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Autophagy is the major catabolic pathway involved in removing and recycling damaged
macromolecules and organelles and several evidences suggest that dysfunctions of this
pathway contribute to the onset and progression of central and peripheral
neurodegenerative diseases. Diabetic retinopathy (DR) is a serious complication of
diabetes mellitus representing the main preventable cause of acquired blindness
worldwide. DR has traditionally been considered as a microvascular disease, however
this concept has evolved and neurodegeneration and neuroinflammation have emerged as
important determinants in the pathogenesis and evolution of the retinal pathology. Here we
review the role of autophagy in experimental models of DR and explore the potential of this
pathway as a target for alternative therapeutic approaches.
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INTRODUCTION

Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is the main
cause of legal blindness in working-age population (20–65 years old) (Ting et al., 2016; Simo-Servat
et al., 2019). DR is prompted by hyperglycemia, which causes an increase of oxidative stress leading
to an adaptive inflammatory response in microvasculature and neuroretinal tissue (Saxena et al.,
2016; Al-Kharashi, 2018). The disease has long been considered as a microvascular disease, since loss
of pericytes, damage of vascular endothelial cells and breakdown of blood-retinal barrier (BRB) are
typical hallmarks of the early stage of the pathology (Beltramo and Porta, 2013; Mrugacz et al., 2021).
However, recent and intensive research identified neurodegeneration and neuroinflammation as
processes involved in the pathogenesis and evolution of DR (Kadlubowska et al., 2016). Furthermore,
experimental and clinical studies have shown that neuronal apoptosis and reactive gliosis, with
thinning of the nerve fiber layer often precede the typical vascular alterations (Barber et al., 2011; Gu
et al., 2019). Importantly, DME (diabetic macular edema), which is due to an abnormal intraretinal
fluid collection in the macular area, is the most common cause of vision loss in patients with DR
(Romero-Aroca et al., 2016). Experimental and clinical studies have highlighted the role of
inflammation in DME and OCT-imaging biomarkers of retinal inflammation have been
identified (Ceravolo et al., 2020).

The mechanisms underlying the neurodegenerative and neuroinflammatory processes occurring
in DR are common to other central and retinal diseases, like glaucoma and retinitis pigmentosa
(Baumgartner, 2000; Barber, 2003; Gupta and Yücel, 2007). These mechanisms include oxidative
stress and free radical formation, advanced glycation end products (AGEs) production, glutamate
excitotoxicity, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophin
signals and autophagy (Dong et al., 2009; Jellinger, 2010; Rosa et al., 2016).
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Autophagy is a major lysosomal pathway for the turnover of
cytoplasmic organelles and long-lived proteins and, besides its
homeostatic functions, it also acts as an adaptive response to
cellular stresses (Mizushima, 2007). Dysfunctions of this process
have been identified as recurrent events in neurodegenerative
disorders (Frake et al., 2015) and, more recently, experimental
and clinical data have shown that autophagy modulation also
occurs in experimental models of DR and in the retina of diabetic
patients, with or without retinopathy (Lopes de Faria et al., 2016;
Dehdashtian et al., 2018).

However, the functional role of autophagy in DR remains
unclear. Here we discuss the available literature on the role of
autophagy in experimental models of DR and explore the
potential of this pathway as a target for alternative therapeutic
approaches.

DIABETIC RETINOPATHY: A
NEURODEGENERATIVE RETINAL DISEASE

DR is a social disease with considerable costs, whose global
incidence is strongly increasing due to the improved life
expectancy and the exponential spread of diabetes (Flaxman
et al., 2017). Indeed in 2015, 415 million people were affected
by diabetes globally and this number is projected to reach
642 million by 2040 (Ogurtsova et al., 2017). In addition, it
has been estimated that more than a third of people with
diabetes worldwide have some form of DR and that nearly
one in 10 develops forms of DR or complications that are
particularly threatening for the sight such as proliferative DR
or diabetic macular edema (Yau et al., 2012).

The diagnosis of DR is made on the bases of typical vascular
abnormalities following the clinical examination of ocular
fundus; it is possible to distinguish two stages: the non-
proliferative DR (NPDR) and the proliferative DR (PDR).
NPDR, the earliest form of DR, is divided into three stages of
increasing severity, namely: 1) the mild DR characterized by rare
microaneurysms and hemorrhages; 2) the moderate DR
characterized by an increase in the aforementioned lesions
associated with hard exudates; 3) the severe or pre-
proliferating DR characterized by the coexistence of numerous
microaneurysms, retinal hemorrhages, cottony nodules and
venous caliber anomalies (Singh et al., 2008; Karst et al.,
2018). At this stage, diabetic subjects can sometimes be
asymptomatic for long time. On the other hand, in PDR,
characterized by the appearance of epiretinal or epi-papillary
new vessels that can sometimes invade the vitreous, patients may
present a sudden vision impairment due to vitreous hemorrhages
and/or tractional retinal detachment (Gotzaridis et al., 2001).
Both forms of DR can be further complicated by macular
edematous (DME) and/or ischemic damage, which are the
main causes of severe vision impairment (Wilkinson et al.,
2003; Cheung et al., 2010; Wang and Lo, 2018).

