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STAT3 Controls the Long-Term Survival and Phenotype of
Repair Schwann Cells during Nerve Regeneration
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Rhona Mirsky,! and Kristjan R. Jessen!
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Dies Meijer,
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After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth,
these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the
frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells
have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a
dualrole. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties.
In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that
Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining
autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically
denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to
sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally
without STATS3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mecha-
nisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to
the deterioration of this important cell population.
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Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regenera-
tion, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons
through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually
die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription
factor STATS3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype
that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step
toward developing therapeutic strategies that improve nerve regeneration and functional recovery. j

ignificance Statement

Introduction
The regeneration of damaged nerves depends on the presence of
living Schwann cells in the nerve distal to injury. These cells are
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derived from myelin and Remak cells but have adopted a pheno-
type that is specialized for supporting nerve repair (Arthur-Farraj
et al., 2012; Jessen et al., 2015; Jessen and Mirsky, 2016). Repair
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Table 1. Primers for qPCR and genotyping”
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Gene Accession Sense sequence Antisense sequence

Gapdh  Glyceraldehyde-3-phosphate dehydrogenase NM_001289726.1 AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
Canx  Calnexin NM_007597.3 CAACAGGGGAGGTTTATTTTGCT TCCCACTTTCCATCATATTTGGC
¢lun cun NM_010591.2 CCTTCTACGACGATGCCCTC GGTTCAAGGTCATGCTCTGTTT
Oligl  Oligodendrocyte transcription factor 1 NM_016968.4 (CGCCCCAGATGTACTATGC AACCCACCAGCTCATACAGC
Shh Sonic hedgehog NM_009170.3 AAAGCTGACCCCTTTAGCCTA TTCGGAGTTTCTTGTGATCTTCC
GDNF  Glial cell-derived neurotrophic factor NM_010275.3 GATTCGGGCCACTTGGAGTT GACAGCCACGACATCCCATA
BDNF  Brain-derived neurotrophic factor NM_007540.4 TCATACTTCGGTTGCATGAAGG AGACCTCTCGAACCTGCCC

“Primers used for genotyping STAT3f/f mice are 5'-CAC CAA CACATG CTATTT GTA GG-3" and 5”-CCT GTCTCT GACAGG CCATC-3" (210 bp band for WT allele and 370 bp band flox allele). Primers for the STAT3 deleted flox allele (310 bp band)
are 5'-CAC CAA CACATG CTATTT GTA GG-3” and 5’-GCA GCA GAA TACTCT ACA GCT C-3". Primers for the PO-Cre transgene are 5'-GCTGGCCCAAATGTTGCTGG-3" and 5”-CCACCACCTCTCCATTGCAC-3 (480 bp band; Feltri etal., 2002).

Schwann cells form regeneration tracks (bands of Biingner) that
guide axons to their targets, break down myelin both directly by
myelin autophagy and indirectly by activation of the innate im-
mune response and recruitment of macrophages, and express
trophic factors that support survival of injured neurons and axon
growth (Chen et al., 2007; Arthur-Farraj et al., 2012; Fontana et
al., 2012; Glenn and Talbot, 2013; Brosius Lutz and Barres, 2014;
Gomez-Sanchez et al., 2015). These cells differ in molecular ex-
pression, morphology, function, and transcriptional controls
from immature Schwann cells in developing nerves (Jessen and
Mirsky, 2016).

Although peripheral nerves respond in this strikingly adaptive
fashion to damage, the clinical outcome after nerve injury in
larger animals, including humans, is frequently poor (Allan,
2000; Lundborg, 2000; Hoke, 2006). One of the main reasons is
that, during the slow growth of axons through the more proximal
parts of injured nerves, the more distal nerve, which is without
axonal contact for extended periods, gradually loses the capacity
to support regeneration (Sulaiman and Gordon, 2009, 2013;
Scheib and Hoke, 2013). Two factors are thought to contribute to
this deterioration. One is the gradual death of chronically dener-
vated Schwann cells (Weinberg and Spencer, 1978; Siironen et al.,
1994; Li et al., 1998; Jonsson et al., 2013). The other is the reduc-
tion in expression of growth-supportive factors including GDNF
and BDNF by the surviving cells (You et al., 1997; Hoke et al.,
2002; Michalski et al., 2008; Eggers et al., 2010). This fading of the
repair Schwann cell phenotype and the accompanying loss of
regenerative support provided by the distal nerve stump have
been carefully analyzed in rodent models of chronic denervation
(Sulaiman and Gordon, 2009). Identification of the molecular
mechanisms that sustain the differentiation state of repair cells
and support their continual survival is clearly a significant goal.

We have previously identified activation of the transcription
factor c-Jun in Schwann cells as an important regulator of the
reprogramming of myelin and Remak cells into repair Schwann
cells (Arthur-Farraj et al., 2012; Jessen and Mirsky, 2016). But
transcriptional mechanisms that control long-term maintenance
of these cells have not been studied. Here we show that the STAT3
is involved in supporting the survival of chronically denervated
repair cells, and also in maintaining their characteristic gene ex-
pression and morphology.

STATS3 is typically activated by phosphorylation of conserved
tyrosine 705 residue in the C-terminal domain, resulting in
dimerization and translocation from the cytoplasm to the nu-
cleus (Aaronson and Horvath, 2002). Signaling is generally me-
diated via the gp130 receptor complex and Janus kinases (JAKs).
STAT3 can also be phosphorylated on serine 727, which in most
often serves to augment signaling initiated by tyrosine 705 phos-
phorylation (Decker and Kovarik, 2000).

STAT3 has previously been implicated in the injury response
of CNS glial cells because it is important for the formation of the

astrocyte glial scar (Wanner et al., 2013). In Schwann cells,
STATS3 is also known to be phosphorylated after injury (Sheu et
al., 2000; Lee et al., 2009a, b), but the functional role of STAT3
activation in Schwann cells has not been investigated. In the pres-
ent work, we have addressed this issue during nerve development,
regeneration, and after long-term injury. While we do not find
major function for STAT3 in Schwann cell development or my-
elination, we identify an important role in the maintenance of
chronically denervated repair Schwann cells. STAT3 is therefore
the second transcription factor, in addition to c-Jun, with a selec-
tive function in Schwann cells of injured adult nerves.

