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Abstract

The resting-state human brain is a dynamic system that shows frequency-dependent

characteristics. Recent studies demonstrate that coactivation pattern (CAP) analysis

can identify recurring brain states with similar coactivation configurations. However,

it is unclear whether and how CAPs depend on the frequency bands. The current

study investigated the spatial and temporal characteristics of CAPs in the four fre-

quency sub-bands from slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3

(0.073–0.198 Hz), to slow-2 (0.198–0.25 Hz), in addition to the typical low-

frequency range (0.01–0.08 Hz). In the healthy subjects, six CAP states were

obtained at each frequency band in line with our prior study. Similar spatial patterns

with the typical range were observed in slow-5, 4, and 3, but not in slow-2. While the

frequency increased, all CAP states displayed shorter persistence, which caused more

between-state transitions. Specifically, from slow-5 to slow-4, the coactivation not

only changed significantly in distributed cortical networks, but also increased in the

basal ganglia as well as the amygdala. Schizophrenia patients showed significant

alteration in the persistence of CAPs of slow-5. Using leave-one-pair-out, hold-out

and resampling validations, the highest classification accuracy (84%) was achieved by

slow-4 among different frequency bands. In conclusion, our findings provide novel

information about spatial and temporal characteristics of CAP states at different fre-

quency bands, which contributes to a better understanding of the frequency aspect

of biomarkers for schizophrenia and other disorders.
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1 | INTRODUCTION

The resting-state functional connectivity (RSFC) is temporally varied,

which supports that the human brain is a dynamic system (Chang &

Glover, 2010). The dynamic functional connectivity (dFC) is generally

evaluated by the sliding window approach (Hutchison et al., 2013;

Preti et al., 2017). Recurring connectivity configurations can be

grouped as FC-states (Allen et al., 2014) or so-called brain states,

which are related to cognitive and physiological states such as vigi-

lance (C. H. Wang et al., 2016), self-generated thought (Marusak

et al., 2017), eyes open and closed resting state (Weng et al., 2020), as

well as disease-related alterations (Damaraju et al., 2014; Guo

et al., 2019; C. Li et al., 2020). However, the sliding window approach

is constrained by the choice of window length (Shakil et al., 2016;

Zalesky & Breakspear, 2015). Recent work demonstrated that brain

states could also be identified based on recurring coactivation pat-

terns (CAPs) from each single frame (Liu et al., 2013; Liu &

Duyn, 2013), and reproducible results were achieved in both healthy

control and patient groups by using a robust analytical pipeline (Yang

et al., 2021).

Besides the temporal dynamics contained in the resting-state

fMRI blood oxygen level dependent (BOLD) signals, frequency-

dependent information also exists. Accumulating evidence demon-

strates that fMRI signals and derived measures such as RSFC and net-

work topology have specific properties in the subdivided bands of the

conventional low-frequency band (Ries et al., 2019; Salvador

et al., 2008; Thompson & Fransson, 2015). Such frequency-dependent

neural activity and functional brain organization might be attributed

to the multiple timescales of complex brain functions

(Breakspear, 2017; Buzsaki & Draguhn, 2004; Cocchi et al., 2016;

Honey et al., 2007). Therefore, it is important to understand the

frequency-dependent properties of brain states assessed by CAPs.

For the fMRI signals with TR of 2 s, based on previous electrophysio-

logical (Buzsaki & Draguhn, 2004) and fMRI studies (Zuo et al., 2010),

the frequency range could be subdivided into four frequency sub-

bands including slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz),

slow-3 (0.073–0.198 Hz), and slow-2 (0.198–0.25 Hz). Some studies

reported that slow-5 and slow-4 were more sensitive to detecting

disease-related ALFF changes (Han et al., 2011; Hou et al., 2014;

L. Wang et al., 2016), while the other study found the network hub

alterations in major depression varied with the frequency sub-bands

from 0.01 to 0.25 Hz (Ries et al., 2019). Since previous CAP studies

focused on the low-frequency band like 0.01 to 0.08 Hz, it remains

unknown whether and how the spatial and temporal characteristics of

CAPs change in the frequency-specific manner.

Schizophrenia (SZ) is a severe brain disorder characterized by

large-scale brain changes, including distributed structural loss and

functional dysconnectivity (Brandl et al., 2019; Fornito et al., 2012), as

well as abnormal dynamic brain states (Hunt et al., 2017; Rashid

et al., 2014; Reinen et al., 2018). The literature about dFC in SZ using

the sliding window approach has revealed disease-related abnormal

patterns in the time-varying connectivity, topological properties, and

network states (Calhoun et al., 2014; Du et al., 2018; Kottaram

et al., 2018; Reinen et al., 2018; Yu et al., 2015), which is not only

attributed to the dysfunction of triple networks (including the DMN,

CEN, and SN, that is, default-mode network, executive network, and

salience network), for example, reduced dynamic interactions among

the DMN, CEN, and SN (Supekar et al., 2019), but also implicates the

whole brain dynamic reconfiguration in the brain states disruptions

predicting the diagnostic status or active psychotic symptoms

(Kottaram et al., 2018; Reinen et al., 2018). Recently, our prior study

used the CAP analysis to demonstrate that the altered CAP state

dynamics of SZ patients were associated with the triple networks, as

well as other primary and high-order networks (Yang et al., 2021). On

the other hand, while the spatiotemporal dynamics of the neural sys-

tem are manifested at multiple time scales and have the potential to

underlie brain disorders (Breakspear, 2017; Honey et al., 2007), only a

few studies investigated the frequency-dependent brain alterations in

SZ from the dynamic perspective. For instance, the dFC estimated at

different frequency bands helps distinguish SZ patients from healthy

controls (Zou & Yang, 2019), slow-4 and slow-5 are also linked with

distinct dFC strength alterations in SZ (Y. L. Luo et al., 2020). There-

fore, an important gap that needs to be filled is whether brain states

assessed by CAPs have frequency-dependent profiles that can better

predict the diagnostic status in patients with SZ.