The onset of typical DR vascular changes is determined by
prolonged hyperglycemic episodes resulting from suboptimal
glycemic control in patients with type I or II diabetes mellitus.
Elevated blood glucose levels result in aberrant regulation of a

number of biochemical pathways, eventually leading to
superoxide production and overload of oxidative stress in
retinal tissues. Prolonged hyperglycemia has been shown to
cause increased flow of the polyol pathway (Gabbay et al.,
1966; Lee and Chung, 1999), increased formation of AGEs
(Shinohara et al., 1998; Stitt, 2010), abnormal activation of
signaling cascades like protein kinase C (PKC) pathway (Koya
and King, 1998; Idris et al., 2001), increase in the flux of the
hexosamine pathway (Kolm-Litty et al., 1998; Du et al., 2000) and
reactive oxygen species (ROS) (Brownlee, 2005). All these
changes lead to an intensification in oxidative stress and an
inflammatory attack on the retina with consequent structural
and functional changes (Kowluru and Chan, 2007; Hammes,
2018) (Figure 1).

The first responses, considered as metabolic self-regulation to
increase retinal metabolism, are vessel dilation and changes in
blood flow (Bek, 2017). Another hallmark of early DR is the loss
of pericytes which has been demonstrated in both in vitro and in
vivo studies (Romeo et al., 2002). Since pericytes provide
structural support to capillaries, their loss leads to the
formation of microaneurysms, which represents the first
clinical characteristic sign of DR (Ejaz et al., 2008). Other
pathogenetic processes found during DR include endothelial
cells apoptosis and thickening of the basement membrane,
which overall contribute to compromise the BRB integrity
(Beltramo and Porta, 2013). Finally, the loss of pericytes and
endothelial cells causes capillaries occlusion and consequent
ischemia. Retinal ischemia, through the activation of hypoxia-
inducible factor-1 (HIF-1) (Huang et al., 2015), determines an
overproduction of vascular endothelial growth factor (VEGF), a
key factor involved in both the progression of retinopathy
towards PDR, and in DME development through
phosphorylation of tight junction proteins such as occludin
and zonula occludens-1 (Antonetti et al., 1999). Furthermore,
VEGF, by the activation of the mitogen activated protein (MAP),
stimulates the proliferation of endothelial cells, resulting in new
vessels development (Rousseau et al., 1997). The key role of
VEGF in DR has been demonstrated in multiple studies showing
its increased expression in diabetic mice retina (Li et al., 2010;
Rossi et al., 2016), as well as in the vitreous of patients with DME
and PDR (Adamis et al., 1994). In light of these evidence, the
intravitreal injection of anti-VEGF agents is currently the gold
standard for both early and advanced stages DR therapy (Sun and
Jampol, 2019). Other therapeutic tools aimed at managing the
microvascular complications of DR are steroid intravitreal
injection, laser photocoagulation and vitreous surgery (Stitt
et al., 2016; Wang and Lo, 2018; Sun and Jampol, 2019).
However, although these treatments demonstrate clinical
benefits, no tools are effective in completely blocking clinical
progression or reversing retinal damage. In fact, such therapies
are often used in the more advanced stages of DR, characterized
by a high risk of irreversible and severe visual impairment.

Furthermore, in many cases frequent administration of
intravitreal agents is necessary with a consequent increased
risk of side effects related to the injection, not to mention the
high costs associated with frequent eye examinations (Donnelly
et al., 2004; Gupta et al., 2013).
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For many years, microangiopathic lesions were considered the
exclusive cause of DR, leading to the visual loss in diabetic
patients. However, the concept of DR as a microvascular
disease has evolved: nowadays, it is considered a more
complex diabetic complication, in which neurodegeneration
has emerged as an important factor, playing a significant role
in DR pathogenesis and evolution (Ola and Alhomida, 2014;
Jindal, 2015). Indeed, the American Diabetes Association (ADA)
recently defined DR as a diabetes neurovascular complication that
involves a progressive disruption of the interdependence between
multiple cell types in the retina (Solomon et al., 2017).

The hallmarks of diabetes-induced neuroglial degeneration,
which include reactive gliosis, impaired retinal neuronal function
and apoptosis of neural cells, have been described before typical
microangiopathy in multiple experimental models of DR and also
in the retina of diabetic donors (Barber et al., 1998; Lieth et al.,
1998; Lung et al., 2012; Howell et al., 2013; Jindal, 2015).

The first retinal neurons affected are retinal ganglion cells
(RGCs) and amacrine cells, however photoreceptors also show an
increased apoptosis (Lynch and Abràmoff, 2017). The structural
consequence of this early death is a reduction in the ganglion cell
layer (GCL) thinning and corresponding loss of nerve fiber layer
(NFL) thickness, detected by optical coherence tomography
(OCT) (van Dijk et al., 2010; Sohn et al., 2016). Moreover,
functional studies performed with multifocal
electroretinography (mfERG) have shown a delayed implicit
time P1 and a reduction in the trace’s amplitude as a
consequence of the early neurodegenerative process (Simão
et al., 2017). These structural and functional alterations lead to

reduced contrast sensitivity, delayed dark adaptation and altered
visual fields, resulting overall in reduced vision-related quality of
life, despite the absence of clinically detectable vascular anomalies
(Wolff et al., 2015; Trento et al., 2017).