Materials and Methods

Animals. Animal experiments conformed to United Kingdom Home
Office guidelines under the supervision of University College London
Biological Services. Sprague Dawley rat pups of either sex were obtained
from University College London Biological Services. Mice of either sex
with specific deletion of the STAT3 gene in Schwann cells were obtained
by crossing STAT3 ""mice (Alonzi et al., 2001) with P,-Cre mice (Feltri et
al., 2002; D’Antonio et al., 2006), or with Dhh-Cre mice (Jaegle et al.,
2003) (for experiments in Figs. 3D, 4C, 6A—E). The resulting P,-Cre */
STAT3 "™ mice were crossed back to STAT3 " mice to obtain P,-Cre */
STAT3f/f mice, referred to as STAT3 cKO mice in which STAT3 is
deleted from Schwann cells. P-Cre ~/STAT3 7 littermates, referred to as
WT, were controls.

Genotyping. DNA for genotyping was was extracted from ear or tail
samples using the Hot Sodium Hydroxide and Tris method (HotSHot)
as in Gomez-Sanchez et al. (2015). For primers, see Table 1.

Antibodies. P-STAT3-Ser727 and P-STAT3-Tyr705 antibodies, both
from Cell Signaling Technology, were used at 1:50 for immunohisto-
chemistry and 1:2000 for Western blotting. Other antibodies for Western
blotting were Cyclin D1 (1:200; Santa Cruz Biotechnology), N-Cadh
(1:500; BD Transduction Laboratories), p75NTR (1:1000; Millipore),
GAP43 (1:500; Millipore), c-Jun (1:1000; Cell Signaling Technology),
and GAPDH (1:5000; Sigma-Aldrich). HRP-conjugated secondary anti-
bodies (1:2000 in blocking solution) were from Cell Signaling Technol-
ogy. For immunohistochemistry, incubation with MBP antibodies (1:
10,000; Covance) or 324 rat anti-mouse Ig L1 antibodies (1:10) were
followed by anti-mouse Ig AlexaFluor-488 (1:500; Invitrogen) or anti-rat
Ig AlexaFluor-488 (1:500; Invitrogen), respectively. Incubation with an-
tibodies to Ki67 (1:100; Abcam) and SOX10 (1:100; R&D Systems) were
followed by biotinylated anti-rabbit IgG (1:600; GE Healthcare) and
anti-goat Ig AlexaFluor-488 (1:1000; Invitrogen) antibodies, respec-
tively. The Ki67 sections were then incubated with AlexaFluor-488
streptavidin (1:500; Invitrogen). Caspase-3 antibody (1:100; Cell Signal-
ing Technology) was followed by anti-rabbit Ig Cy3. S100 antibody (1:
1000) was from Dako.

Nerve injury. The right sciatic nerve was exposed and transected at the
sciatic notch (Woodhoo et al., 2009) or crushed (3 X 15 s at three rota-
tion angles) using fine forceps. Contralateral uninjured sciatic nerves
were used as controls.

Cell and segment cultures, BrdU assay, infection, and transfection.
Schwann cell cultures and BrdU assay were as in Morgan etal. (1991) (see
also Survival assays). Mouse Schwann cells and Schwann cell precursors
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Figure 1.

ated fiber, identified by MBP antibodies. Scale bar, 25 pm.

were prepaired as in Dong et al. (1999), Arthur-Farraj et al. (2012) and
Jessen et al. (1994), respectively. The precursors were cultured in serum-
free supplemented medium (Meier et al., 1999), referred to as defined
medium, containing 20 ng/ml BNRG-1. Tibial nerve segments were
maintained in DMEM with 5% FBS (Gomez-Sanchez et al., 2015). Ad-
enoviral infections and plasmid transfections were as in Parkinson et al.
(2001, 2004). An adenovirus expressing Cre recombinase (Akagi et al.,
1997) was used to infect STAT3 " Schwann cells generating STAT3 KO
cells. Constitutively active STAT3 plasmid (Bromberg et al., 1999),
STAT3-CA, was provided by Dr. A. Stephanou (Institute of Child Health,
University College London, London). The control used was the pRe/
CMYV empty vector (Invitrogen). Both were cotransfected with a pBabe-
GFP plasmid to allow visualization of transfected cells. The STAT3
peptide inhibitor (Calbiochem) used in the proliferation assay is a cell-
permeable STAT3-SH2 domain-binding phosphopeptide that contains a
C-terminal membrane translocating sequence, acting as a highly selec-
tive, potent blocker of STAT3 activation (Turkson et al., 2001). The
AG490 JAK2 kinase (STAT3) inhibitor was from Calbiochem.

Electron microscopy. Nerves were processed as previously described
(Gomez-Sanchez et al., 2015). Transverse ultrathin sections of cut tibial
nerves were taken 5 mm from the cut site. To analyze the structure of
bands of Biingner, 20—26 random photographs per nerve at X12K were
used. For cell counts, nuclei counted in every field, or every second or
every third field, depending on the size of the nerve, were multiplied by
the number of fields to generate totals. Regeneration tracks (bands of
Biingner) were identified as a group of Schwann cell profiles (sometimes
asingle profile) surrounded by a basal lamina sheath as seen in transverse
nerve sections. Roundness index and profile area were obtained after
manual tracing of randomly selected profiles using Image] software.

Survival assay. Schwann cells from P1 STAT3 cKO and WT mice were
assayed as in Meier et al. (1999). Cells were plated at low density (200

S e— D W — A —

A —AA—————

P-STAT3-S727 MBP

Basal activation of STAT3 takes place early in Schwann cell development and persists in the adult. A, Western blots
showing total STAT3 and its phosphorylated forms in sciatic nerve extracts from WT control mice at different developmental stages.
STAT3 is present throughout the Schwann cell lineage. P-STAT3-Ser727 is found at very low levels in Schwann cell precursors (E12),
but its expression increases at the immature Schwann cell stage and is maintained in adulthood. P-STAT3-Tyr705 is expressed at
lower levels and seen from the immature Schwann cell stage (E18) onwards. GAPDH is used as a loading control. B, Fibers in teased
sciatic nerve preparations showing P-STAT3-Ser727 immunoreactivity in Schwann cell nuclei (red; top two panels) also stained
with DAPI (bottom two panels). Two left panels, Nonmyelinated (Remak) fiber, identified by L1 antibodies. Right panels, Myelin-
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cells/coverslip) or high density (3000 cells/cov-
erslip. After 3 h at 37°C and 5% CO,, one set of
coverslips from each animal was fixed immedi-
ately for immunolabeling to obtain a reference
point for the quantification of survival at later
time points. The remaining sets were topped
up with 400 pl of defined simple medium
(sDM) (Meier et al., 1999) alone or sDM con-
taining 1.6 ng/ml IGF-II (Peprotech), 0.8
ng/ml PDGF-BB (Peprotech), and 0.8 ng/ml
NT-3 (Regeneron Pharmaceuticals), or condi-
tioned medium, and cultured for 48 or 72 h.
Then, cells were fixed using 4% PFA
for 10 min, labeled with S100 antibodies and
Hoechst dye, and the number of surviving
Schwann cells counted. Survival percentage is
the number ofliving cells presentat 48 and 72 h
as a percentage of the number of cells that had
attached to the substrate in sister cultures at
3 h. sDM consists of 1:1 DMEM and Ham’s
F-12 supplemented with BSA (350 ug/ml).
Schwann cell conditioned medium was pre-
pared as previously described (Meier et al,
1999).

