
[152–155]. This was shown in a study by Gestel et al. which evaluated 3371 patients who underwent major vascular
surgery and further divided into subgroups of those with COPD and those without, based on spirometric analysis
[152]. During this study, patients were subject to both a low dosage (<25% recommended maximal dosage) and an
intensified therapeutic dosage (maximal specified dosage), with data showing that there is a dose-dependent reduc-
tion in the likelihood of cardiovascular mortality in patients with COPD following intensified dosage, but not at low
dosage. These findings highlight that these cardioselective drugs may be beneficial in reducing short-term mortality
in patients in patients with COPD, particularly post-surgery.

The use of calcium-channel blockers is also quite common in the treatment of atherosclerosis, as these drugs pre-
vent calcium ion entry into the VSMCs, cardiac node tissue and cardiac myocytes through binding to L-type calcium
channels. This blockade promotes vasodilation through reducing overall contractility by preventing calcium entry
into VSMCs as well as promoting a decline in atrioventricular signaling ultimately reducing heart rate and BP [156].
These compounds exert their effects largely in arterial resistance vessels while having minor effects in the venous
capacitance vessels [156,157], hence their use in atherosclerosis, in particular within branch points of the carotid and
thoracic aorta. Not only are these drugs effective in the treatment of hypertension due to their ability to reduce BP,
they are also useful in the treatment of atherosclerosis and have been shown to be effective preclinically in the in-
hibition of atherosclerotic lesion formation due to their ability to reduce the accumulation of lipids, matrix protein
and calcium ions in the vascular wall [158,159]. Recently a study by Nezu et al. investigated the clinical effective-
ness of Cilnidipine; an L/N-type Ca2+-channel blocker (blocks both L-type and N-type sympathetic nerve channels)
in a group of post-stroke hypertensive patients with carotid atherosclerosis [160]. Throughout the study, analysis of
both the intima-media thickness (IMT) and interadventitial diameter (IAD) was completed using ultrasonography.
Analysis of both IMT and IAD was completed at the beginning of cilnidipine treatment and again 12 months later,
with the findings from this study showing that the use of this calcium channel blocker significantly promoted carotid
IMT regression, however displaying greater effectiveness in patients with more severe vascular remodeling (thicker
arterial walls), as well as reducing the overall IAD in all patients [160]. This study suggests that the use of L/N-type
calcium-channel blockers allow for the regression of carotid atherosclerosis and potentially reducing the likelihood
of mortality in these patients.

Antiplatelet drugs
COPD has been linked to severe increases in both platelet activation and atherothrombosis [161,162]. It has also
been shown in a population-based cohort study that patients with underlying COPD are at a heightened risk of
plaque destabilization and rupture due to increased arterial wall thickening and remodeling, thus COPD being an
independent predictor of vulnerable plaques [163]. An early study by Ponicke et al. showed that the enhanced platelet
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activation observed in COPD patients is often associated with hypoxia and hemodynamic stress as a direct result
of thrombus formation, aggregation, hypoxemia and heightened expression of cyclooxygenase-1 (COX-1) [164]; an
enzyme responsible for platelet aggregation and renal regulation contributing to Ang II-induced hypertension [165].
Ekström et al. explored the time-dependent effects of cardiovascular drugs in patients with severe COPD; who are on
long-term oxygen therapy [166]. The most common prescribed anti-platelet treatment is aspirin, of which has shown
to cause a significant decrease in mortality within this high-risk cohort, whereas β-blockers were shown to decrease
patient survival. Platelet activation is complex and requires COX-1 to convert arachidonic acid into prostaglandin
PGH2 which is catalytically converted into thromboxane A2 (TXA2) through the activity of thromboxane synthase,
promoting vasoconstriction and platelet activation and aggregation [10,167]. However, aspirin is an irreversible in-
hibitor of COX-1 as well promoting down-regulation in the activity of prostaglandins and TXA2 [167], therefore
having a significant impact on platelet aggregation and reducing the likelihood of atherothrombotic events in at risk
patients. The increased survival resulting from anti-platelet treatment is believed to be due to modulation of platelet
activation and thus a systemic anti-thrombotic effect [161,166], therefore aspirin treatment may be beneficial in the
treatment of comorbid atherosclerosis in patients with established COPD.

Novel therepeutic approaches to treat atherosclerosis in
COPD
The development of novel therapeutics is a major focus of modern research. In the context of COPD there is in-
creasing interest into modulation of key inflammatory and oxidative stress pathways which have been linked to in-
creased disease severity, extrapulmonary comorbidities and mortality [4,5,168–176]. It is believed that by increasing
anti-inflammatory and antioxidant activity there may be a significant reduction in both systemic and pulmonary in-
flammation and oxidative stress, aiding in the preservation of lung function and reduce the instance and severity of
comorbid diseases such as atherosclerosis. It has been established that the expression of inflammatory mediators such
as TNF-α is significantly enhanced upon exposure to noxious stimuli such as CS [28,29]. Inflammatory mediators,
in particular TNF-α, has been shown to significantly decrease the expression of glutathione; a key antioxidant, in the
airways leading to exacerbated tissue damage to the lung parenchyma [177,178].