The purpose of this study is to uncover frequency-specific CAPs,

associated abnormalities in SZ, and potential application in patient

prediction. So, resting-state fMRI and four frequency sub-bands (from

slow-5 to slow-2 covering 0.01–0.25 Hz) together with the typical

low-frequency range (0.01–0.08 Hz), were analyzed for the spatial

and temporal dynamic profiles of brain states in healthy individuals,

using a reproducible CAP pipeline (Yang et al., 2021). Particularly, to

evaluate the frequency-specific properties within the typical low-

frequency range, specific CAP spatial profiles and temporal dynamics

were further statistically compared between slow-4 and slow-5. Next,

the frequency-dependent CAP analysis was conducted in patients

with SZ to reveal altered dynamic brain states associated with differ-

ent frequency bands. Finally, dynamic profiles of CAPs in the sub-

bands and the typical range were implemented to predict the diagnos-

tic status of SZ.

2 | MATERIALS AND METHODS

2.1 | Participants

Eighty-one patients with SZ and one-hundred healthy controls

(HC) were recruited from Wuxi Mental Health Center, Nanjing Medical

University. Subjects were excluded if they had any current or past neu-

rological illness, substance abuse or head injury resulting in loss of con-

sciousness, or any MRI contraindications. All the patients met the DSM-

IV-TR diagnostic criteria (First et al., 2002). The assessments of symp-

toms were performed on the same day of MRI scanning by experienced

psychiatrists using the Positive and Negative Syndrome Scale (PANSS)

(Kay et al., 1987). The healthy controls were recruited from the local

community via advertisements and free of the history or current
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diagnosis of any psychiatric disorder. This research was approved by

the Medical Ethics Committee of Wuxi Mental Health Center, Nanjing

Medical University (study number: WXMHCIRB2012LLKY001), and

was conducted in accordance with the Declaration of Helsinki guide-

lines. Written informed consent was obtained from all participants. Four

subjects with excessive headmotion, one subject with failed spatial nor-

malization, and 10 subjects without demographic information were

excluded. Thus, 69 SZ patients (35 males/34 females, 46.06

± 10.96 years) and 97 healthy controls (56 males/41 females, 40.36

± 14.77 years) remained for the current study. To evaluate the CAPs of

each frequency sub-bands, all the 97 HC subjects were included, in line

with our previous work focusing on CAPs of the typical range (Yang

et al., 2021). For the group comparison between SZ and HC as well as

classification analysis, 69 HC subjects matched for age and gender were

used to avoid potential bias in the sample size. There was no significant

difference between matched-HC and SZ concerning the head motion.

The detailed demographic information can be found in Table 1.

2.2 | fMRI data acquisition and preprocessing

All participants were scanned on a 3T Magnetom TIM Trio (Siemens

Medical System) with a 12-channel phased-array head coil at the

Department of Medical Imaging, Wuxi People's Hospital, Nanjing

Medical University. Foam pads were used to reduce head motion and

scanner noise. Subjects were instructed to keep their eyes closed,

relax but not fall asleep, and move as little as possible during the scan-

ning. Structural MRI images were acquired using a 3D-MPRAGE

sequence (TR/TE = 2530/3.44 ms, flip angle = 7�, FOV = 256 mm,

matrix size = 256 � 256, voxel size = 1 � 1 � 1 mm3, slice

thickness = 1 mm and slice number = 192). Resting-state fMRI data

were obtained using a single-shot gradient-echo echo-planar-imaging

sequence (TR/TE = 2000/30 ms, flip angle = 90�, FOV = 220 mm,

matrix size = 64 � 64, voxel size = 3.4 � 3.4 � 4 mm3, slice

thickness = 4 mm, slice number = 33), and 240 volumes were col-

lected for each subject.

Preprocessing for a reproducible CAP pipeline was conducted

according to our prior study (Yang et al., 2021), and the details were

described in the Supporting Information. To evaluate the frequency-

dependent CAPs, bandpass filtering was applied to extract fMRI sig-

nals in the typical range (0.01–0.08 Hz) and sub-bands including

slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–

0.198 Hz), and slow-2 (0.198–0.25 Hz) according to the literature

(Zuo et al., 2010). The spatial and temporal characteristics of CAPs

were computed for each frequency sub-band and the typical range

based on 400 cortical and 8 subcortical ROIs covering the whole brain

(Schaefer et al., 2018; Yang et al., 2021). The 400 cortical regions

belong to 7 networks, including the visual network (VN), somatomotor

network (SMN), dorsal attention network (DAN), ventral attention

network (VAN), limbic network, fronto-parietal network (FPN), and

default mode network (DMN).

2.3 | CAP analysis

The CAP analysis is a data-driven method that utilizes the K-means

clustering to identify recurring whole-brain coactivation states, for

example, the seed-and-threshold free approach (Liu et al., 2013). The

robust analytical pipeline was performed to detect the CAP states in

different frequency bands (Yang et al., 2021). In brief, there were

235 volumes for each subject's preprocessed fMRI data, and each vol-

ume was characterized by the activation level of 408 ROIs. The time

series of each ROI was first normalized using z-score independently,

and the absolute value of Z indicated the activation deviation from its

baseline. Then, K-means clustering was performed based on all vol-

umes from the 97 HC subjects, to group volumes sharing similar

coactivation profiles into the same CAP state. Our prior study tested

the cluster number K from 2 to 21 and identified six robust CAP

TABLE 1 The demographic
information of subjects in the present
study

Wuxi All–HC (n = 97) Matched–HCa (n = 69) SZ (n = 69) p value

Age 40.36 ± 14.77 45.84 ± 11.89 46.06 ± 10.96 .9112b

Gender (M\F) 56\41 35\34 35\34 1c

Mean FD 0.0897 ± 0.0897 0.0842 ± 0.0526 0.0964 ± 0.1048 .2209d

Disease duration — — 19.84 ± 10.96 —

PANSS positive — — 20.06 ± 4.59 —

PANSS negative — — 23.78 ± 3.84 —

PNASS general — — 41.67 ± 5.27 —

PNASS total — — 85.51 ± 9.50 —

Note: Data are expressed as mean ± SD.