Müller cells and retinal astrocytes play an important role in the
damage to retinal neurons and in linking the neurodegenerative
process with vascular disease. Indeed, gliosis is associated with
higher expression of VEGF and hyper-activation of pro-
inflammatory pathways, with consequent overexpression of pro-
inflammatory cytokines and dysfunction of the BRB (Bringmann
and Wiedemann, 2012). Diabetes-induced subclinical
inflammation is further amplified by the activation of immune
cells resident in the retina, namely microglial cells. This microglial
activation is accompanied by a phenotypic shift from the anti-
inflammatory (M2) towards a pro-inflammatory amoeboid (M1)
form (Coorey et al., 2012; Arroba and Valverde Á, 2017). This shift
results in transcriptional changesmediated by nuclear factor-kappa
B (NF-κB) and extracellular signaling mechanisms of the signal-
regulated kinase (ERK) responsible for the release or activation of
pro-inflammatory and neurotoxic molecules (i.e. cytokines,
chemokines, glutamate) which contributes to the disruption of
BRB and neuronal death (Altmann and Schmidt, 2018).

AUTOPHAGY: MECHANISMS AND
FUNCTIONS

Autophagy is a highly conserved catabolic pathway by which cells
remove misfolded or aggregated proteins and damaged organelles

FIGURE 1 | Overview of the pathogenic mechanisms leading to diabetic retinopathy.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6952673

Adornetto et al. Autophagy and Diabetic Retinopathy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Klionsky et al., 2021). This process regulates essential biological
functions such as cell survival, cell metabolism, development,
aging, and immunity. It also represents an adaptive response to
different forms of stresses, like nutrient deprivation, growth
factor depletion, infection, hypoxia, ischemia/reperfusion
injury, oxidative stress, endoplasmic reticulum (ER) stress and
mitochondrial damage (Glick et al., 2010; Dikic and Elazar, 2018).

In mammalian cells, there are three primary types of
autophagy: microautophagy, macroautophagy, and chaperone-
mediated autophagy (CMA) (Yang and Klionsky, 2010).
Furthermore, different selective forms of autophagy, such as
mitophagy, ribophagy or aggrephagy, have also been identified
(Menzies et al., 2017).

In microautophagy, cytosolic components are directly taken
up by lysosomes through the invagination of their membrane (Li
et al., 2012). CMA, involves the formation of a complex between
target proteins (identified by bearing a CMA targeting motif) and
chaperones of the Hsp70 family; these complexes are recognized
by the lysosome-associated membrane protein type-2A (LAMP-
2A) at the lysosomal membrane where the substrate proteins
unfold and translocate in the lumen for degradation by lysosomal
hydrolase (Itakura and Mizushima, 2010).

Macroautophagy (hereafter referred to as autophagy) involves
the formation of a cup-shaped membrane structure, the
phagophore, that elongates and closes around the cytosolic
cargo; the resulted double-membrane vesicle is called
autophagosome and it is selectively associated with this
pathway (Yang and Klionsky, 2010). Autophagosomes are
transported, along the microtubules, to the perinuclear region
where they fuse with lysosomes; here the autophagic content is
degraded and released for recycling into the cytoplasm (Parzych
and Klionsky, 2014). Autophagy and its regulatory mechanisms
are evolutionarily conserved among eukaryotic cells even if the
level of complexity of the process may differ (Yang and Klionsky,
2009).

Autophagosome biogenesis is orchestrated by the sequential
action of autophagy-related (Atg) proteins; most of them were
originally identified in yeast but have their homologs in
mammalian cells (Mizushima et al., 2011). The ULK1
complex, formed by the serine/threonine protein kinase Atg1/
(unc-51-like kinase 1), FIP200 (focal adhesion kinase family
interacting protein of 200 kDa), Atg13 and Atg101 is involved
in the initiation of autophagy (Hara et al., 2008). Upon autophagy
induction, the mammalian target of rapamycin (mTOR), one of
the main negative regulators of the process, is inactivated
resulting in upregulation of ULK1 kinase activity and
consequent phosphorylation of Atg13 and FIP200 (Noda,
2017). ULK1 complex gathers to specific ER region engaged in
autophagosome formation (Itakura and Mizushima, 2010) and
regulates the recruitment of a second kinase complex, the
vacuolar protein sorting 34 (Vps34) complex formed by
Beclin-1, AMBRA, Vps34, Vps15 and Atg14 (Glick et al.,
2010). Vps34 participates in various membrane-sorting
processes but it is selectively involved in autophagy when
complexed to Beclin-1 (Backer, 2008). At variance with the
other PI3-kinases, Vps34 only uses phosphatidylinositol (PI)
as substrate to generate phosphatidyl inositol triphosphate

(PI3P), which is therefore essential for phagophore nucleation,
elongation and recruitment of other Atg proteins (Xie and
Klionsky, 2007). The interaction of Beclin-1 with Vps34
promotes its catalytic activity and increases PI3P levels (Glick
et al., 2010).

Following the initiation step, the elongation process is
undertaken by two ubiquitin like proteins: Atg12 and Atg8/
LC3. In this system, the E1-like enzyme Atg7 and E2-like
enzyme Atg10 catalyze the formation of the Atg12-Atg5
complex that allows the formation of the Atg12-Atg5-Atg16
(L1) complex. The latter is crucial for autophagosome
formation and for efficient promotion of the microtubule-
associated protein light chain 3 (LC3) lipidation (Otomo et al.,
2013).