A study by Funamoto et al. investigated the anti-inflammatory effect of curcumin (Theracurcumin®) on patients
with COPD and its ability to reduce oxidized α1-antitrypsin-LDL (AT-LDL) [179]. It has been shown that AT-LDL
is found at sites of atherosclerotic lesion formation, and the presence of this AT-LDL within blood is indicative of
foam cell activation within the lesion [180,181]. Under pro-inflammatory and oxidative conditions serum amyloid A
(SAA) binds to LDL rather than HDL promoting further localized inflammation as a result of enhanced immune cell
recruitment to the lesion site [182]. Findings from this study showed no significant alteration in LDL-cholesterol and
BP, however there was a drastic reduction in AT-LDL levels following Theracurcumin® treatment, thus treatment
with this novel therapeutic is beneficial in reducing atherosclerotic AT-LDL in humans and may reduce the likelihood
of atherosclerotic events in patients with COPD. There is also compelling evidence to suggest that this compound
may be beneficial in the treatment of the pulmonary manifestations of COPD. Curcumin was shown to act as both an
antioxidant through reducing oxidative stress as well as exhibiting anti-inflammatory properties through its ability to
inhibit the activity of NFκB following ischemia reperfusion injury in vivo by Fan et al. [183]. This study also showed
significant reductions in both bronchoalveolar lavage fluid (BALF) and serum concentrations of IL-6 and ICAM-1,
enhanced SOD expression and a reduction in myeloperoxidase activity and NF-κB signaling, highlighting a potential
role for curcumin in the treatment of not only CVD but also in the modulation of chronic lung disease such as COPD.

There is increasing interest into the development of drugs that reduce oxidative stress in COPD as it is a key driver
inflammation and disease progression [174,184]. Studies have been conducted in the past to investigate if modulation
of ROS is of any clinical benefit in the treatment or prevention of atherosclerosis, however these studies utilized natu-
rally occurring vitamins such as vitamins C and E, which have been shown to improve vascular endothelial function
although showed very little efficacy in the treatment of atherosclerosis [185,186]. Interestingly, a recent study in-
vestigating the effects of vitamin C treatment (both prophylactically and as a treatment in established disease) in
CS-induced emphysema using senescence marker protein-30 knockout mice, which cannot synthesize vitamin C,
showed that vitamin C administration caused a significant reduction in oxidative stress, improved VEGF expression
within the lungs and increased collagen synthesis in both groups [187]. This finding suggests that vitamin C sup-
plementation prevents the onset of emphysema and aids in revering emphysematous damage in established disease
[187]. Oxidative stress plays a powerful role in the development of COPD and its comorbidities, however during
atherogenesis the use of antioxidants, those that are naturally occurring yield poor efficacy. This highlights the need
for further medical research into antioxidant drugs such as NOX inhibitors (apocynin), SOD mimetics (AEOL 10150)
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and glutathione peroxidase(GPx) mimetics (ebselen) which offer greater potency and antioxidant activity. There is a
current phase 4 clinical trial investigating the effect of selenium supplementation in the treatment of COPD through
the modulation of blood antioxidant levels, based on a study by Espinola-Klien et al., which demonstrated that sele-
nium supplementation causes an increase in GPx-1 activity and thus reducing the instance of cardiovascular events
and mortality [188]. Ebselen, which is also a selenium-based compound, has been used by our laboratory previously,
yielding exciting data due to its ability to reduce pulmonary inflammation and immune cell infiltration following CS
exposure [28]. Our laboratory has also shown that ebselen treatment is able to completely prevent vascular dysfunc-
tion in both stable and viral exacerbated COPD as well as preserving skeletal muscle mass and reducing immune cell
recruitment into the lungs in vivo [2,31].

Conclusion
Both COPD and CVD share a wide array of common etiological factors that aid in disease progression, making CVD
the largest killer of COPD patients globally. Currently, COPD is the third leading cause of deaths, costing the economy
a staggering €82 billion annually [189]. There are limited treatments available that can effectively treat both COPD and
CVD simultaneously, with mounting evidence suggesting the role of both inflammation and oxidative stress as drivers
of COPD and atherosclerosis via platelet activation and the oxidation of LDL, leading to worsened clinical outcomes
in these patients. We have previously shown that through antioxidant treatment we were able to significantly reduce
lung inflammation and preserve vascular endothelial function in a murine model of COPD [2]. With endothelial
dysfunction, oxidative stress and inflammation being hallmark characteristics in the development of atherosclerosis,
antioxidant treatments may ultimately reduce atherogenesis in patients with chronic respiratory illnesses via reduced
oxidation of LDL and lung inflammation as well as reducing the vascular oxidative stress burden. With a severe lack
of research around atherosclerosis in COPD, it is crucial that we understand the complex inflammatory and oxidative
stress mechanisms, allowing the development of novel life-saving therapeutics that can treat both the pulmonary and
systemic aspects of this debilitating disease.
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