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Abstract: In this study, we investigated the binding affinities between the main protease of SARS-CoV-
2 virus (Mpro) and its various ligands to identify the hot spot residues of the protease. To benchmark
the influence of various force fields on hot spot residue identification and binding free energy
calculation, we performed MD simulations followed by MM-PBSA analysis with three different force
fields: CHARMM36, AMBER99SB, and GROMOS54a7. We performed MD simulations with 100 ns
for 11 protein–ligand complexes. From the series of MD simulations and MM-PBSA calculations,
it is identified that the MM-PBSA estimations using different force fields are weakly correlated to
each other. From a comparison between the force fields, AMBER99SB and GROMOS54a7 results are
fairly correlated while CHARMM36 results show weak or almost no correlations with the others.
Our results suggest that MM-PBSA analysis results strongly depend on force fields and should be
interpreted carefully. Additionally, we identified the hot spot residues of Mpro, which play critical
roles in ligand binding through energy decomposition analysis. It is identified that the residues of
the S4 subsite of the binding site, N142, M165, and R188, contribute strongly to ligand binding. In
addition, the terminal residues, D295, R298, and Q299 are identified to have attractive interactions
with ligands via electrostatic and solvation energy. We believe that our findings will help facilitate
developing the novel inhibitors of SARS-CoV-2.

Keywords: SARS-CoV-2; main protease; molecular dynamics; multiple force fields; MM-PBSA; ligand
binding; absolute binding free energy

1. Introduction

The new type of coronavirus, the SARS-CoV-2 virus, outbroke in China at the end of
2019. Since its first outbreak, it has led to more than 265 million infections and 5.25 million
deaths as of November 2021 [1,2]. Although many vaccines are approved and being
developed, no small molecule drug, which has a molecular weight under 500 amu, has
been approved by FDA yet as of November 2021 [3,4]. The SARS-CoV-2 genome encodes
more than 20 proteins, which include the main protease (Mpro) that shares 96.1% similarity
with 3CLP of SARS-CoV [5]. Mpro plays an important role in SARS virus replication and
transcription. When the mRNA of the virus is translated into a polyprotein chain, Mpro is
first autocleaved to become a mature enzyme, which in turn cleaves all of the 11 remaining
downstream nonstructural proteins of the polyproteins to polypeptides, which are required
for the replication process of the virus [5].

Mpro of SARS-CoV-2 is essential for viral replication and is considered a promising
target for drug development [6–8]. Based on this assumption, various studies have been
performed to find potent inhibitors targeting Mpro [7,9]. Thus, it is critical to evaluate the
binding free energy between a ligand and its receptor both accurately and efficiently to
accelerate COVID-19 drug discovery.

Because the shape of the binding site of Mpro was well characterized [6,10–12], docking
studies between ligands and the Mpro receptor have been carried out to find out possible
hits or leads [13,14]. Alamri et al. used the covalent docking tool, Schrödinger’s Covalent
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Docking (CoVDock) [15], to discover potential covalent inhibitors from the AFCL library
consisting of 1000 covalent molecules and 116 FDA-approved molecules. As a result,
paritaprevir and simeprevir from FDA-approved molecules were identified as potential co-
valent inhibitors of Mpro of SARS-CoV-2 [13]. Peele et al. screened 24 natural plant-derived
molecules with antiviral property, 22 FDA-approved antiviral drugs, and 16 antimalarial
drugs with the docking approach [14]. They found several molecules, lopinavir, amodi-
aquine, and theaflavin digallate that showed a good binding affinity with Mpro.

To further refine docking results, more rigorous absolute binding free energy calcula-
tions are performed in general. There are many approaches to obtain the absolute binding
free energies of protein–ligand complexes: attach-pulling of a ligand from its receptor,
linear interaction energy (LIE), molecular mechanics/Poisson–Boltzmann surface area
and generalized Born surface area (MM-PBSA and MM-GBSA), free energy perturbation
(FEP), thermodynamic integration (TI), and nonequilibrium molecular dynamics simula-
tion [16,17]. All of these computational methods have a trade-off between computational
cost and accuracy. Both FEP and TI approaches are considered most rigorous and accurate
than the other methods. However, they demand much more computational resources
to obtained well-converged binding free energies [18–21]. The ligand attach-pulling ap-
proach pulls ligand from its binding site and calculates a binding free energy based on the
Jarzynski or Crooks theorem [22]. This nonequilibrium approach depends on a pulling
pathway, and it is still not clear how much computational resources are required to obtain a
reliable binding free energy. As an alternative approach to these perturbation methods, the
MM-PB/GBSA approach, also known as an end-state method, is widely used to estimate
absolute binding free energies of protein–ligand complexes due to its relatively lower
computational burden. However, the approach suffers from rather large computational
errors, lower accuracy, than the perturbation-based methods. Despite its lower accuracy,
the MM-PB/GBSA method is becoming more popular to rank the binding free energies of
different ligands with a single receptor quickly [23–25].