Several experimental evidences demonstrate that LC3 is
involved in the selective identification of autophagy substrates
(Yoshii and Mizushima, 2017; Mizushima and Murphy, 2020).
Indeed, LC3-II interacts with the constitutively expressed adaptor
molecule p62 (or sequestosome-1, SQSTM1) that contains both a
ubiquitin binding domain and a LC3-interacting (LIR) domain to
deliver sequestered proteins to the autophagosomes (Zhang et al.,
2015).

The fusion of the autophagosomal membrane with lysosome
results in the release of a single-membrane autophagic body into
the lysosomal lumen, which is followed by the degradation of the
autophagic cargo by the lysosomal acid proteases (Dikic and
Elazar, 2018).

Cellular homeostasis depends on the balance between the
production and removal of macromolecules and organelles. In
this context, basal autophagy activity plays a key role in the
maintenance of cellular integrity (Chun and Kim, 2018). As a
quality control mechanism, the process is fundamental for every
cell, but it is particularly important in neurons. Indeed, neuronal
cells are metabolically highly active and, being post mitotic cells,
cannot dilute damaged or aged organelles and misfolded proteins
by cell division (Mariño et al., 2011; Russo et al., 2013). Therefore,
not surprisingly, accumulation of these altered components, due
to autophagy inefficiency, has been associated with neurotoxicity
and neurodegeneration.

Autophagy disruption or insufficiency has been reported in a
number of different ocular diseases and pathological conditions
like: retinal injury (Besirli et al., 2011), retinal degenerations
(Punzo et al., 2009; Rodríguez-Muela et al., 2015), light-
induced stress (Kunchithapautham et al., 2011; Chen et al.,
2014), hyperglycemia (Lopes de Faria et al., 2016) and
hypoglycemia (Zhou et al., 2015).

In this context, autophagy is becoming an attractive target to
treat neurodegenerative disorders (Zhu et al., 2013), including the
ones affecting the retina (Russo et al., 2013).

THE ROLE OF AUTOPHAGY IN ANIMAL
MODELS OF DIABETIC RETINOPATHY

Several groups have reported a modulation of Atg proteins in
animal models of TD1 and TD2 diabetes (Table 1). In C57BL/
6J mice, induction of type1 (T1D) diabetes by administration of
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streptozotocin (STZ) was associated with increased LC3-II
immunoreactivity in the outer plexiform layer (OPL) and
upregulation of the Atg related proteins, Beclin-1 and Atg5
(Piano et al., 2016). These changes occurred within the same
time frame of outer retinal damage and might take part to the
process of photoreceptors loss in the early phase of DR, before
the appearance of evident signs of vascular damage (Piano et al.,
2016). Accordingly, upregulation of Beclin-1, LC3-II, Atg12-
Atg5 and Atg3 was reported in STZ-diabetic rats and Ins2Akita

mice, a spontaneous T1D mouse model (Wang et al., 2017). In
this study knockdown of Hist1h1c, a gene that encoded for
Histone H1.2 protein, significantly reduced both basal and
high-glucose-induced autophagy, attenuated inflammation
and cell toxicity. Conversely, adeno-associated virus (AAV)-
mediated histone HIST1H1C overexpression led to increased
autophagy, glial activation and neuronal loss which are
pathological changes identified in the early stages of DR

(Wang et al., 2017). These findings suggest that over-
stimulation of autophagy is associated with increased retinal
cell death and takes part to the progression of DR through
advanced stages.

A very recent study by Madrakhimov and colleagues
demonstrated that long-term hyperglycemia causes mTOR
inhibition leading to autophagy dysregulation (Madrakhimov
et al., 2021). Indeed, inhibition of the mTORC1 pathway in
STZ-induced diabetic mice was associated with upregulation of
Beclin-1 in the entire inner retina and ATG9A in NeuN
(Neuronal Nuclei) positive RGCs. These changes were
accompanied with signs of neuronal cell damage, such as
activation of cleaved caspase three and decrease of the total
number of cells in the GCL. Interestingly, blockade of
autophagy by mTOR activator-MHY1485 injections in diabetic
mice resulted in a prominent rescue of neuronal cells
(Madrakhimov et al., 2021).

TABLE 1 | Autophagy modulation in animal models of diabetic retinopathy.

Animal Models DR model Autophagy markers References

Mice
C57BL/6J 150 mg/kg STZ (single injection) ↑ LC3-I Piano et al. (2016)

↑ Atg5
↑ Beclin-1

Ins2+/+ Akita (male) ↑ Beclin-1 Wang et al. (2017)
↑ LC3-II
↑ Atg12-Atg5
↑ Atg3

C57BL/6J (male, 6 weeks old) 40 mg/kg STZ (5 days treatment) ↓ Atg9 Qi et al. (2020)
↓ Atg7
↓ LC3
↓ Beclin-1

C57BL/KsJ-db/db (male, 8-12-16-18-25 weeks old) and -db/m
(male, 8 weeks old)

Fluctuating modulation of
LC3-II

Fu et al. (2020)

C57BL/6J (male, 6 weeks old) 50 mg/kg/d STZ ↓ Beclin-1 Wang et al. (2020)
↓ Atg7
↓ p62
↓ LC3-II

C57BL/6J (male, 8 weeks old) 150 mg/kg STZ (single injection) ↑ Beclin-1 Madrakhimov et al.
(2021)↑ ATG9A

db/db mice (male, 20 weeks old) ↓ LC3-II Luo et al. (2021)
↓ Beclin-1
↓ Atg5
↑ p62