Abbreviations: SD, standard deviation; FD, framewise displacement indicating the head motion; PANSS,

Positive and Negative Syndrome Scale; HC, healthy controls; SZ, patients with schizophrenia.
aThe equivalent number of healthy controls were randomly extracted from the HC group and matched

for the gender and age with the SZ group, which were utilized in the following group comparisons.
bTwo-sample t-test.
cChi-square cross-table test.
dPermutation test.
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states in the typical range (Yang et al., 2021). In the present study, we

focused on six robust CAPs to compare brain states between sub-

bands and the typical range. Nevertheless, validation analysis also

supported that six clusters were suitable for the four frequency sub-

bands based on their silhouette score curves (Figure S1).

For the spatial map of each CAP, volumes belonging to the same

state were averaged and divided by their standard deviation to gener-

ate a Z-map (Liu & Duyn, 2013). Pearson correlation was used to mea-

sure the spatial similarity between volumes and CAP states. The

alignment between CAPs from different frequency bands was con-

ducted by using the Hungarian algorithm (Gutierrez-Barragan

et al., 2019; Kuhn, 1955; Tarun et al., 2020). After determining the

CAPs of each frequency band for the HC group, volumes of SZ sub-

jects were assigned to the obtained CAP states based on the highest

spatial similarity.

The state temporal dynamic properties of each CAP were also

evaluated at the individual level and volume level. For example, if

there are total N volumes, and NA volumes were assigned to State A,

then Fraction of time which represents the proportion of time occu-

pied by one state, was calculated by NA/N. Persistence measures the

average time (# of volumes) a state would persist before it transfers to

another state, and counts records the frequency of one state that

occurs across the whole scan. In addition to these state dominances

that capture the inner-state dynamics, the transition probability

between states was also measured and presented in the Supporting

Information. If NA!B of NA volumes make the transition from State A

to State B, then the transition probability from state A to state B is

calculated as NA!B/NA. The within-state transition is also called resil-

ience, and it can be extracted from the diagonal of the transition prob-

ability matrix (Yang et al., 2021).

2.4 | Statistical analysis

For the demographic data, two-sample t-test was used to compare

age between SZ and HC, and chi-square cross-table test was used to

test the group difference in gender. The individual head motion was

measured by the mean framewise displacement (FD; Power

et al., 2012), and 5000 permutations were used to test its group dif-

ference, given the non-Gaussian distribution.

For the multiband CAPs in the HC group, spatial similarity of each

brain state was assessed by Pearson correlation between frequency

bands. The repeated-measures ANOVA was performed to evaluate

the effect of frequency bands on temporal dynamics of identified brain

states, with the False-discovery rate (FDR) for multiple comparison cor-

rection. As slow-5 (0.01–0.027 Hz) and slow-4 (0.027–0.073 Hz)

largely constitute the typical low-frequency range (0.01–0.08 Hz),

paired t-test was used to test the ROI-level differences for each CAP

state between slow-5 and slow-4 with Bonferroni correction

(p <.05/408), and to test temporal dynamic differences for each CAP

state between slow-5 and slow-4 with FDR correction.

The frequency-specific CAP abnormalities in the SZ group were

examined by the group-by-frequency interaction using a mixed-effect

ANOVA (SZ vs. HC and slow-5 vs. slow-4), with age, gender and mean

FD as covariates. For post hoc comparisons, two-sample t-test (with

age, gender, and mean FD controlled) was performed to determine

the group differences, and paired t-test was used to detect the fre-

quency effect. FDR correction was performed to account for the mul-

tiple comparisons in the ANOVA and post hoc analyses.

2.5 | Classification analysis

Furthermore, to test if CAP profiles in the frequency sub-bands can

better predict the diagnostic status in patients with SZ, four classifica-

tion models were built by using spatial features from the typical range,

slow-5, slow-4, and a combination of slow-5 and slow-4. A commonly

used machine learning package, LIBSVM (Chang & Lin, 2011) was

used to train the SVM classifier with a linear kernel and C = 1. Each

subject has 2448 (408 * 6) spatial features, which represents the acti-

vation level of the 408 ROIs of the six CAPs. Leave-one-pair-out

(LOPO) cross-validation was used, and accuracy (ACC), sensitivity

(SE), specificity (SP), and area under the curve (AUC) were calculated

to evaluate the classification performance. For each LOPO iteration,

F-score was used for feature selection (Chen & Lin, 2006). Similar to

our previous study (H. Yang et al., 2020), the feature number was

tested from 20 to 1500 with an incremental step length of 20, and

the F-score of all features was first calculated and ranked within the

training set, where a larger F-score indicates larger group differences.

Then, the smallest step that achieved the highest accuracy was cho-

sen, and the corresponding classification results were reported.

We first used all 69 SZ patients and 69 age/gender-matched HC

subjects (all-patients model). As the selected pairs were random, the

LOPO was repeated 100 times and the classification results were

averaged. We also compared the results by using leave-one-out

(LOO), another popular cross-validation method. One issue is that the

69 HC subjects were also involved in the CAP definition, which might

bias the classification model. Therefore, a hold-out sample approach

was performed to avoid potential bias. Particularly, for the 97 HC sub-

jects, 47 HC subjects were first randomly selected for CAP definition,

the remaining 50 HC subjects and 50 age and gender-matched SZ

patients were then used for classification (hold-out sample model).

This random subject assignment process was repeated 100 times, and

for each hold-out repetition, the LOPO was repeated 10 times to get

the averaged classification results. The most relevant features contrib-

uting to the classification model were also identified. Specifically,

there were 50 LOPO iterations for each hold-out repetition, as each

pair of subjects would serve as the testing set in turn and the other

49 pairs were involved in the training set. The LOPO was repeated

10 times, hence, there were a total of 500 iterations for each hold-out

repetition. The F-score was used to select features within each itera-

tion, and features that were chosen in 80% of the 500 iterations were

flagged. Then, features that were flagged among 80% of the

100 hold-out repetitions were further extracted as the consensus fea-

tures. Finally, an independent dataset, the Center for Biomedical

Research Excellence (COBRE), was used to test the generalizability of
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our classification method. We mainly reported the results based on

the hold-out sample approach in the main text. More details and

results are described in the Supporting Information.