Here, we briefly review previous computational studies that used free energy calcula-
tion methods to discover possible drug candidates that bind to Mpro. Ngo et al. used three
computational methods, molecular docking, fast pulling of ligand (FPL), and FEP, to dis-
covery a potential SARS-CoV-2 Mpro from the existing drugs and natural compounds [26].
They screened potential inhibitor candidates from the large library and obtained the two
natural compounds that showed high binding affinity in comparison with 13b ligand,
which was from the recently reported experimental work [9]. Moreover, they suggested
the E166 residue of Mpro is critical in ligand binding through alanine mutation calculation.
Sk et al. have evaluated the binding free energies of two molecules (α-ketoamide and
Z31792168) with Mpro by using the MM-PB/GBSA approach [27]. They performed per-
residue energy decomposition analysis and showed that the ∆Evdw, ∆Eelec , and ∆Enonpol
terms contributed favorably to ligand binding, and the ∆Evdw contributed most. Based
on the per-residue decomposition analysis, they identified hotspot residues, which have
higher interaction energy than −1.0 kcal/mol. For both ligands, H163, H164, and M165
were identified as hot spot residues. Nutho et al. selected lopinavir and ritonavir as po-
tential inhibitors, which were found to be effective against HIV protease [28]. From the
MM-PB/GBSA analysis, they found that the ∆Evdw is the most favored force to binding
free energy more twice than ∆Eelec with both ligands. Moreover, they also identified im-
portant residues for ligand binding whose decomposed binding free energies are lower
than −1.0 kcal/mol. Four residues, MET49, M165, P168, and Q189, were identified for the
Mpro-lopinavir complex and nine residues, L27, H41, M49, F140, N142, G143, H164, M165,
and E166, were identified for the Mpro-ritonavir complex. Wang et al. also used the MM-
PBSA with a flexible docking method to identify potential inhibitors for SARS-CoV-2 Mpro

protease [29]. They suggested that the five molecules, carfilzomib, ervacycline, valrubicin,
lopinavir, and elbasvir, as the potential inhibitors against Mpro. Among them, carfizomib
was identified as the strongest binder.
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The main objectives of this study are (1) to identify the hot spots of Mpro of SARS-CoV-
2 via MM-PBSA calculations using multiple force fields and (2) to assess the force field
dependency of MM-PBSA calculation results.

In this study, we performed the MD simulations of known 11 Mpro–ligand complexes
and calculated the binding affinities using MM-PBSA calculations to identify the hot spot
residues of Mpro. Six ligands are from Diamond Light Source (diamond.ac.uk/COVID-
19/for-scientists/Main-protease-structure-and-XChem/Downloads.html), three HIV pro-
tease inhibitors (darunavir, lopinavir, and indinavir), and three more recently reported
ligands (11r, 13a, and 13b) [9], respectively. For all 11 Mpro–ligand complexes, we performed
three MD simulations using different force fields to investigate the force field dependency
of binding free energy estimates. Three different force fields were used: GROMOS54a7
(g54a7) [30,31], AMBER99SB (ff99sb) [32], and CHARMM36 force field (c36) [33]. For each
complex, 100 ns of MD simulations were performed. The MM-PBSA results obtained
with three force fields are compared and the hot spot residues are identified via energy
decomposition analyses.

2. Materials and Methods
2.1. Molecular Docking Calculation

When we used GalaxyDock3 [34] to generate the initial Mpro–ligand configurations,
we selected the center of mass of the 13b (PDB ID: 6Y2F) as the center of a grid box with
the SARS-CoV-2 Mpro structure whose PDB ID is 6YB7. The ligand data were downloaded
from diamond.ac.uk/COVID-19. The atomic partial charges of each ligand were calculated
with the Gasteiger approach [35,36]. The lowest energy docking pose was selected as the
initial configuration for MD simulations of 11r, 13a, darunavir, lopinavir, and indinavir
whose native structure are not identified yet.