TUNEL staining. To detect apoptotic cells,
DNA fragmentation was labeled using the
TUNEL method, using TUNEL enzyme (Roche)
and TUNEL Lab Mix (Roche), according to the
manufacturer’s protocol. To identify TUNEL-
positive nuclei from Schwann cells and macro-
phages, immunolabeling with $100 and F4/80 (1:
100; AbD Serotec), respectively, was performed
subsequently. Nuclei were stained using Hoe-
chst dye.

Western blotting and qPCR. For blotting, ho-
mogenates were obtained from injured and un-
injured nerves as well as cultured nerve segments
essentially as previously described (Gomez-
Sanchez et al., 2015). Experiments were repeated
atleast three times with fresh samples, and representative pictures are shown.
Densitometric quantification was by Image Lab 4.1 (Bio-Rad Laboratories).
Measurements were normalized to loading control GAPDH. For PCR, total
RNA was isolated using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with a
DNase I step performed to eliminate traces of genomic DNA. Real-time PCR
was performed using CFX96 Real-Time PCR Detection System (Bio-Rad).
PrecisionPLUS qPCR Mastermix with SYBR Green (Primerdesign) was used
to detect double-stranded DNA. Primer sequences are described in Table 1.

Behavioral tests. Experiments conformed to United Kingdom Home
Office guidelines. Six mice per genotype were tested. Mice were tested
before surgery to ensure that there were no differences in normal re-
sponses between the genetic backgrounds. Tests were performed as in
Arthur-Farraj et al. (2012).

Statistical analysis. Results are expressed as mean * SEM. Statistical
significance was estimated by Student’s ¢ test, one-way ANOVA, two-way
ANOVA, or Mann—Whitney U test. A p value <0.05 was considered as
statistically significant. Statistical analysis was performed using Graph-
Pad software (version 6.0).

P28 P60

Results

STAT3 activation is seen in embryonic nerves and persists in
adult Schwann cells

Before studying the role of STAT3 in Schwann cells, we analyzed
STAT3 expression and activation during nerve development us-
ing Western blotting (Fig. 1A). STAT3 protein was present at
all stages of the Schwann cell lineage from the Schwann cell
precursor stage at embryo day 12 (E12) onwards. At the precur-
sor stage, serine 727 and tyrosine 705 STAT3 phosphorylation
(P-STAT3-Ser727 and P-STAT3-Tyr705) were low and unde-
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Figure2. STAT3appears dispensable for Schwann cell development and myelination. 4, Cre-mediated deletion of the STAT3 gene in Schwann cells. PCR analysis for STAT3 gene deletion in DNA
extracts from tail and sciatic nerve of adult genetically wild-type (qWT), STAT3 *(f/f), and P,-Cre * STAT3 7¥(ck0) mice. Amplification of the gWT allele resultsina 210 bp fragment, whereas STAT3 7*
allele containing the loxP sites generates a bigger band (370 bp). The deleted allele generates a 310 bp fragment. Specific recombination is absent from the tail of cKO mice but present in cKO0 sciatic
nerve where Cre recombinase is expressed under the control of the P, gene. Successful deletion in the STAT3 gene was also detected in DNA samples from P8 purified Schwann cell cultures from
STAT3cKO mice. B, Electron micrographs from P3 sciatic nerves of WT and STAT3cKO mice showing normal nerve morphology and no apparent abnormalities of myelination in the mutant. Graphs
represent quantification of number of nuclei per transverse nerve section (top), nerve area (middle), and number of axons starting to be myelinated (bottom) in WT and STAT3¢KO nerves. n = 5 mice
of each genotype. Data are mean == SEM. Scale bar, T wm. C, Electron micrographs from adult sciatic nerves of WT and STAT3cKO mice showing normal myelin profiles in the mutant. Graph
represents g-ratio analysis; the differences in g-ratios are not significant. n = 4 of each genotype. Data are mean = SEM. Scale bar, 1 wm. D, Ki67 (Figure legend continues.)
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tectable, respectively. At the immature Schwann cell stage (E18),
both P-STAT3-Ser727 and P-STAT3-Tyr705 were clearly up-
regulated and maintained until adulthood (Fig. 1A). Immunola-
beling of teased adult nerves showed P-STAT3-Ser727 in the
nucleus of both MBP-positive myelin cells and L1-positive non-
myelin (Remak) cells (Fig. 1B), although the lower levels of
P-STAT3-Tyr705 could not be detected unambiguously by this
method. Thus, STAT3 activation largely coincides with the
Schwann cell precursor to Schwann cell transition, and basal
STATS3 activation persists in adult nerves.

In WT mice, STAT3 does not have a major role in Schwann
cell development and myelination

To explore the potential importance of STAT3 in the Schwann
cell lineage, we generated a conditional knock-out mouse in
which STAT3 gene is specifically ablated only in Schwann cells.
To do this, STAT3 "' mice, having loxP sites flanking exons 12—14
of the STAT3 gene (Alonzi et al., 2001), were crossed with mice
expressing Cre under the control of the P, promoter (Feltri et
al., 2002), to generate P,-Cre */STAT3 ¥t (STAT3cKO) mice
(Fig. 24).

The STAT3cKO mice were born and survived normally, and
their nerves were indistinguishable from control”" littermates
(WT). At postnatal day 3 (P3), the area of a transverse section
through the sciatic nerve, the number of Schwann cell nuclei/
nerve, and the number of myelinated axons/nerve were similar in
STAT3cKO and WT mice (Fig. 2B). In adult nerves, thick myelin
sheaths were seen around the largest caliber axons, and no signif-
icant difference was observed in the g-ratio between STAT3cKO
and WT nerves (Fig. 2C).