3 | RESULTS

3.1 | Spatial and temporal properties of CAPs at
different frequency bands

The CAP analysis was performed using all 97 HC subjects in the

typical range and four frequency sub-bands (slow-5 to slow-2) sep-

arately. In total three pairs of CAPs, spatially matched across the

typical range and four sub-bands, were identified and shown in

Figure 1. Typical intrinsic high-order (e.g., FPN and DMN) and pri-

mary networks (e.g., VN and SMN) can be observed in the typical

range, slow-5, slow-4, and slow-3, but the high-order networks

were absent in slow-2. For instance, the DMN and FPN cannot be

found in any state in slow-2. The overall spatial similarity of CAP

states was high between the typical range, slow-5 and slow-4, and

became lower in slow-3 and slow-2 (Figure 2). Particularly for State

5 and 6, only the typical range, slow-5 and slow-4 showed high

spatial similarities between each other. The highest spatial similar-

ity with the typical range was found in slow-4 for all six CAP states

except slow-3 for State 2. Besides, slow-5 also displayed high spa-

tial similarity with the typical range for all CAP states, and slow-2

was similar to the typical range only for State 2 and State 3 (higher

than 0.5).

F IGURE 1 The spatial patterns for the six CAP states in different frequency bands. The first column shows the six CAP states in the typical
range, and the six states were grouped into three pairs with opposite coactivation profiles. The following four columns show the six CAP states
from slow-5 to slow-2. For each ROI, the Z-value means the degree of activation deviation from its baseline. The warm color indicates a relatively
stronger BOLD response than its baseline amplitude, and vice versa for the cold color. DAN, dorsal attention network; DMN, default mode
network; FPN, fronto-parietal network; SN, salience network; SMN, somatomotor network; VN, visual network
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The time series of each ROI was normalized by using Z-score, and

the mean of the time series represented its baseline activation level

(Z = 0). As the existence of opposite CAP pairs, the absolute Z value

of each ROI indicated the amplitude of deviation from the baseline,

and was defined as activation deviation in this work. A larger activa-

tion deviation means a stronger positive activation or stronger nega-

tive deactivation. For example, in the typical range, compared with

other brain areas, regions within the visual network exhibited stronger

positive activation in State 1, and stronger negative deactivation in

State 2 (Figure 1). Hence, State 1 and State 2 showed larger activation

deviations in the visual network, and the visual network was the dom-

inant network for State 1 and State 2.

In our previous study, the six CAP states were grouped into three

pairs in the typical range, and the paired CAP states were character-

ized by opposite coactivation profiles (Yang et al., 2021). In the pre-

sent study, CAP states were identified and matched for both the

typical range and sub-bands, which were three paired states. For

instance, State 3 and State 4 belong to an opposite CAP pair. The

DMN was activated, and the SMN and SN were deactivated in State

3, while the DMN was deactivated, and the SMN and SN were acti-

vated in State 4. Despite becoming weaker from the typical range and

slow-5 to slow-2, State 1 and State 2 were mainly dominated by the

VN, FPN, and DMN, State 3 and State 4 were mainly dominated by

the SN, SMN, and DMN, while State 5 and State 6 were mainly domi-

nated by the FPN, DAN, and DMN, in line with our prior work

(Figure 1). Furthermore, the between-state spatial similarity matrix

was measured for each frequency sub-band, respectively in this study.

On the one hand, strong opposite patterns (Pearson correlation <

�.95) can be observed for CAP pairs in slow-5, slow-4, and slow-3,

similar to those of the typical range; on the other hand, slow-2 dis-

played distinct and weaker between-state spatial similarity, which was

dissimilar with those of the typical range (Figure S2). Additionally,

paired CAP states with strong opposite patterns showed the lowest

transition probability between each other in slow-5 and slow-4, con-

sistent with results of the typical range reported in the previous study.

But the relationships between CAP pairs, spatial similarity and transi-

tion probability differed in slow-3 and slow-2 (Figure S4).

The repeated measures ANOVA results supported the significant

frequency effects on the temporal dynamics of CAP states (Figure 3).

All CAP states except State 2 showed significant frequency effects in

fraction of time, and all the six CAP states showed significant fre-

quency effects in persistence and counts (p <.0001, FDR adjusted).

The mean fraction of time was comparable across the six CAP states

for all frequency bands, around 15%–20%. For the persistence and

count, as the frequency decreased from slow-2 to slow-5, each state

had longer and longer dwell time before it transferred to another

state, and its count decreased correspondingly. For example, each

state persisted for only 2 s in slow-2 and slow-3, but about 5 s for

slow-4 and 12 s for slow-5. The persistence and count of the typical

range were between those of slow-4 and slow-5, and similar to

F IGURE 2 The coactivation pattern (CAP) spatial similarity between the typical range and four sub-bands. The six CAP states of the sub-
bands were first matched with those of the typical range, and then assessed for between-band similarity of each CAP by Pearson correlation. The
colorbar shows the R-value
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slow-4, which might suggest the crucial role of sub-band slow-4 in the

intrinsic neural information.

3.2 | Specific spatial and temporal characteristics
of CAPs in slow-4 and slow-5

While slow-4 and slow-5 constitute most power of the low-frequency

oscillations, they represent the intrinsic neural activities that have

been intensively studied in resting-state fMRI studies, and are less

likely to be as affected by non-neural noise (e.g., heartbeat and respi-

ration) as higher frequency sub-bands (e.g., slow-2). Therefore, in the

current analysis, we mainly focused on the frequency-specific effects

on CAPs in slow-4 and slow-5. While high correspondence of CAPs

between slow-4 and slow-5 was found, as shown in the main diagonal

of the spatial similarity matrix (Figure S5), paired t-test results of CAPs

between slow-4 and slow-5 within the HC group showed frequency-

specific spatial and temporal characteristics for sub-bands within the

typical low-frequency range (0.01–0.08 Hz). Because paired CAPs had

opposite CAPs (State 1 and 2, State 3 and 4, State 5 and 6), here we

presented results of State 2, 4, and 6 for simplicity (Figures 4 and 5),

results of State 1, 3, and 5 can be found in the Figures S6 and S7.

As shown in the first two columns in Figure 4, the activation level

was represented by the Z value. Then the group averaged activation

level of the 408 ROIs in slow-4 and slow-5 were categorized into

seven networks by using boxplots and represented in the last column.