2.2. Molecular Dynamics Simulations

In this study, we used two MD programs (GROMACS-2019.4 [37] and AMBER18 [38])
and three force fields: g54a7 [30,31], ff99sb [32], and c36 [33].

2.2.1. MD Simulations with GROMACS

The g54a7 was used to perform MD simulations with GROMACS-2019.4 [37]. The
ligand topology files were obtained from the ATB (Automated Topology Builder) server [39],
which generates ligand parameters compatible with the protein force field. We used the
original geometry output of ATB. The systems were solvated with the SPC water model [40]
with a 12 Å padding region. We added Na+ ions to neutralize the system. The time step of
MD simulation was set to 2 fs with the LINCS algorithm to constraint hydrogen-connected
covalent bonds [41]. The long-range electrostatic interaction was calculated with the
fast smooth particle-mesh Ewald electrostatics method [42,43]. The solvated system was
minimized by using the steepest descent method for 10,000 steps. After minimization, a
series of equilibrium MD simulations were performed: the 200 ps of NVT, 1 ns of NPT, and
50 ns of NVT with weak harmonic position restraints. At each step, the simulations were
performed with the Nosé–Hoover thermostat [44] and the Parrinello–Rahman barostat [45]
at 300 K. Last, the production step was performed with NPT condition during 100 ns.

2.2.2. MD Simulations with AMBER

We performed MD simulations with the two force fields, ff99sb [32] and c36 [33] using
AMBER18 [38].

• Preparing systems with an AMBER99SB force field (ff99sb)
The Mpro and ligand topology files were generated using tleap [46] and Antecham-
ber [47] programs implemented in AMBER18 with ff99sb and generalized AMBER
force field (GAFF) [48]. The systems were solvated with the TIP3P water model with
a padding region of 12 Å. Energy minimization calculations of the solvated systems
were performed by using the steepest descent method. After energy minimization,
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equilibrium MD simulations were performed as follows: 200 ps of NVT, 1 ns of NPT,
and 50 ns of NVT with weak harmonic positional restraints. The time step for MD sim-
ulations was set to 2 fs. To constrain all bonds involving hydrogen atoms, the SHAKE
algorithm was used [49]. The particle mesh Ewald (PME) method also calculated
the long-range electrostatic interactions [50]. The temperature was controlled with
Langevin thermostat [51]. After equilibrium simulations were finished, we performed
production simulations for 100 ns with NPT condition and the trajectory of each
simulation was recorded every 2 ps.

• Preparing systems with CHARMM36 force field (c36)
The parameter and topology files of complexes were generated from CHARMM-
GUI [52] with c36 [33]. The parameters for ligands were generated by CHARMM
generalized force field (CGenFF) [53,54]. The subsequent NVT 125 ps, NPT 1 ns, NVT
50 ns equilibration simulations were carried out at 300 K, followed by production
runs for 100 ns under NPT ensemble condition. The TIP3P water model was used to
represent explicit water molecules. We added the sodium ions in order to neutralize
the system. The time step for MD simulation was set to 2 fs with the SHAKE algorithm.
After the energy of the solvated system was minimized by using the steepest descent
method, the subsequent steps were carried out using the identical parameters with
the AMBER setting described above.

2.3. MM-PBSA Analysis

In this study, the interactions between the Mpro receptor and ligands were calculated
with the MM-PBSA analysis. We utilized the two MM-PBSA tools; one is g_mmpbsa [55] for
the GROMACS MD results and the other is MMPBSA.py [56] from the AMBER18 package,
respectively.

• g_mmpbsa setting
Each topology and parameter files required for MM-PBSA calculations are obtained
from the MD simulation with GROMACS section. For a trajectory of 100 ns, 10,000
frames were selected for MM-PBSA calculations as input. For nonpoloar solvation
energy calculations, we selected the SASA model [57–59] which is one of the most
used nonpoloar models. For the other parameters, the default values of GROMACS
were used.

• MMPBSA.py setting
Each parameter and system topology files for a solvated complex, nonsolvated com-
plex, receptor, and ligand were used from the preparation steps of MD simulation with
AMBER section. Additionally, we performed the solvated Mpro receptor simulation
and solvated ligand simulation, respectively, to estimate the receptor and ligand con-
tribution in implementing MM-PBSA analysis. Similar to the g_mmpbsa setting, 10,000
frames also were used for MM-PBSA analyses with MMPBSA.py from trajectories of 100
ns. For PB calculations, the SASA (solvent accesible surface area) for the nonpoloar
solvation energy used the LCPO model [60] and the ionic strength of solution was set
to 0.1 M and the mbondi [61] radius set was used. The rest of the options were set to
the default values of MMPBSA.py in AMBER 18 package.