The fact that Schwann cell numbers in the mutants were nor-
mal at P3 suggested that STAT?3 signaling affected neither normal
developmental death nor proliferation. This was confirmed by
double-labeling sections of P1.5 sciatic nerves with the prolifera-
tion marker Ki67 and SOX10 antibodies to identify Schwann
cells. No significant difference was found in the number of
Schwann cells labeled with Ki67 antibodies between WT and
STAT3cKO nerves (Fig. 2D). In another test of proliferation,
purified cultures of mouse Schwann cells were treated with
BNRG-1, a well-established mitogen for Schwann cells in vitro, in
the presence of a STAT3 peptide inhibitor. BrdU incorporation
revealed that STAT3 inhibition had no effect on DNA synthesis of
Schwann cells (Fig. 2E). The same results were also seen using
AG490, an inhibitor of the JAK2 signaling pathway (Nielsen et al.,
1997) (data not shown).

Together, these results suggest that the basal STAT3 activa-
tion in embryonic and postnatal Schwann cells is largely dis-
pensable and has little developmental significance. In lens
development, functional redundancy between STAT3 and
STAT1 has been suggested (Ebong et al., 2004), but this issue

<«

(Figure legend continued.) ~ immunolabeling showing similar Schwann cell proliferation in
P1.5sciaticnerves of WTand STAT3cKO mice. Transverse nerve sections were double-labeled for
SOX10 and Ki67. Graph represents the percentage of Ki67 *SOX10 * cells relative to total
number of SOX10 ™ cells, showing no differences between groups. n = 4 for each genotype.
Data are mean = SEM. Scale bar, 25 wm. E, BrdU immunolabeling showing that inhibition of
STAT3 has no significant effect on Schwann cell proliferation induced by BNRG-1. Cultured,
purified Schwann cells from WT mice were treated with SNRG-1 (20 ng/ml) for 48 h to stimu-
late proliferation with BrdU included for the last 24 h. The experiment was performed in the
presence of vehicle or a STAT3 peptide inhibitor. Graph represents the percentage of BrdU *
nuclei relative to the number of Hoechst-stained nuclei. n = 4 for each genotype. Data are
mean = SEM. Scale bar, 50 um.
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remains unclear (Hirahara et al., 2015). Nevertheless, it re-
mains possible that, in a mouse in which STAT1 was geneti-
cally inactivated, a function for STAT3 in Schwann cell
development might be revealed.

In injured nerves, STAT3 is activated to support Schwann

cell survival

STAT3 signaling promotes survival in a number of cell types (e.g.,
Schweizer et al., 2002; Shen et al., 2004). To determine whether
STATS3 supports Schwann cell survival in injured nerves, we ex-
amined STAT3 activation in cut sciatic nerves and compared
Schwann cell survival in cut nerves of WT and STAT3cKO mice.
Western blots of cut nerves of adult WT mice showed a sharp
(~8- to 10-fold) rise in P-STAT3-Tyr705, the phosphorylation
epitope that controls STAT3 dimerization and activation (Aar-
onson and Horvath, 2002). This was seen in nerve segments 0—2
mm and 2-7 mm distal to the cut at several time points, 3, 7, and
28 d, after injury (Fig. 3A). This STAT3 activation was not due to
invading macrophages because it was also seen in distal segments
from cut nerves maintained in vitro for 3 d under conditions
where macrophages are unable to invade (Fig. 3B). P-STAT3-
Ser727, generally thought to modify signaling mediated by
P-STAT3-Tyr705 (Decker and Kovarik, 2000), was also elevated
after injury (Fig. 3A), and immunolabeling for both P-STAT3-
Tyr705 and P-STAT3-Ser727 was seen in Schwann cell nuclei in
teased injured nerves (Fig. 3C). In cultured nerve segments, how-
ever, Western blots failed to show P-STAT3-Ser727 upregulation
(Fig. 3B). This suggests that the activation of this epitope in
Schwann cells after injury requires additional signals, which are pres-
ent in vivo but not in culture. Alternatively, it is possible that macro-
phages contribute significantly the signal measured in in vivo nerve
homogenates (Girolami et al., 2010). In mice, nerve cut results in
apoptotic Schwann cell death in the distal nerve stump. To test
whether STAT3 supported the survival of Schwann cells after injury,
we quantified dying cells in sections from sciatic nerves 3 d after cut
using the TUNEL assay. This revealed a fourfold increase in the
number of S100-positive TUNEL-labeled Schwann cells in
STAT3cKO nerves compared with control nerves (Fig. 3D). Con-
firming this, an increase in the number of caspase-3-positive cells
was also seen in cut STAT3cKO nerves (data not shown).

To further test the idea that STAT3 is involved in the mecha-
nisms that protect Schwann cells from death, we tested whether
STATS3 protected cultured Schwann cells from stress induced by
UV light, a model used to study STAT3 involvement in survival of
other cell types (Shen et al., 2001; Sano et al., 2005). First,a UV
time-course experiment determined that 24 h was optimal for
assessing cell death (data not shown). At this point, Schwann cell
nuclei started to show the hallmarks of apoptosis (condensed,
bright nuclei fragmenting into apoptotic bodies), but the cells
were still attached to the coverslip allowing quantification by
Hoechst staining. Using rat Schwann cells, we found that inhibi-
tion of STAT3 signaling by the JAK2 inhibitor AG490 increased
UV apoptosis (Fig. 4A). Conversely, enforced expression of a
constitutively active form of STAT3 (STAT3-CA) protected
Schwann cells from UV-induced death (Fig. 4B). Further, in
mouse Schwann cells, UV light was more than twice as effective in
inducing Schwann cell death in cells in which STAT3 had been
genetically inactivated, compared with WT cells (Fig. 4C).

We conclude that activation of STAT3 signaling helps to pro-
tect Schwann cells in injured nerves from death.
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***¥%p < 0.0001 (two-way ANOVA).

STATS3 is required for long-term survival of repair Schwann
cells after injury

Injury-related Schwann cell death has chiefly been studied in two
situations. One is the acute death examined above, which repre-
sents a transient phase of a strong increase in apoptosis from a
very low level, in which a relatively small percentage of Schwann
cell die (Grinspan et al., 1996; Yang et al., 2008; Ahmad et al.,
2015). The other is the slow, large-scale death of Schwann
cells that are deprived of axonal contact for long periods, often
months, while axons regenerate toward them along the more
proximal parts of the nerves. The loss of these chronically dener-
vated Schwann cells is a major barrier to nerve repair in humans
and has been extensively studied in rodents (Hoke, 2006; Sulai-
man and Gordon, 2009).