Rats
Sprague-Dawley (male, 6–8 weeks old) High sugar/fat diet + 40 mg/kg STZ (single

injection)
↑ LC3-II Cai et al. (2017)

Sprague-Dawley (male) STZ injection ↑ Beclin-1 Wang et al. (2017)
↑ LC3-II
↑ Atg12-Atg5
↑ Atg3

Sprague-Dawley (male, 2 months old) 35 mg/kg STZ (single injection) ↓ LC3-II Shruthi et al. (2017)
Sprague-Dawley (male, 7–8 weeks old) 60 mg/kg STZ (single injection) ↑ Beclin-1 Park et al. (2018)

↑ LC3-II/LC3-I
↑ ph-AMPK
↓ ph-mTOR

Sprague-Dawley (male, 6–8 weeks old) 40 mg/kg STZ (single injection) ↓ LC3-II Mao et al. (2019)
↓ LC3-II/LC3-I

BBZDR/Wor (male, 5 months old) BBZDR/Wor: type 2 diabetic model ↓ Atg9 Qi et al. (2020)
↓ Atg7
↓ LC3
↓ Beclin-1

(DR: diabetic retinopathy; STZ: streptozotocin).
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Increased LC3-II expression was also reported by Cai and
colleagues (2017) in male rats fed with sugar, high fat diet
followed by STZ injection; in this model treatment with
Glucagon-like peptide-1 (GLP-1), reduced oxidative stress and
reverted the upregulation of LC3-II expression (Cai et al., 2017).

At variance with the previous reported results, in the retina of
STZ-induced diabetic mice a decrease of Beclin-1, Atg7, p62 and
LC3-II expression was reported as compared to control group;
treatment with the heparanase inhibitor PG545 promoted
autophagy and inhibited the secretion of pro-inflammatory
cytokines alleviating diabetic retinopathy (Wang et al.,
2020).Similarly, in STZ-induced diabetic C57BL/6J mice, as
well as in Bio-Breeding Zucker diabetic (BBZDR/Wor) rats
that spontaneously develop a T2D, Qi and colleagues reported
a dramatic reduction of Atg7, Atg9, LC3 and Beclin-1 in diabetic
retina as compared to controls (Qi et al., 2020).

Interestingly, in this same study the authors showed a diurnal
rhythmicity of Atg proteins levels. Under basal conditions Atg9
and LC3 expression showed a biphasic diurnal cycle with two
peaks of highest and lowest levels, respectively, while Atg7 and
Beclin-1 had a monophasic 24 h cycle. In the retinas from both
T1D and T2D mice a significant impairment of Atg proteins
diurnal rhythmicity was reported (Qi et al., 2020). This suggests
that in diabetic retina the molecular circuit regulating basal
autophagy, in terms of intensity and duration, might be altered.

Suppression of LC3-II expression was also reported by Mao
and colleagues in STZ-induced diabetic rats; the reduced level of
LC3-II correlated with a significant upregulation of a specific
microRNA (miRNA), miR-204-5p. Indeed, anti-miR-204-5p
treatment enhanced the expression of LC3-II and increased
LC3-II/LC3-I ratio, while miR-204-5p mimic treatment was
associated with opposite effects thus suggesting that in DR
miR-204-5p is responsible for the inhibition of the autophagy
pathway (Mao et al., 2019).

The modulation of autophagy in diabetic models may vary
depending on the progression of the disease and therefore on the
time points analyzed. In RGCs of C57BL/KsJ-db/db mouse, a
rodent model of spontaneous diabetes, Fu and co-workers (2020)
observed a fluctuating modulation of LC3-II protein levels
depending on the age of diabetic mice without identifying a
clear trend (Fu et al., 2020). In db/db mice Luo and colleagues
reported a downregulation of pro-autophagy proteins like LC3-II,
Beclin-1 and Atg5 and a significant upregulation of p62 (Luo
et al., 2021). More interestingly, in STZ-induced diabetic rats
Shruthi and collaborators (2017) observed a biphasic modulation
of LC3-II retinal expression characterized by an increase in
2 months old followed by a significant decrease in 4 months
old diabetic rats when compared to control animals. The
initial upregulation of the pathway could be part of the
adaptive response to the damage induced by hyperglycemia.
On the other hand, the later impairment of autophagy might
be the consequence of the system overload due to the prolonged
diabetic-related damage and contribute to the apoptotic retinal
cell death (Shruthi et al., 2017).

A recent study by Park and collaborators (2018) focused on
the role of autophagy on RGC survival depending on the type of
triggering injury (Park et al., 2018). Autophagy was upregulated

in both diabetic and glaucomatous retinas, however while
autophagy inhibition, by 3-methyladenine (3-MA), an
inhibitor of phosphatidylinositol 3-kinases (PI3K), decreased
the apoptosis of RGCs in glaucomatous retina, it failed in
rescuing RGCs in diabetic retina. The work by Park and
collaborators suggests that, depending on the type of injury
and the intracellular pathway engaged for cell death,
autophagy could either promote RGC survival or death (Park
et al., 2018).

Interestingly in a drosophila model of hyperglycemia
developed by raising adult fruit flies under high-sucrose
regimens, signs of autophagy deregulation, such as significant
and progressive increase of LC3 and p62 staining, with
accumulation of autophagosomes were observed in eye
sections (Catalani et al., 2021).