2.4. Linear Interaction Energy (LIE) Calculation

∆GLIE was computed as the mean of vdW and electrostatic interaction difference be-
tween bound state and unbound state ∆GLIE = α〈∆Eelec〉+ β〈∆EvdW〉+ γ. The coefficient
γ reflects the hydrophobicity of various species of inhibitors to the binding cleft conceding.
The coefficient α and β are weight parameters for nonpolar and polar interactions, respec-
tively. Based on the ligands whose experimental IC50 value was identified, we estimated
the α, β, and γ coefficient values, followed by recalculating the other ligands’ energies to
evaluate ∆GLIE.
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3. Results

The structure of Mpro consists of three domains: domain I (residues 10–99), domain II
(residues 100–184), domain III (residues 201–303), and a long loop region (residues 185–200)
(Figure 1a). Domain III is connected to domain II via the long loop structure. The substrate-
binding site is located in a cleft between domain I, II with the loop region involved. It is
composed of four subsites (S1, S1’, S2 and S4) (Figure 1b,c). Each subsite is spatially located
and composed of consecutive amino acids in the substrate-binding site. The S1 subsite
consists of F140, N142, C145, H163, E166, and H172 residues. (Figure 1b red region). The
S1’ subsite is composed of T26 and L27 (Figure 1b lime region). The side chains of H41,
M49, Y54, M165, D187 are involved in the formation of the S2 subsite (Figure 1b light blue).
The L167, F185, Q189, Q192 consists of S4 subsite (the orange region in Figure 1b yellow).

Domain Ⅱ 

Domain Ⅰ  

Domain Ⅲ 

(a)

(b)
S1 S4

S2S1’

(c)

Figure 1. The structure of a single Mpro receptor (PDB ID: 6Y2F). (a) The three domains are colored
and the pink colored region represents a long loop region. Domain I (green, residues 10–99), II (sea
green, residues 100–184), III (cornflower blue, residues 201–305), and the pinked long loop, which
is located between domains II and III (residues 185–200). The binding site is located within the
dashed square box, composed of Domain I, Domain II, and the loop region. (b) The surface was
represented by the catalytic binding center. (c) The surface removed view of the binding site. The
residues involved in each subsite are represented.

3.1. MD Results of Complexes

Most MD simulations of the Mpro complexes remained bound stably, except the Mpro-
X0072 and -X0691 complexes. In the simulations of the Mpro-X0072 complex with both
ff99sb and c36, the X0072 ligand was detached from Mpro. The X0691 ligand with c36 also
was detached from Mpro during simulations. The trajectories showed that both the X0072
and X0691 ligands occupied a region between E166 and Q189 in S4 subsite for a while and
finally were detached from Mpro. These results suggest that both residues, E166 and Q189,
may play the important roles of gateways of ligand binding.

The spatial occupancy patterns of ligands sampled during simulations are visually
investigated to identify which residues participate in ligand binding of Mpro. To perform
this investigation, the ’grid’ command of the CPPTRAJ [62] program of the AMBER18
package was used to bin the distribution of a ligand into a 3D grid. Before performing the
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analyses, periodic boundary conditions were removed and centered the system to put a
ligand at the origin of each trajectory.

The MD result of darunavir showed a significantly localized distribution than those of
lopinavir and indinavir, which are the inhibitors of HIV protease. The sulfonate group of
darunavir stayed at the S4 subsite and the benzene ring also was located in S1 subsite and
did not fluctuate much (Figures 2 and 3d). However, in the case of lopinavir, the functional
groups of lopinavir fluctuated much, except that the dimethyl substituted benzene group
stayed at the S4 subsite. The branches of indinavir showed that the rings fluctuated, and did
not occupy the S4 subsite similar to other HIV protease inhibitors. The other ligands, 11r
and 13a showed different binding behaviors from 13b. The ligands, 11r and 13a, showed
more concentrated spatial distribution consistently than the 13b ligand in simulations
performed with all force fields. On the contrary, the trajectory of 13b showed more widely
distributed 3D histograms because of the fluctuation of its P1, P3 branches (Figures 2
and 3a–c). The P1 branch of both 11r and 13a remained stably at the S1 subsite during
simulations. The P3 branch of 11r and the P1’ part of 13a with ff99sb, and the cyclohexyl
ring of 13a with c36 also remained steadily at the S4 subsite, where most strong binders
are occupied significantly during simulations. However, the P1 branch of 13b was located
at a different region compared with 11r and 13a and fluctuated more than them, and 13b
did not occupy the S4 subsite between E166 and Q189 during the simulations. It appears
that this dynamical behaviors of the ligands are consistent with experimental data, the
stronger binding free energy of 13b than 11r and 13a, which will be discussed further in the
next section.