Having found that STAT3 protects against acute death, we
tested whether STAT?3 also regulated the loss of chronically de-
nervated Schwann cells. In these experiments, we compared 1, 4,
8, and 10 week cut nerves in mice in which the proximal stump
was deflected to prevent regeneration into the distal nerve stump.
First, Western blotting showed that, in 8 week cut nerves, levels of
P-STAT3-Tyr705 were only reduced by ~20%-30% compared
with those seen in 1 week cut nerves, in which P-STAT3-Tyr705
expression, in turn, is ~8- to 10-fold that in uninjured nerves (see
In injured nerves, STAT3 is activated to support Schwann cell
survival). STAT3-Ser727 also remained activated in 8 week cut
nerves (Fig. 5A). This shows that the STAT3 pathway remains
activated in chronically denervated Schwann cells, a precondition
for the involvement of STAT3 in maintaining this cell popula-
tion. Second, to test whether this was the case, electron micros-
copy was used to count the number of Schwann cell nuclei in the
distal stumps of transected tibial nerves of WT and STAT3cKO
mice at 4, 8, and 10 weeks after cut. This showed that, in
STAT3cKO nerves, the number of Schwann cells was substan-
tially and significantly reduced compared with WT nerves at 8
and 10 weeks (Fig. 5B). This result matched with the higher num-
ber of caspase-3-positive Schwann cells found in 8 week cut
nerves from STAT3cKO mice (Fig. 5D). At the earlier time point
of 4 weeks, however, Schwann cell numbers were similar in both
genotypes. The number of macrophages and fibroblasts was not
significantly different in WT and mutant nerves at 4 and 8 weeks
after cut, while the number of fibroblasts was reduced in the
mutant nerves at 10 weeks (Fig. 5B). Light microscopic counts of

cells in the nerves of the fourth toe of WT and STAT3cKO mice 4
weeks and 8 weeks after nerve cut (without reinnerveation)
showed similar reduction in cell numbers to that found in more
proximal nerves (above and data not shown).

Our previous data on the regulation of Schwann cell prolifer-
ation had suggested that STATS3 signaling was not involved (see
In WT mice, STAT3 does not have a major role in Schwann cell
development and myelination). This was confirmed by examin-
ing 4 d and 4 week cut nerves using cyclin D1 levels as a measure
of proliferation (Atanasoski et al., 2001). At 4 d after cut, when
proliferation is high, there was an equal and substantial rise in
cyclin D1 levels in both WT and STAT3cKO nerves. Four weeks
after cut, when proliferation is returning to baseline levels (Sii-
ronen et al., 1994; Hall, 1999), cyclin D1 levels were much lower
and not significantly different between WT and mutants (Fig.
5C).

STATS3 is required for autocrine survival signaling in
denervated Schwann cells

The experiments above indicated that STAT3 signaling supports
the short- and long-term survival of Schwann cells after injury, an
issue of particular importance for regeneration. We therefore
examined the underlying mechanism. Previously, we suggested
that the survival of Schwann cells in injured nerves depended on
autocrine signaling involving IGF, NT-3, and PDGE-BB (Meier
etal., 1999). We also showed that during development autocrine
circuits appear at the immature Schwann cell stage (E18) and are
not present in Schwann cell precursors, a developmental timing
that the present work shows coincides with STAT3 activation. To
test whether STATS3 signaling plays a role in Schwann cell auto-
crine survival circuits, we performed experiments similar to those
we used previously to identify autocrine Schwann cell mecha-
nisms (Meier et al., 1999). First, to investigate the general ability
of STAT3cKO cells to survive in culture without autocrine sup-
port (i.e., at low density), Schwann cells from P1 STATcKO and
WT mice were plated at low density in sDM. In a 48 h assay, we
found that the ability of STAT3cKO and WT cells to survive
under these conditions was identical, both cells showing ~50%
survival relative to the cell number present 3 h after plating,
which is in line with previous results (Meier et al., 1999) (Fig. 6A).
When WT cells are plated at high density in this assay, their
survival at 48 h increases to ~80% due to autocrine factors se-
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Figure 5.  STAT3 promotes long-term survival of Schwann cells after nerve injury. A, Western blots of uncut, and of 1 and 8 week cut nerves in WT mice showing that P-STAT3-Tyr705 and
P-STAT3-Ser727 remain elevated at 8 weeks, although the levels are somewhat lower than at T week. Densitometric quantification shows the percentage of activation in 8 week cut nerves relative
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nerve transection. Upper panels, Reduced number of Schwann cell nuclei in STAT3¢KO tibial nerves 8 and 10 weeks after injury. Lower panels, No differences in macrophage number, but 10 week cut
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Figure 6.  STAT3 s required for normal autocrine survival signaling by denervated Schwann cells. A, Without autocrine support (at low density, 200 cells/400 l of medium), STAT3cKO and WT

Schwann cells show similar 48 h survival in sDM without serum. Survival is expressed as a percentage of cells present on sister coverslips 3 h after plating. n = 3. Data are mean = SEM. B, Hoechst
staining shows nuclei of Schwann cells from P1WT and STAT3cKO nerves cultured at high density (4000 cells/400 l of medium) in sDM without serum for 3 and 48 h. There are reduced cell numbers
in STAT3cKO cultures at 48 h. Scale bar, 50 m. €, With autocrine support (at high density, 4000 cells/400 rl), STAT3cKO Schwann cells survive poorly at 48 and 72 h compared with WT cells. The
cells were cultured in sDM without serum. Survival is expressed as in A.n = 3. Data are mean == SEM. ***p < 0.001, STAT3¢KO versus WT (two-way ANOVA). D, Graph showing that low-density
WT cultures respond to conditioned medium, or IGF-Il at high concentration (100 ng/ml) by increase in survival at 48 h (compare with A). STAT3cKO cultures do not show this response. n = 3. Data
are mean = SEM. ****p <0.0001, WT versus STAT3cKO (two-way ANOVA). E, WT and STAT3cKO Schwann cell precursors are equally responsive to the survival signal BNRG-1. Schwann cell
precursors were dissected from STAT3cKO and WT E13 mouse embryos and cultured for 24 h with or without BNRG-1 (20 ng/ml). Survival was assessed as in A. n = 4. Data are mean = SEM.
*¥¥¥p < 0.0001, BNRG-1-treated versus untreated (two-way ANOVA). F, Micrograph represents cultured rat Schwann cells infected with the STAT3-Luc-GFP adenovirus (green) and Hoechst
nuclear staining (blue). Graph represents luciferase fluorescence, indicative of STAT3 activation, in response to 48 h exposure to conditioned medium, the combination of IGF-I1 (1.6 ng/ml), NT3 (0.8
ng/ml), and PDGF-BB (0.8 ng/ml) that mimics the conditioned medium, or high concentration of IGF-I1 (100 ng/ml). The activation is expressed relative to the signal obtained from control medium.

n = 6 for conditioned medium and n = 12 for the combination of IGF-1I, NT3, and PDGF-BB and high concentration of IGF-II. Data are mean == SEM. *p << 0.05 (Kruskal-Wallis test). ***p << 0.001
(Kruskal—Wallis test). Scale bar, 10 um.