State 2 was dominated by large activation deviation in the VN, as well

as SN and FPN. State 2 in slow-4 showed higher activation deviation

in the bilateral middle frontal gyrus (FPN), as well as lower activation

deviation in the anterior DMN, bilateral insula (SN), and dorsal atten-

tion network (DAN), than slow-5. While State 4 was dominated by

the SN, SMN, and DMN, slow-4 showed lower activation deviation in

the DMN and FPN than slow-5. For State 6, large DAN and FPN acti-

vation deviation was found in both slow-4 and slow-5, while slow-5

was also dominated by the SMN. State 6 in slow-5 showed signifi-

cantly lower activation deviation in the SMN and VN, and higher

F IGURE 3 The state temporal dominances (fraction of time, persistence, and counts) in the typical range and four frequency sub-bands. The
error bar shows the standard error. One-way repeated-measures ANOVA was performed to evaluate the frequency-specific dynamics between
the four sub-bands. Except for fraction of time in State 2, all dynamic metrics showed significant frequency effects (p <.0001, FDR adjusted) in
the six states
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activation deviation in the DMN and FPN. Meanwhile, subcortical

regions also showed different CAP states between slow-4 and

slow-5. Particularly, slow-4 exhibited an overall stronger subcorti-

cal activation deviation than slow-5. Though no significant result

was found in State 2, slow-4 showed stronger activations for the

bilateral amygdala in State 4, and stronger activations for the bilat-

eral basal ganglia (caudate nucleus, putamen, and globus pallidus)

in State 6 (Figure 5). On the other hand, slow-4 showed weaker

deactivations for bilateral globus pallidus and left putamen in State

1, stronger deactivation for bilateral striatum and amygdala in State

3, as well as stronger deactivation for right striatum in State

5 (Figure S7).

Moreover, significant differences between slow-4 and slow-5

were also found for the CAP temporal dynamics within the HC group

(Figure S8a). Compared with slow-5, all six states showed significantly

shorter persistence and more counts in slow-4. More fraction of time

in State 3 and State 4, and less fraction of time in State 5 and State

6 were observed in slow-4. In addition, the variation of fraction of

time between the six states was also evaluated in slow-4 and slow-5

separately (Figure S8b). No between-state difference was found for

fraction of time in slow-5, in which each state occupied about 15%–

17% of the time. However, significant between-state differences were

found in slow-4, for example, State 3 and 4 showed more fraction of

time (about 20%) than the other four states.

3.3 | Frequency-specific CAP dynamic alterations
in SZ

Since differences of six CAPs between SZ and HC in the typical range

have been examined in our prior work (Yang et al., 2021), the current

study further examined between-group differences in slow-4 and slow-5,

focusing on the frequency-specific CAP dynamic alterations by mixed-

effect ANOVA and group-by-frequency interaction. The detailed statistic

results were presented in Table S5. For significant main effects of group,

SZ showed decreased fraction of time in State 1 and State 2, and

increased fraction of time in State 3 and State 4. SZ also showed

deceased persistence in State 2, and increased persistence in State 3 and

State 4. Finally, deceased counts in State 1 and State 2, and increased

counts in State 3 and State 4 were observed in SZ. The significant main

effect of frequency on fraction of time was also found. Fraction of time

increased in State 3 and State 4 and decreased in State 5 in slow-4. For

persistence and counts, significant main effects of frequency were found

in all six states. As described before, higher-frequency (slow-4) CAPs

F IGURE 4 The frequency-specific effects between slow-4 and slow-5 within the HC group. The results of three states were presented, as
the six CAP states were grouped into three pairs, and similar results were found within the pair. The first two columns show the cortical
coactivations, and the color of each ROI indicates the activation deviation from its baseline level (Z-value). Paired t-test was performed for each
state separately, and Bonferroni correction was used at the ROI level. The colorbar shows the T-value, and regions with p <.05 (FWE corrected)
were presented in the third column. The last column shows the activation level of the seven networks in slow-4 and slow-5, and each point
represents an ROI's group averaged activation level from all 97 HC subjects
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showed shorter persistence and more counts than lower-frequency

(slow-5). Importantly, significant frequency-by-group interaction was

found for fraction of time (p = .0015, F = 10.55) in State 3, persistence

in State 3 (p = .0089, F = 7.05), and State 4 (p = 1.51 � 10�4,

F = 15.20), counts in State 4 (p = .0408, F = 4.27), and State

6 (p = .0264, F = 5.04). Post hoc results are illustrated in Figure 6, SZ

F IGURE 5 The subcortical activation differences between slow-4 and slow-5 within the HC group. The first two columns show the
coactivation level of the eight subcortical regions, and the color of each ROI indicates the activation deviation from its baseline level (Z-value).
Paired t-test was performed for six states separately, and FDR correction was used at the ROI level. Regions with p <.005 (FDR adjusted) were
presented in the third row, and the colorbar shows the T-value. The last column shows the activation level of the eight subcortical regions in

slow-4 and slow-5, from all 97 HC subjects. “*” indicated FDR adjusted p <.005

F IGURE 6 The post hoc results of mixed-effect ANOVA. Only the results with significant interaction effect were compared. Between-group
differences were compared using two-sample t-test, and between frequency differences were compared using paired t-test. Age and gender were
controlled for between-group comparisons. FDR correction was performed to correct the multiple comparisons. Error-bar shows the standard
error. “*” indicates p <.05 with FDR correction
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showed increased fraction of time in State 3 in both slow-4 (p = .0080,

T = 2.82) and slow-5 (p = 3.93 � 10�6, T = 5.00). Significant group dif-

ferences in counts in State 4 and State 6 were also found in both slow-4

and slow-5. But only in slow-5, we found significant group differences of

persistence, for example, SZ showed increased persistence in both State

3 (p = .0039, T = 3.08) and State 4 (p = 1.46 � 10�4, T = 4.09).