11r 13a 13b

P3
P3 P3

P1 P1 P1

P1’
P1’

P1’

Darunavir Lopinavir Indinavir

Figure 2. The ligands analyzed in Results section. 11r, 13a, and 13b ligands are at the upper row. The
branches of 11r, 13a, and 13b ligands were represented in colored-circle. Darunavir, lopinavir, and
indinavir are in the lower row. All ligands anaylzed in this study are in Figures S1–S5.

The fact that the S4 subsite was occupied by many strong binders was employed
in a previous study that developed a new drug candidate from a weak hit molecule,
perampanel [63]. The authors performed a structure-based substrate scope analysis, which
considers the interaction and environments between Mpro and hit molecules, and rationally
changed the branches of perampanel to fill the void of the S4 subsite. Most modified ligands
interacted strongly with the E166, Q189, and Q192 residues. Especially, most modified
ligands whose chloride atom was substituted for various alkoxy groups such as propoxy,
butoxy group, or more bulky benzyloxy group to occupy the S4 subsite region, became
more than 10 times stronger than the hit molecule in terms of IC50 values. This tendency is
consistent with the MM-PBSA results, which will be discussed in the next section and may
be attributed to hydrogen bonds between ligands and Mpro. The complete results of all the
3D histogram results are illustrated in Supplementary Information (Figures S15–S17).
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(a)

P1 P3

P1’

(b)

P1

P3 with ff99SB

P3 with c36

P1’ with ff99SB

cyclohexyl ring with c36

(c)

P3

(d)

sulfonate group

fused 8-membered ring

benzene ring

Figure 3. The examples of 3D histograms of ligand occupancy, comparing MS simulation results
using ff99sb and c36. The colored region is a 3D histogram. The 3D histogram is spatial distribution
of ligand atom sampled during simulation with ff99sb. The representative conformations from both
ff99sb and c36 are imposed. (a) 11r (b) 13a (c) 13b (d) darunavir ligand.

3.2. Comparison of MD Simulation Results of Complexes Using Different Force Fields

In this section, we compared the MM-PBSA calculation results with three different
force fields to investigate the effect of force field parameters on binding free energy estimates
(Figures 4 and S6–S11). We estimated the entropic contribution of each ligand’s binding free
energy by using normal mode analysis (Table 1). The estimated entropy values were similar
in the range of ±1 kcal/mol. Thus, entropic contributions are not considered for analysis.

3.2.1. A Comparison of ff99sb and c36 Force Field Results

The MM-PBSA results obtained with ff99sb and c36 showed weak correlations be-
tween them, Kendall τ = 0.067, Pearson r = 0.022, and Spearman ρ = 0.042, respectively
(Figure 4a). Overall, the MM-PBSA binding free energy estimates obtained with ff99sb were
more favorable than those with c36 simulations. Most binding energy results obtained with
MM-PBSA calculations using ff99sb had lower bind energy by more than about 10 kcal/mol
than the c36 results.

The strongest binders of each force field are 11r (−54.990 kcal/mol) with ff99sb and
13a (−28.523 kcal/mol) with c36, respectively. 13a also identified as the top3 strong binder
with ff99sb (−37.971 kcal/mol). However, 11r was not identified as a strong binder with
c36. It suggested that the two force fields did show consistent results with each other.
From experiments [9,64], the binding free energies of 11r, 13a, 13b, and darunavir ligands
were −9.23, −7.70, −8.45, and −6.14 kcal/mol, respectively. In terms of consistency with
experimental data, MM-PBSA with ff99sb correctly identified 11r as the strongest binder.
However, c36 results predicted that 13a would be a stronger binder than 11r, which is
inconsistent with the experiment. Both ff99sb (−29.535 kcal/mol) and c36 (5.579 kcal/mol)
estimated that 13b is the weakest binder among the 11r, 13a, and 13b despite 13b is the
second strong binder based on the experiment. We assumed the fact that 13b did not
occupy the S4 subsite unlike 11r and 13a may explain why the MM-PBSA results were
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not consistent with the experiment among 11r, 13a, and 13b ligands. Moreover, although
darunavir is the weakest binder from the experimental data, the two force field failed to
estimate the fact that darunavir is the weakest binder.