4264 - ). Neurosci., April 19, 2017 - 37(16):4255— 4269

creted by the Schwann cells themselves (Meier et al., 1999). To
test whether these autocrine survival circuits functioned without
STATS3, cells from P1 STATcKO and WT mice were plated at high
density. The survival of WT cells at 48 and 72 h increased to
~80% as expected (Fig. 6 B, C). The survival of STAT3cKO cells,
however, remained similar to that seen in sparse cultures, sug-
gesting absence of autocrine survival support (Fig. 6B, C).

In a further test of this, sparse cultures were exposed to
conditioned defined medium previously conditioned by dense
Schwann cell cultures. As expected from an autocrine mecha-
nism, and shown in previous work, this increased the survival of
sparsely plated WT cells to levels similar to those seen in densely
plated cultures. In contrast, the survival of sparsely plated
STAT3cKO cells was not increased in response to conditioned
medium, or to IGF-II, the major constituent of the conditioned
medium (Meier et al., 1999) (Fig. 6D). This confirmed the ab-
sence of functioning autocrine survival circuits in STAT3cKO
cells and indicated that these cells are not responsive to autocrine
signals, even when they are present in the culture medium.
STAT3cKO cells remained, however, normally responsive to an-
other key survival signal in the Schwann cell lineage, BNRG-1,
which is expressed on axons and acts in a paracrine manner be-
cause BNRG-1 was equally effective in supporting the survival of
E13 Schwann cell precursors from WT and STAT3cKO mice
(Fig. 6E).

To determine whether autocrine Schwann cell signals activate
endogenous STAT3 signaling, we used an adenoviral STAT3-
luciferase GFP reporter construct containing four tandem copies of
STATS3 bindingsites (Besser et al., 1999, Staples et al., 2007) (Fig. 6F).
The construct was infected into neonatal rat Schwann cell cultures
before exposure to relevant components. Because low-density cul-
tures generated insufficient luciferase signal, higher cell densities
were used in these experiments, although this generated high back-
ground readings, even in control cultures without added factors,
presumably due to the presence of autocrine factors. Nevertheless,
elevated luciferase signal, indicating STAT3 activation, was obtained
in response to Schwann cell conditioned medium, a combination of
low concentrations of IGF-II, NT-3, and PDGF-BB that mimics the
conditioned medium (Meier et al., 1999), or high concentration of
the major conditioned medium ingredient IGF-II (Fig. 6F).

These results show that STAT3 is required for autocrine
Schwann cell survival signaling, and suggest that defective au-
tocrine survival support contributes to the substantial loss of
STAT3cKO Schwann cells when these cells are subjected to
chronic denervation.

STATS3 is essential for the long-term maintenance of the
phenotype of repair Schwann cells

The gradual loss of repair supportive capacity by distal nerves is
due not only to the death of chronically denervated Schwann
cells, but also to the gradual fading of the repair Schwann cell
phenotype, evidenced by the gradual reduction in expression of
regeneration supportive factors, such as GDNF and BDNF in
distal nerve stumps during chronic denervation (Hoke et al.,
2002; Eggers et al., 2010). We therefore asked whether STAT3
might be more broadly involved in maintaining the regeneration-
supportive functions of injured nerves by testing whether STAT3
was required for the maintenance of the repair Schwann cell phe-
notype, in addition to supporting the long-term survival of these
cells. To this end, we compared the repair Schwann cell pheno-
type in 8 week cut distal stumps of WT and STAT3cKO nerves
using morphometric analysis of regeneration tracks (bands of
Biingner), qRT-PCR, and Western blotting.

Benito, Davis et al. @ STAT Supports Repair Schwann Cells

Morphologically, the regeneration tracks in STAT3cKO nerves
were obviously abnormal. Compared with 8 week cut WT nerves,
there were fewer cellular profiles in each track, the profiles were
flatter, and the average area of each profile was increased. The num-
ber of redundant basal lamina profiles was also higher, a feature
likely to reflect the increased cell death in these nerves (see previous
section) (Fig. 7A-E).

Analysis of 8 week cut STAT3cKO nerves by qRT-PCR also
showed substantial reduction in expression of key markers of
repair Schwann cells, such as c-Jun, Oligl, and Shh, and repair-
supportive factors, such as GDNF and BDNF (Fig. 7F), all of
which are activated in Schwann cells after injury (Shy et al., 1996;
Arthur-Farraj et al., 2012; Fontana et al., 2012; Brushart et al,,
2013).

Western blotting showed that, 8 weeks after cut, STAT3cKO
nerves expressed lower levels of c-Jun and GAP-43 proteins com-
pared with WT (Fig. 7G,H ). Two other proteins that are upregu-
lated after injury, N-Cadherin and p75NTR, were expressed at
levels similar to those seen in 8 week cut WT nerves (Fig. 7I).

Whereas repair Schwann cells were clearly abnormal in 8 week
cut STAT3cKO sciatic nerves, short-term denervated cells in
these mice were relatively normal (Fig. 8). Thus, in 4 week cut
nerves, the morphological changes that were obvious at 8 weeks
were detectable but mild (Fig. 7A). In 1 week cut nerves, c-Jun
mRNA and protein were found at normal levels in STAT3cKO
mice. Expression of N-Cadherin and p75NTR protein was also
similar in WT and STAT3cKO mice (Fig. 8A—C). In these nerves,
the substantial difference in GAP-43 levels seen at 8 weeks was
only emerging (Fig. 7H). In line with these findings, functional
tests of regeneration of the sciatic nerve after crush injury indi-
cated that nerve repair, which in these assays takes place during
the first 2-3 weeks after injury, proceeds at a similar rate in WT
and STAT3cKO mice (Fig. 8D-F).

We conclude that STAT3 has a dual role in injured nerves. It
supports the long-term survival of repair Schwann cells and is
required for the long-term maintenance of the repair Schwann
cell phenotype. In contrast, STAT3 appears relatively unimport-
ant for the initial generation of repair Schwann cells.