3.4 | SZ classification based on CAPs in different
frequency bands

To address our hypothesis that sub-band information might help pre-

dict the clinical diagnosis of SZ, classification was carried out based on

spatial features of CAPs in sub-bands and was compared with the typ-

ical range. Models that used all the 69 SZ patients and 69 matched

HC subjects achieved the classification accuracy of �85%–90% when

using either LOPO or LOO cross-validation (Table S6). Combining

slow-4 and slow-5 slightly increased the accuracy than using the sin-

gle sub-frequency band. Notably, although machine learning (including

feature extraction and cross-validation based on whole samples) is

widely utilized in neuroimaging studies and clinical patient diagnosis

prediction, our initial models might be susceptible to potential bias as

the HC subjects were also involved in the CAP definition. Therefore, a

hold-out sample approach was used for reporting our main results

(see Section 2). The classification results based on the 100 hold-out

repetitions are shown in Figure 7, and their average values are pres-

ented in Table 2. Typically, the accuracy decreased by about 5%–10%,

and slow-4 itself, rather than combining slow-4 and slow-5, achieved

the highest accuracy (�84%), while slow-5 had the lowest accuracy

(�75%). In addition, several brain regions associated with multiple

CAP states as well as slow-4 and slow-5 were identified as consensus

features (Figure 8). It can be observed that slow-5 and slow-4 pro-

vided unique features across the six CAP states. For instance, for

State 3 and 4, the consensus features were mainly located at the bilat-

eral middle frontal gyrus and left superior parietal lobe in slow-4, and

the left precuneus in slow-5, respectively. Finally, the validation analy-

sis was performed in the independent COBRE dataset (Table S7).

Compared to the results obtained by the Wuxi dataset, all the four

models based on the COBRE dataset exhibited lower classification

accuracy, and the highest accuracy was obtained in the typical range

(AUC = 0.7430, ACC = 0.6953, SE = 0.7032, SP = 0.6874).

4 | DISCUSSION

The current study focused on the frequency-specific CAPs in healthy

adults, and frequency-specific abnormalities in SZ, by combining sta-

tistical comparison and classification analysis. Specifically, similar CAP

spatial patterns with the typical range were found in slow-5, 4, and

3, but not in slow-2, regarding both the high-order and primary net-

works. As the frequency increased, CAPs showed subtle spatial alter-

ations, as well as shorter persistence and more occurrence at higher

frequency sub-band. Slow-4 was associated with stronger

coactivation in the basal ganglia as well as amygdala than slow-5, in

F IGURE 7 The classification
results of the 100 hold-out
repetitions. For the 97 HC
subjects, 47 HC subjects were
randomly selected to define the
CAPs, and the remained 50 HC
subjects and age/gender-matched
SZ patients were used for
classification. This procedure was

repeated 100 times, and each
point within the violin plot
represents the result of one
repetition. ACC, accuracy; AUC,
area under curve; SE, sensitivity,
SP, specificity

TABLE 2 The averaged classification results (50 SZ vs. 50 HC,
100 repetitions)

Typical range Slow-5 Slow-4 Slow-5 + slow-4

AUC 0.8653 0.8050 0.8861 0.8842

ACC 0.8059 0.7583 0.8369 0.8207

SE 0.8176 0.7591 0.8470 0.8315

SP 0.7942 0.7575 0.8268 0.8099

Abbreviations: ACC, accuracy; AUC, area under curve; SE, sensitivity; SP,

specificity.
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addition to divergent CAP changes in the cortical networks. More-

over, SZ patients demonstrated frequency-specific CAP persistence

abnormalities in slow-5. Meanwhile, higher accuracy for patient classi-

fication was achieved by using CAP spatial features of slow-4. To the

best of our knowledge, our findings provide the first evidence for

frequency-specific CAPs in the resting state and their alter-

ations in SZ.

4.1 | Spatial and temporal properties of CAPs in
different frequency bands in the healthy controls

The current study delineated both spatial and temporal properties

of six CAP states in each of the sub-bands from slow-5 to slow-2

(Figures 1 and 3), which extended our understanding of CAPs in

the typical range (0.01–0.08 Hz) as reported in our prior study

(Yang et al., 2021). Using a reproducible CAP analytical pipeline

(Yang et al., 2021), our findings demonstrated that CAP states of

the healthy adults in sub-bands were similar to some extent to

those in the typical range. Concerning the spatial maps of all CAP

states, slow-4 (0.027–0.073 Hz) showed the highest similarity with

the typical range, although in State 2 highest similarity with the

typical range was found in slow-3 (0.073–0.198 Hz; Figure 2). This

might be due to the large frequency overlap between slow-4 and

the typical range sharing the neural fluctuations related to intrinsic

brain networks. Both slow-5 (0.01–0.027 Hz) and slow-4 (0.027–

0.073 Hz) displayed highly similar spatial patterns with the typical

range, in which CAP states were dominated by intrinsic functional

networks including triple-network of DMN, FPN, and SN

(Menon, 2011; Yang et al., 2021). Additionally, opposite spatial

patterns for paired CAP states were pronounced in sub-bands,

which was consistent with previous literature (Huang et al., 2020;

J. Zhang et al., 2020), and suggested that the antagonistic relation-

ships between these intrinsic networks widely exist in different

frequency bands.

While slow-3 seemed to be the transient sub-band, slow-2

(0.198–0.25 Hz) and slow-3(0.073–0.198 Hz) had a lower degree of

similarity for CAP states than other sub-bands as well as the typical

range, together with shorter persistence and larger counts for each

CAP state across all bands (Figures 2 and 3). This might be because

slow-2 and slow-3 are the high-frequency sub-band of current fMRI

signals with TR of 2 s, contrary to the typical range for identifying

intrinsic and dynamic brain networks (Allen et al., 2014; Biswal

et al., 1995). Particularly, the CAP states in slow-2 (0.198–0.25 Hz)

were unlike those of the typical range, meaning brain regions of spe-

cific brain networks were not coactivated but mixed with those of

other networks or even dominated by white matter signals. A previ-

ous resting-state fMRI study found that slow-2 oscillated within white

matter rather than gray matter (Zuo et al., 2010). The seed-based FC

maps in slow-2 showed significantly reduced spatial extent compared

with lower frequency sub-bands (Gohel & Biswal, 2015). Since slow-2

is more susceptible to high-frequency neurophysiological signals as

well as non-neuronal noise (Chen & Glover, 2015; Cordes et al., 2001;

Keilholz et al., 2017), functional networks and dynamic brain states

F IGURE 8 The consensus features of the combined model (slow-5 + slow-4). The red color indicates the unique feature from slow-5, and the
blue color indicates the unique feature from slow-4. No intersection was found between slow-5 and slow-4
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are mainly associated with frequency sub-bands of slow-5 to slow-3,

and have attenuated association with slow-2.