In murine retinal explant, exposure to HG was associated with
reduced LC3-II levels and upregulation of the cargo-protein p62.
Treatment with octreotide, an analogue of somatostatin,
prevented the autophagy changes induced by HG, and exerted
anti-apoptotic effects. Co-treatment with the autophagy inhibitor
chloroquine (CQ) reverted the neuroprotective effects of
octreotide suggesting that a cross talk between autophagy and
apoptosis occurs in the injured retina (Amato et al., 2018).

THE ROLE OF AUTOPHAGY IN IN VITRO
MODELS OF DIABETIC RETINOPATHY

Retinal lesions observed over the course of DR are initially
characterized by pericyte cell death, which generates ischemia
and promotes the extravasation of plasma constituents such as
low-density lipoproteins (LDLs). This generates the damage of
RPE and activation of microglial andMüller cells (Fu et al., 2012).
On the other hand, DR induced neuronal dysfunction, with RGCs
death, apoptosis of amacrine cells in INL, loss of synapses and
dendrites and alteration of synaptic activity (Ozcan et al., 2006;
Oshitari et al., 2011). It is clear that a large number of cellular
elements in the retina are affected by DR (Yang et al., 2020) and
therefore, several in vitro studies have focused on the modulation
of autophagy in the different cell types exposed to diabetes-related
insults (Table 2).

Retinal Pigment Epithelial Cells
Exposure of human immortalized RPE cell, ARPE-19, to high
glucose (HG) induced a significant upregulation of autophagy
flux. Compared to cells cultured under normal glucose condition,
cultures exposed to HG showed increased autophagosome
formation, upregulation and changes in the expression pattern
of LC3-II and reduction of p62 levels. HG-induced autophagy
was mainly regulated through the ROS-mediated ER stress and
independent of mTOR signaling pathway (Yao et al., 2014).
Similarly, in the same cell line exposed to HG, Shi and
colleagues (2015), showed activation of autophagy by reporting
an increase of autophagosome number and upregulation of LC3-
II protein expression. Under these experimental conditions,
inhibition of autophagy obtained by pre-treatment with 3-MA,
induced accumulation of damaged-mitochondria, increased the
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activity of interleukin-1β (IL-1β) and NLRP3 (a NOD-like
receptor family pyrin domain containing three inflammasome
responsible for the processing of pro-IL1β to the active form of
IL-1β) and reduced cell survival (Shi et al., 2015). Altogether,
these experimental observations would suggest that in RPE cells
exposed to HG stress induction of autophagy represents a
cytoprotective response.

Accordingly, treatment with fenofibrate, a peroxisome
proliferator-activated receptor alpha (PPARα) agonist by
preventing ER-stress and inducing autophagy, exhibited a
protective effect in RPE cells exposed to hyperglycemia
(25 mM, 18 days) and hypoxia (1% oxygen, for 6 h or 24 h),
two components of the diabetic milieu (Miranda et al., 2012;
Lazzara et al., 2020).

More recently, Kiamehr and co-workers (2019) using human
induced pluripotent stem-cell-derived retinal pigment epithelium
(hiPSC-RPE) cell lines, obtained from T2D and healthy control
patients, evaluated the effects of hyperglycemia, in the presence of
absence of added insulin, on cellular functionality and autophagy
(Kiamehr et al., 2019). The authors did not detect any differences
in LC3-II expression between diabetic or healthy control hiPSC-
RPEs, whereas they observed a significant p62 accumulation in
T2D hiPSC-RPE as compared to healthy control (Kiamehr et al.,
2019). This change in p62 expression might be unrelated to the
autophagy pathway, since p62 is involved in several other
functions; one possible hypothesis is that this upregulation of
p62 is linked to the antioxidative NRF-2ARE pathway (nuclear
factor erythroid-2 related factor/antioxidant response elements)

evoked by the energy depletion in diabetic cells (Jain et al., 2010;
Felszeghy et al., 2019).

In addition to hyperglycemia, extravasation of plasma
lipoproteins modified by oxidation and glycation are
important factors driving DR and leading to cytotoxicity (Yu
and Lyons, 2013). In telomerase-immortalized human RPE
(hTERT-RPE) cells treated with in vitro-modified highly
oxidized glycated- (HOG-) LDL, reduced viability was
accompanied by the induction of LC3-II expression with no
changes in Beclin-1 protein level (Du et al., 2013). Pre-
treatment with either native-High-density lipoprotein
(N-HDL) or HOG-HDL inhibited HOG-LDL-induced LC3-II
expression and partially mitigated RPE cell death (Du et al.,
2013).

Retinal Müller Cells
Retinal Müller cells (rMCs), the primary retinal glial cells, make
contacts with every cell type in the retina and are necessary for
both neuronal and vascular function and viability (Shen et al.,
2014).

The role of autophagy in modulating rMCs response to HG
was investigated by Lopes de Faria and collaborators (Lopes de
Faria et al., 2016). The study showed that rMCs exposed to HG
upregulated the initial steps of autophagy, as shown by increase of
Beclin-1 and LC3-II protein expression levels; however, the
process of cargo degradation could not be completed due to
the overcome of lysosomal dysfunction. The latter caused
accumulation of p62 that, in turn, led to VEGF release and

TABLE 2 | Autophagy modulation in cell culture models of diabetic retinopathy.