Discussion

Because human nerves are long and axons grow slowly, all but
the most distal nerve injuries result in chronic denervation of
Schwann cells that can last for months, even years. In experimen-
tal animals, long-term denervation of the distal stump can be
mimicked by nerve cut combined with deflection of the proximal
stump to prevent reinnervation. Clinical observations and ani-
mal experiments agree that axon-free distal nerve stumps gradu-
ally lose the capacity to support regeneration. Although this is
considered a key reason for regeneration failure in humans, and is
known to involve loss of trophic factor expression and cell death,
the molecular signaling mechanisms underlying this deteriora-
tion remain obscure (Hoke, 2006; Sulaiman and Gordon, 2009;
Jonsson et al., 2013). In the present work, we (1) report that
STATS3 is activated by Tyr705 phosphorylation in Schwann cells
distal to nerve injury in agreement with previous work by others,
(2) show that this activation is sustained in repair Schwann cells
during long-term denervation, and (3) demonstrate that selective
inactivation of Schwann cell STAT3 results not only in a marked
loss of Schwann cells from chronically denervated distal stumps,
but also reduces the capacity of these cells to maintain their
repair-supportive phenotype. This identification of a transcrip-
tional mechanism involved in supporting long-term survival
and differentiation of repair Schwann cells contributes to our
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Figure7. STAT3is required for the maintenance of the repair Schwann cell phenotype. 4, Electron micrographs showing transverse sections of WT and STAT3cKO distal stumps at 4 and 8 weeks
after transection (without regeneration). Note abnormal morphology of the regeneration tracks (bands of Biingner) in 8 week STAT3cKO nerves compared with 8 week WT controls. Right panels,
Higher-power micrographs from STAT3cKO nerves illustrating redundant basal lamina (asterisks) and regeneration tracks containing a single (one arrow) or a few (double arrow) Schwann cell
profiles, enclosed by a basal lamina. Scale bar, 1 m. B—E, Morphometric analysis of 8 week cut nerves. B, The number of Schwann cell profiles per Biingner band is reduced by more than halfin 8
week cut STAT3cKO nerves. n = 3. Data are mean == SEM. ****p <C0.0001 (Mann—Whitney U test). ¢, Schwann profiles in STAT3cKO regeneration tracks lose their roundness and become flatter.
n = 3.Dataare mean == SEM. ****p << 0.0001 (Mann—Whitney Utest). D, The average area of Schwann cell profiles in STAT3cKO nerves is larger than in WT nerves. n = 3. Data are mean = SEM.
*¥¥%¥p < 0.0001 (Mann—Whitney Utest). E, STAT3cKO nerves show sixfold increase in the number of redundant basal laminae compared with WT samples. n = 3. Data are mean = SEM. ***¥*p <
0.0001 (Mann—Whitney Utest). F, qRT-PCR analysis showing significantly lower mRNA expression of the repair Schwann cell genes c-Jun, Olig1, Shh, GDNF, and BDNF, in 8 week cut distal nerves from
STAT3cKO mice compared with WT controls. A pool of 9 WT and STAT3¢KO distal stumps were used for RNA extraction. n = 3. Data are mean == SEM. *p << 0.05 (Mann—Whitney Utest). G, Western
blots showing lower expression of c-Jun in 8 week cut nerves from STAT3cKO mice compared with WT controls. n = 4 for each genotype. Data are mean == SEM. *p < 0.05 (Mann—Whitney U test).
H, Western blots showing lower expression of GAP-43 in 8 week cut nerves from STAT3cKO mice compared with WT controls. Shown also are the relatively low GAP-43 levels 1 week after cutin both
genotypes. Graphs represent the densitometric analysis of Western blots relative to WT uncut. n = 4 for each genotype. Data are mean == SEM. ***p < 0.001 (two-way ANOVA). I, Western blots
showing similar levels of p75NTR and N-Cadherin in 8 week cut nerves of WT and STAT3¢cKO mice. n = 4 for each genotype. Graphs represent the densitometric analysis of Western blots relative to
WT uncut. Data are mean = SEM.
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similar. RNA was extracted from T week cut nerves using a pool of 2 distal stumps from STAT3¢KO and WT mice for each experiment. n = 4. Data are mean = SEM. B, Western blots showing similar
¢-Jun protein levelsin Tweek cut WT and STAT3cKO nerves. Graphs represent the densitometric analysis of Western blots relative to WT uncut. n = 4 mice for each genotype. Data are mean = SEM.
C, Western blots showing no differences in the expression of N-Cadherin and p75NTR proteins in WT and STAT3cKO nerves 1 week after cut. Graphs represent the densitometric analysis of Western
blots relative to WT uncut. n = 4 mice for each genotype. Data are mean == SEM. D, Walking track analysis to quantify sensory-motor function following sciatic nerve injury. Sciatic function index
(Inserra et al., 1998), which assesses nerve-mediated function of the hindlimb by measuring toe spread and print length of hindpaw footprints, showed similar values for WT and STAT3cKO mice
before and, significantly, after nerve injury. Right, Representative examples of footprints from uninjured mice and at different times after injury as indicated. Note the increased print length and
decreased toe spread after peripheral nerve lesion in both mouse lines. ui, Uninjured. n = 6. Data are mean == SEM. E, Toe spread reflex measurements show no significant differences in recovery
of motor function between WT and STAT3cKO mice. n = 6. Data are mean == SEM. F, Toe pinch test for sensory function shows no significant differences between WT and STAT3¢KO mice in the
percentage of mice responding to pinching distal parts of toes 3, 4, and 5 after sciatic nerve lesion. n = 6. Data are mean = SEM.
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understanding of how these important cells are maintained, and
will help identify in molecular terms the failures that lead to their
deterioration.

The present data indicate that STAT3 regulates Schwann cell
survival, a function likely to be particularly significant for the
long-term survival of Schwann cells in denervated distal stumps.
This is in line with the role of STAT3 in other systems (e.g., Bader
et al., 2014). We find that absence of STAT3 results in increased
Schwann cell death in four different situations. First, this is seen
in the STAT3cKO Schwann cells of chronically denervated distal
nerves. Second, increased death is also seen STAT3cKO nerves 3 d
after injury, although in this case relatively few Schwann cells die,
and Schwann cell numbers are not significantly different between
STAT3 mutants and WT controls (Grinspan et al., 1996; Yang et
al., 2008; Ahmad et al., 2015). Third, STAT3 inactivation results
in reduced response to autocrine survival signals in neonatal cul-
tured Schwann cells. Fourth, STAT3 knock-out cells die more
readily in response to UV irradiation.