As for the temporal dynamics of CAP states, persistence and

counts changed monotonically with the increased frequency band.

Particularly, persistence decreased, and counts increased for all the six

states from slow-5 to slow-2, suggesting that the higher frequency

leads to faster state transition or unstable state maintenance. First,

the higher frequency could cause more frequent BOLD fluctuations,

hence the volume-to-volume state maintenance would decrease, and

the between-state transition would increase. As the fraction of time

was similar across different frequency bands, shorter persistence led

to more counts. Besides, the higher frequency BOLD signal involved

more noise (Chen & Glover, 2015; Cordes et al., 2001), which might

contaminate and mislabel the coactivation profile and result in more

between-state transitions, and shorten the persistence.

In addition, to test whether the frequency-dependent persistence

was only due to the varied filtering procedures, we normalized the

persistence based on its center frequency (Tables S8 and S9). As

shown in Figure S13, the normalized persistence across frequency

bands was still different, suggesting the effect of filtering was

nonlinear. Although slow-4 and slow-5 showed similar normalized

persistence, the differences were still significant. More details can be

found in the Supporting Information. How filtering procedure and

other factors affect the temporal dynamics remains a topic for further

investigation.

4.2 | Subtle but significant frequency-dependent
effects on spatial and temporal configurations of CAPs
in slow-4 and slow-5

Focusing on the low-frequency bands, frequency-specific coactivation

profiles were found by comparing CAP states between slow-5 and

slow-4. The current study revealed subtle but significant CAP differ-

ences in distributed cortical networks and basal ganglia as well as the

amygdala (Figures 4, 5, S6, and S7). For cortical networks, higher-

order networks (DMN, FPN, SN, and DAN) and primary networks

including the VN and SMN showed significantly different coactivation

or de-coactivation in their dominant CAP states, which extended pre-

vious evidence about greater ALFF/fALFF of DMN in slow-5 (Han

et al., 2011; L. Wang et al., 2016). On the other hand, subcortical

regions demonstrated overall stronger activation deviations in slow-4

than slow-5 for most CAP states. For instance, State 6 in slow-4

showed stronger activation at bilateral basal ganglia, which was con-

sistent with previous findings that stronger basal ganglia ALFF/fALFF

in slow-4 (Zuo et al., 2010). This might be owing to the influence of

different ranges on FC and dynamics. Previous literature has revealed

that large-scale functional networks (e.g., DMN and FPN) integrate

remote brain regions with long-range interactions, while subcortical

regions are spatially compact and dominated by local neural activities

(Salvador et al., 2005). Seemly, short-range functional interaction

relies on the higher-frequency band of slow-4 (Buzsaki &

Draguhn, 2004). It is worth noting that, the current study provided

new evidence about the subcortical CAP profiles in slow-4, since pre-

vious studies examined only the static measures of slow-4 (Zuo

et al., 2010) or extremely high-frequency band (0.3032–0.4545 Hz)

(Salvador et al., 2005). Together, current findings elucidated carefully

CAP states in sub-bands within the typical low-frequency range,

which suggest frequency-specific information in the dynamic brain

organization.

As for the temporal domain, slow-4 showed significantly shorter

persistence and more counts across all the six CAPs, while slow-5 had

long persistence (Figure 3) and high within-state transition probability

(Figure S3) as well as the between-state balanced fraction of time

(Figure S8b). Faster signal change and functional interaction are pos-

tulated to link with slow-4 (Buzsaki & Draguhn, 2004), which could

help explain the phenomena of higher frequency band shorter persis-

tence for CAP states. But it remains unclear why some CAP states, for

example, the pair of State 3 and 4, which were dominated by the

DMN, SN, and SMN, occurred more in terms of the increased fraction

of time, in slow-4 than slow-5. Probably, as the frequency increases

from slow-5 to slow-4, the DMN is more frequently recruited for

ongoing functional processes. If so, slow-4 might provide more infor-

mation about the dynamics of DMN, supporting that DMN has

frequency-specific properties (Park et al., 2019). Nevertheless, future

study is needed to investigate the electrophysiological foundation of

DMN (Das et al., 2020; Samogin et al., 2019).

4.3 | Frequency-specific CAP abnormalities in SZ

The current study revealed significant frequency-by-group interaction

on CAP state temporal profiles by using mixed-effect ANOVA

(Table S5). Post hoc results suggest that SZ link with abnormal CAP

states commonly in slow-4 and slow-5 (Figure 6). Notably, our find-

ings based on classification demonstrated that, slow-4 and slow-5

provided distinct CAP features for the clinical prediction (Figure 8).

Together, CAP alterations in SZ patients based on frequency sub-

bands enhance our understanding of abnormal dynamics of brain net-

works in SZ.

First, altered state temporal dynamics of CAPs such as fraction of

time, persistence and count, were identified in slow-4 and slow-5

(Tables S3–S5), which are similar to changes in the typical range

reported in our prior study (Yang et al., 2021). Accumulating work also

pointed out that SZ patients are not only characterized by frequency-

specific changes (Gohel et al., 2018; Yu et al., 2013; Y. Zhang

et al., 2020) or temporal dynamic changes (Du et al., 2017; Kottaram

et al., 2018), but also frequency-specific dynamic alterations (Y. L. Luo

et al., 2020; Zou & Yang, 2019). Second, in both sub-bands, fraction

of time decreased in the FPN-DMN state (State 1 and 2) and

increased in the SN-DMN state (State 3 and 4) in both slow-4 and

slow-5, supporting the triple-network model in SZ (Manoliu

et al., 2014; Menon, 2011; Supekar et al., 2019). Third, frequency-

specific properties were represented by significant group-by-

frequency interactions in the SN-DMN state (State 3 and 4) including

the abnormal fraction of time, persistence and counts. Particularly, the
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persistence of the SN-DMN state significantly increased only in

slow-5 (neither slow-4 nor the typical range), which suggests abnor-

mal network dynamics linked with very slow functional fluctuation. In

a previous study, Luo and colleagues detected SZ-related abnormali-

ties of dFC strength in different frequency bands, which were associ-

ated with clinical symptoms of SZ patients in slow-5 and slow-4

(Y. L. Luo et al., 2020). Therefore, current work provides new insight

into abnormal brain state dynamics in SZ in the frequency sub-bands.