Cell culture DR model Autophagy
markers

References

RPE
hTERT-RPE (telomerase-immortalized human RPE cells) HOG-LDL -highly oxidized

glycated-LDL
↑ LC3-II Du et al. (2013)

ARPE-19 (human immortalized RPE cells) HG: 30 mM, 48 h ↑ LC3-II Yao et al. (2014)
↑ autophagosomes
↓ p62

ARPE-19 HG: 30 mM, 48 h ↑ autophagosomes Shi et al. (2015)
↑ LC3-II

hiPSC-RPE (human induced pluripotent stem-cell-derived retinal pigment
epithelium cell lines)

HG: 25 mM, 5 weeks ↑ p62 Kiamehr et al. (2019)

Müller cells
rMC-1 (rat retinal Müller cells) HG: 25 mM, 24 h ↑ LC3-II Lopes de Faria et al.

(2016)↑ Beclin-1
↑ p62

MIO-M1 (immortalized human Müller cell line) HOG-LDL-highly oxidized
glycated-LDL

↑ LC3-II Fu et al. (2016a)
↑ Beclin-1
↑ Atg5

rMCs (primary rat Müller cells) HG: 30–60 mM, 24–48 h ↓ LC3-II Chen et al. (2018)
↓ Beclin-1

rMCs HG: 40 mM, 24 h ↓ Beclin-1 Wang et al. (2019b)
↓ LC3-II
↑ p62

Pericytes
HRCPs (human retinal capillary pericytes) HOG-LDL-highly oxidized

glycated-LDL
↑ LC3-II Fu et al. (2016b)
↑ Beclin-1
↑ Atg5

(DR: diabetic retinopathy; LDL: low density lipoprotein; HG: high glucose).
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rMCs apoptosis. Inhibition of the initial stage of autophagy with
3-MA or the final stage with Bafilomycin A1 (a vacuolar-type H+-
ATPase inhibitor) increased the number of apoptotic rMCs under
either normal condition or following exposure to diabetic milieu
conditions. On the contrary, induction of autophagy by
rapamycin, a mTOR inhibitor, upregulated Beclin-1
expression, prevented p62 accumulation by restoring
autophagy cargo degradation and protected cells from
apoptosis (Lopes de Faria et al., 2016).

Comparable results were reported by Wang and collaborators
(2019) in a similar cell culture model of primary rat rMCs.
Following exposure of rMCs to HG, the authors detected a
downregulation of autophagy with reduction of Beclin-1 and
LC3-II expression and accumulation of p62 (L. Wang et al.,
2019a). Treatment with epigallocatechin gallate (EGCG), a
polyphenol present in green tea, protected cells from apoptosis
by activating autophagy and reestablishing cargo degradation (L.
Wang et al., 2019a). Accordingly, in rat primary rMCs the
number of autophagic/lysosomal vacuoles was reduced after
exposure to HG; this observation, together with the reported
decrease of LC3-II and Beclin-1 protein expression suggested that
autophagy activity in rMCs was inhibited by HG conditions.
Under these experimental conditions, treatments with berberine
reduced HG-induced rMCs apoptosis at least in part by
enhancing autophagy (Chen et al., 2018).

Upregulation of Atg5, Beclin-1 and LC3-II proteins were
reported in spontaneously immortalized human Müller cell
line (MIO-M1) exposed to in vitro-modified HOG-LDL.
Müller cell death was partially prevented by inhibiting
autophagy with 3-MA or by knocking down Atg5 and Beclin-
1 suggesting that autophagy takes part to the apoptosis induced
by HOG-LDL (Fu et al., 2016a).

Pericytes
Pericyte cell death is one of the early features of DR (Hammes
et al., 2002). Fu and colleagues (2012, 2016) investigated the
modulation of autophagy in human retinal capillary pericytes
(HRCP) exposed to HOG-LDL (Fu et al., 2012; Fu et al., 2016b)
showing a significant dose-dependent increase of LC3-II, Atg5
and Beclin-1 (Fu et al., 2016b). In this study, autophagy appeared
to play a dual role depending of the HOG-LDL concentrations:
exposure to low levels of HOG-LDL was associated with a pro-
survival autophagy response, on the contrary, when the cells were
exposed to higher HOG-LDL concentration autophagy promoted
cell death (Fu et al., 2016b).

MITOPHAGY AND DIABETIC
RETINOPATHY

Mitophagy is a specialized form of autophagy responsible for the
quality and quantity control of mitochondria (Pickles et al., 2018).
These organelles are the primary source of cellular energy (ATP
production), involved in respiration and metabolic processes
(Kowluru, 2005) and a key source of ROS in diabetes (Sivitz
and Yorek, 2010; Hammes, 2018). Oxidative stress originating in
mitochondria from endothelial cell has been reported to alter

several independent pathways, each contributing to the
development of microvascular complications in DR (Du et al.,
2000; Nishikawa et al., 2000). Furthermore, the increase of
oxidative stress during hyperglycemia damages itself
mitochondria function and structure (Madsen-Bouterse et al.,
2010). Indeed, retina of diabetic patients and diabetic rodents
showed accumulation of damaged and dysfunctional
mitochondria (Masser et al., 2017; Kowluru and Mishra, 2018).