STATS3 signaling does not appear to affect developmental
death of Schwann cells, where we have previously shown that
TGEFp signaling plays a role (D’Antonio et al., 2006), and it is
not involved in Schwann cell precursor survival controlled by
NRG-1. Although STAT3 signaling promotes proliferation in
some systems (e.g., Debidda etal., 2005), we do not find this effect
in Schwann cells. Together, our results suggest that the significant
loss of repair Schwann cells in chronically denervated distal
stumps of STAT3cKO mice is caused by a defective autocrine
support, a survival mechanism that we and others have suggested
to be central for preventing death of Schwann cells without ax-
onal contact (Dowsing et al., 1999; Meier et al., 1999).

Using qRT-PCR analysis of the distal stump 8 weeks after
nerve cut, we find that STAT3cKO mice show decreased expres-
sion of key markers of repair Schwann cells compared with levels
seen in WT mice at the same time points. This includes c-Jun,
Oligl, and Shh and of neurotrophic factors, such as GDNF and
BDNF known to promote axonal regeneration. With respect to
protein expression, GAP-43 and c-Jun levels were also lower,
whereas N-Cadherin and p75NTR levels were the same in mutant
and control distal stumps. This is significant because p75NTR
promotes cell death in Schwann cells after nerve injury (Ferriand
Bisby, 1999) but cannot be a defining factor in the increased
death seen in STAT3 mutant distal stumps.

The importance of STAT3 signaling in the Schwann cells of
long-term denervated nerves is also seen at the morphological
level. In STAT3cKO mice, the shape of repair cells and structure
of the regeneration tracks they form (bands of Blingner) is clearly
altered, although not to the same extent as that seen in Schwann
cell c-Jun null nerves (Parkinson et al., 2008; Arthur-Farraj et al.,
2012). The number of Schwann cell profiles per Biingner band is
also lower. This is likely to reflect the increased cell death in the
mutants, but changes in cell shape could also contribute to this
effect.

Elevation in STAT3 expression in injured nerves has been
reported previously. Rapid activation of STAT3 signaling is im-
plicated in the retrograde signaling from severed axons to the
neuronal soma and in the initiation of axonal growth (Bareyre et
al., 2011; Ben-Yaakov et al., 2012; Chandran et al., 2016). An
increase in STAT3 signaling is also seen in Schwann cells after
peripheral nerve injury. Sheu et al. (2000) used Western blotting
to show activation of STAT3 Ser 727 in the proximal nerve stump
from 30 min to 16 d after injury, in agreement with results above
that show strong activation of STAT3 in axons after sciatic nerve
transection. More modest activation was seen in the distal stump
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3 and 24 h after nerve transection, most likely in Schwann cells.
This finding was supported by Lee et al. (2009b) who showed
activation of Ser727 in the sciatic nerve distal stump between 6 h
and 5 d after crush injury and in cultured Schwann cells. In
Schwann cells, IL-6, acting via gp130, and NRG-1, acting via
ErbB2/3, can both induce STAT3 activation on Ser727 and
Tyr705. IL-6, acting via STATS3, is also required for early induc-
tion of GFAP after nerve injury (Lee et al., 2009a, b).

We have shown previously, using immunohistochemistry,
that GAP-43 levels in Schwann cells in the sciatic nerve rise slowly
in the weeks after nerve injury (Curtis et al., 1992), although a
rapid rise in GAP-43 levels is seen in terminal Schwann cells of the
neuromuscular junction (Woolfetal., 1992). This is confirmed in
the present study, which shows that in WT nerves protein levels
of GAP-43 are higher at 8 weeks than at 1 week after nerve cut. In
STAT3cKO nerves, however, levels of GAP-43 are substantially
lower than those in WT, both at 1 week and, more strikingly, at 8
weeks after cut, suggesting that in Schwann cells STAT3 regulates
GAP-43 levels. This is in line with that seen in other cell types,
including neurons and astrocytes. In neurons, GAP-43 elevation
after conditioning lesion depends on STAT3 and is promoted by
the cytokine IL-6, which is also expressed at elevated levels in
denervated Schwann cells (Hung et al., 2016). In astrocytes,
STAT?3 activation is involved in the activation of GAP-43 that
occurs during astrogliosis (Cafferty et al., 2004; Qiu et al., 2005).

The prevention of the phenotypic deterioration and death of
chronically denervated repair Schwann cells are two important
goals in the effort to improve the outcomes after nerve injury. Itis
encouraging in this context that there is evidence, albeit limited,
that the loss of the repair-supportive phenotype may be revers-
ible. In rat Schwann cells, a reduction on the expression of c-erbB
receptors and p75NTR due to long-term denervation can be re-
stored in vitro by exposing the cells to NRG-1 (Li et al., 1998).
When chronically denervated cells that have reduced growth-
supportive capacity are treated in vitro with TGFp, a factor ex-
pressed by macrophages and denervated Schwann cells, the
regenerative support provided by these cells increases when they
are tested in an in vivo grafting experiment (Sulaiman and Gor-
don, 2002). It has also been shown that engineered expression in
Schwann cells of genes encoding particular growth associated
factors can promote axon growth in vivo (Hoyng et al., 2014).

Although individual proteins will play a prominent role (Fon-
tana etal., 2012), the exceptional capacity of repair Schwann cells
to support regeneration is likely due to the integrated action of
many components, including cell surface and secreted factors
and morphology. The identification of pathways and signals, in-
cluding transcription factors which determine this repair pheno-
type, opens the way toward pharmacological interventions that
coordinately upregulate the repair program and therefore pro-
vide a favorable way of promoting nerve repair. c-Jun is one such
signal because the striking elevation of Schwann cell c-Jun after
injury acts as a global amplifier of the repair phenotype, without
which regeneration is seriously curtailed (Arthur-Farraj et al,,
2012). The question of whether c-Jun is also involved in the log-
term maintenance of repair Schwann cells is under investigation.
The present work identifies STAT3 as the second transcription
factor that regulates the repair cell. Although STAT3 is less in-
volved in the initial reprogramming of myelin and Remak cells to
repair cells, it has a significant role in long-term denervated distal
stumps, where STAT3 maintains the differentiation state of re-
pair Schwann cells, and supports their survival. In future work, it
will be of interest to explore this pathway and related signaling
molecules for their potential to promote regeneration.
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