The current study has exhibited altered frequency-dependent

temporal dynamics in SZ, while their spatial patterns remained to be

further studied. A recent CAP study reported that the SZ patients

showed altered temporal dynamics, while the spatial maps were unaf-

fected (Wang et al., 2021). Nevertheless, the consensus features iden-

tified in the following classification analysis might indicate different

spatial patterns between SZ and HC to a certain degree. However, SZ

patients might be characterized by more or fewer brain states, and

future studies should consider performing the k-means clustering

within the patient group separately.

4.4 | SZ classification based on different frequency
bands

Machine learning approaches provide a powerful tool to identify neu-

roimaging predictors for brain function, behavioral phenotype as well

as disorder-related abnormality (Sui et al., 2020; Woo et al., 2017).

Single-subject prediction of SZ diagnosis is challenging but has the

potential to guide psychiatry research and practice (A. Li et al., 2020;

Reinen et al., 2018). Previous work found that the diagnostic status of

SZ patients can be effectively predicted by using resting-state dynam-

ics of brain networks in the typical low-frequency range (Kottaram

et al., 2018). In the current study, we first evaluated the all-patients

model (69 SZ vs. 69 HC), and found that, combining CAP spatial fea-

tures from slow-4 and slow-5 achieved the highest accuracy. The

options for cross-validation were considered, and we found that

LOPO and LOO showed comparable classification results (Table S6),

suggesting the impact of the cross-validation method was minimal in

this study. Our findings are consistent with previous studies that also

reported that combining slow-4 and slow-5 helped improve the accu-

racy of patient classification (Huang et al., 2019; Tian et al., 2020).

However, the 69 HC subjects were also involved in the CAP defi-

nition, which might inflate the classification accuracy. Therefore, a

hold-out sample approach was performed to avoid potential bias.

Rather than combining slow-4 and slow-5, slow-4 achieved the

highest accuracy of 0.8369, and slow-5 achieved the lowest accuracy

of 0.7583. Some other studies reported that compared with slow-5,

slow-4 achieved higher accuracy (Hu et al., 2020) and provided more

important features (Chen et al., 2016; Tian et al., 2020). Given that

there were only a few studies focusing on the frequency-specific

aspects of functional brain networks and dynamics, the role of slow-4

and slow-5 for brain functioning is still unclear. Our results demon-

strated that the methodological choice indeed impacted the classifica-

tion results, in which a more rigorous choice (hold-out sample

approach) should be considered. To further our understanding, we

asked if the unequal classification performance between slow-4 and

slow-5 might be affected by the CAP definition of the hold-out sam-

ple approach. To verify this assumption, we estimated the spatial simi-

larity between the group-averaged CAPs obtained by the 47 HC

subjects and the individual CAPs of the remained 50 HC subjects. As

shown in Figure S12, slow-5 showed less spatial similarity (�0.7) than

the typical range or slow-4 (�0.8), suggesting the larger inter-subject

variabilities in slow-5, and the less accurate projections from the

group-averaged CAPs to the novel individual could cause the lower

classification accuracy. As for the features contributing to the classifi-

cation, distinct consensus features from slow-4 and slow-5 were dis-

tributed in the FPN, DMN, and SMN (Figure 8). Dysfunction of these

networks has often been implicated in psychotic neuropathology

(Brandl et al., 2019; Sha et al., 2019). Furthermore, another indepen-

dent dataset COBRE has also proved a certain degree of generalizabil-

ity of the current study (Table S7). Although, the accuracy decreased

to �0.65–�0.7, it might be caused by the site differences or hetero-

geneity of SZ patients. In general, our results have shown the classifi-

cation ability with CAP dynamics in different frequency bands.

4.5 | Limitations

In this work, a priori sub-bands were employed, including frequency

divisions from slow-5 to slow-2, according to the literature (Buzsaki &

Draguhn, 2004). The sub-band definition might constrain the CAP

results, although it has been widely used in previous fMRI studies

(Han et al., 2011; Hou et al., 2014; Y. L. Luo et al., 2020; Zuo

et al., 2010). Some other fMRI work utilized equally subdivided fre-

quency bands (Ries et al., 2019), or a wavelet-based method to obtain

the frequency sub-bands (F. F. Luo et al., 2020). Therefore, it is worth

investigating the sub-band properties of CAPs by using wavelet-based

or equally binned frequency bands in the future. Next, results based

on slow-3 and slow-2 should be interpreted cautiously, because it is

still under debate if higher-frequency fMRI signals and network

dynamics are influenced by noise arising from head motion, physiolog-

ical signals or high-frequency noise introduced in preprocessing

(Agrawal et al., 2020; Laumann et al., 2017; Nalci et al., 2019; Trapp

et al., 2018). Thus, the current study examined sub-band CAPs in

depth by focusing on slow-5 and slow-4 compared with the typical

range. Finally, the resting-state fMRI data used in the current study

might be limited by the relatively short scan length of 8 min since pre-

vious literature recommended longer scan (Barber et al., 2021; Tomasi

et al., 2017; Z. Yang et al., 2020). Future studies should take into

account above mentioned methodological considerations and limita-

tions for further evaluation.

5 | CONCLUSIONS

The resting-state CAP states have gradually varying spatial and tem-

poral patterns across frequency sub-bands in the healthy brain.
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Particularly, CAP states in slow-4 exhibited stronger coactivation in

several subcortical regions than slow-5. As slow-5 showed larger

inter-subject differences, slow-4 achieved a better SZ prediction accu-

racy. Our work provides new evidence for functional dynamic brain

and altered dynamic brain states in SZ from the perspective of multi-

ple frequency bands, which can contribute to a better understanding

of neuroimaging biomarkers for brain disorders.
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