Recently, Zhou and co-workers (2019) showed activation of
mitophagy in the retinas of diabetic (db/db) mice (Zhou et al.,
2019). Indeed, a significant increase of mitophagy associated
protein, PINK-1 and Parkin, was reported in the retinas of db/
db mice as compared with non-diabetic (db/m) mice together
with the upregulation of LC3-II/LC3-I ratio and reduction of p62.
PINK1 (PTEN induces putative kinase protein 1) is a
mitochondrially localized serine/threonine protein kinase
(Valente et al., 2004) responsible for activation and
translocation of Parkin, an E3 ubiquitin-ligase (Kitada et al.,
1998), from the cytoplasm to damaged mitochondria (Matsuda
et al., 2010). Parkin then marks damaged mitochondria with
ubiquitin chains targeting them to mitophagy (Bingol et al.,
2014). Accordingly, to the in vivo data, rMC-1 cells exposed to
HG displayed significant increase of PINK1, Parkin and LC3-II/
LC3-I expression as compared to cells exposed to normal glucose
(Zhou et al., 2019).

Zhang and collaborators (2019) demonstrated that while the
exposure of ARPE-19 cell cultures to low glucose (LG) (15 mM)
induced autophagy, treatment with HG (50 mM) was associated
with ROS mediated inhibition of mitophagy and reduced
proliferative abilities (Zhang et al., 2019). Under HG
conditions PINK1 and Parkin were downregulated and
exogenous overexpression of these proteins, which
reestablished mitophagy, reduced apoptosis and promoted
cellular proliferation (Zhang et al., 2019). Intriguingly, the
study by Zhang et al. (2019) showed that LG recruit LC3 to
mitochondrial fraction suggesting that this condition may
specifically induce mitophagy in RPE cells (Zhang et al., 2019).

Devi and colleagues reported induction of mitochondrial
damage and mitophagy in rMCs exposed to HG (Devi et al.,
2017) that were mediated by the upregulation of thioredoxin-
interacting protein (TXNIP), a pro-oxidative stress and pro-
apoptotic protein strongly induced by diabetes and HG
conditions (Singh, 2013).

In a recent study, Taki and co-workers (2020), using 661Wcells,
a transformed murine cone cell line, observed that HG treatment
(25 mM, 48 h) induced changes in mitophagy and autophagy with
mitochondria accumulation and upregulation of p62. Treatment
with 3-MA caused a greater increase of p62, superoxides and
caspase 3/7 activation suggesting that impairment of the autophagy
pathway correlates with superoxide formation and induction of
apoptosis (Taki et al., 2020).

In spontaneous Ins2Akita diabetic mouse model,
Hombrebueno and colleagues (2019), showed a time-
dependent modulation of mitophagy (Hombrebueno et al.,
2019). Indeed PINK1-dependent mitophagy in both Müller
cells and photoreceptors was exacerbated within the first
2 months of diabetes, while a significant impairment of the
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pathway was reported in the advanced stages of neurovascular
dysfunction (8 months of diabetes). Furthermore, during
prolonged diabetes, impairment of mitophagy correlated with
the development of premature outer retina senescence
(Hombrebueno et al., 2019).

CONCLUDING REMARKS

Autophagy in DR has become an area of intense research,
however, despite the studies currently available, the question
of whether autophagy is counteracting or favoring the
evolution of DR remains unclear. Furthermore, controversial
results have often been reported in terms of the type of
autophagy modulation induced by hyperglycemia (induction vs
impairment), in both in vitro and in vivo models (Gong et al.,
2021). However, most evidence suggests that autophagy may act
with a damage/time-dependent double action (Figure 2). Under
mild stress or during the initial phase of DR, autophagy acts as an
adaptative response with pro-survival and anti-apoptotic effects
(Dehdashtian et al., 2018); on the other hand, under severe stress
and in the later phase of DR, dysregulated autophagy, as a
consequence of the system overload due to the prolonged
damage, contributes to the apoptotic retinal cell death
exacerbating the damage (Fu et al., 2016b; Shruthi et al., 2016).

In must also be stressed that the claim of some studies related
to the induction or inhibition of autophagy are often not
supported by the data. Indeed, being a dynamic process,
autophagy should be studied in terms of flux. A simply
increased number of autophagosomes, either by LC3
immunofluorescent staining or by transmission electron
microscope (TEM), as well as changes in LC3-II/LC3-I ratio

detected by western blot are not enough to drawing conclusion on
the kind of autophagy activity modulation (Abudu and Acevedo-
Arozena, 2021; Klionsky et al., 2021). Therefore, the use of more
specific experimental settings, i.e. measurement of
autophagosome substrates degradation, comparison of LC3-II
accumulation in the absence or presence of lysosomal enzymatic
activity inhibitors, should be performed to be able to state the
occurrence of an autophagic process (Rubinsztein et al., 2009;
Klionsky et al., 2021). It should be also taken into consideration
that autophagy activity varies with animal age, sex or strain
background and it also undergoes a diurnal rhythmicity. All
these factors might affect the final results introducing a complex
variability among the different experimental settings and making
difficult a direct comparison of the different studies.

Based on the data accumulated so far, interpreting the
contribution of autophagy in DR is still difficult and further
studies are guaranteed in order to unravel the possibility that
pharmacological modulation of the pathway could be exploited
for DR supportive therapies.
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