(a) (b) (c)

Figure 4. A comparison of the ∆EMM obtained with MM-PBSA calculations using ff99sb, c36, and
g54a7. (a) A comparison of MM-PBSA results between ff99sb and c36 (b) A comparison of MM-PBSA
results between c36 and g54a7 (c) A comparison of MM-PBSA results between g54a7 and ff99sb The
dashed diagonal line corresponds to the perfect agreement between the two results. The dotted lines
correspond to a range of an absolute error of 10 kcal/mol. The error bars are presented with points.
Because the X0072 and X0691 ligand were detached from Mpro, they were omitted.

3.2.2. A Comparison of c36 and g54a7 Force Field Results

Next, we compared the MM-PBSA results obtained with c36 and g54a7 (Figure 4b).
A weak correlation was also observed with a correlation coefficient, Kendall τ = 0.022,
Pearson r = 0.139, and Spearman ρ = 0.042, respectively. Most binding energies obtained
with g54a7 showed more favorable values than those of c36. MM-PBSA results with g54a7
estimated that darunavir would be the strongest binder with a binding energy of −46.640
kcal/mol. The top contributing residues for the binding of darunavir with g54a7 were
M49, E166, M165, and Q189 with decomposed energies (−3.625, −2.740, −1.972, and
−1.491 kcal/mol, respectively). Because the M165, E166, and Q189 residues are in the S4
subsite, g54a7 also suggested that the S4 subsite was important for Mpro-ligand binding.
Although c36 showed less favorable energies than g54a7, it is valuable to compare the
binding energy of darunavir, which is the strongest binding with g54a7, between g54a7
and c36. With c36, both E166 and Q189 had the unfavorable decomposed energies—4.748
and 1.314 kcal/mol, respectively. However, these energies were reversed with g54a7—
−2.740 and−1.491, respectively. We found that both residues have with highly unfavorable
electrostatic interactions with the ligand, Eelec of 19.815, 4.431 kcal/mol, respectively.

3.2.3. A Comparison of g54a7 and ff99sb Force Field Results

The MM-PBSA binding energies obtained with ff99sb and g54a7 were relatively well-
correlated with Kendall τ = 0.333, Pearson r = 0.455, and Spearman ρ = 0.406, respectively
(Figure 4a,c). g54a7 also estimated that 13b is the weakest binder among 11r, 13a, 13b,
and darunavir. These results were consistent with all three force fields. The MM-PBSA
results with ff99sb showed a similar trend with the MM-PBSA results with g54a7 except
for 11r and lopinavir cases. If the three outliers are excluded, a correlation coefficient
between g54a7 and ff99sb was ρ = 0.933. This result suggests that g54a7 yields similar
binding free energies with the all-atom model from ff99sb, although g54a7 used united-
atom model parameters. The strongest binder without the outlier ligand was darunavir:
−50.288 kcal/mol with ff99sb and −46.640 kcal/mol with g54a7. Darunavir was also the
second strongest binder with the outlier ligands with ff99sb.

To investigate why the results of ff99sb and g54a7 are correlated, we calculated the
correlation coefficients between individual energy terms of MM-PBSA results: ∆Evdw,
∆Eelec, ∆EPB, and ∆Enonpol, respectively (Figure 5). Among the energy terms, the ∆Evdw
term showed a correlation between two force fields while the other energetic terms did
not show any correlation. This shows that a correlation between ff99sb and g54a7 can
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be attributed to the van der Waals term. This may be due to the fact that electrostatic or
solvation interaction terms depend on more delicate parameters, such as partial charges
and atomic radii for Poisson–Boltzmann calculations

(a) (b)

(d)(c)

Figure 5. A comparison of the ∆E obtained with MM-PBSA calculations between ff99sb and g54a7.
(a) ∆Evdw, (b) ∆Eelec, (c) ∆EPB, and (d) ∆Enonpol All the subfigures are same in x- and y-axis scale
to compare easily. The dashed diagonal line corresponds to the perfect agreement between the two
results. The dotted lines correspond to a range of an absolute error of 10 kcal/mol. Because the X0072
and X0691 ligand were detached from Mpro, they were omitted.

3.3. Linear Interaction Energy Analysis

To improve the accuracy of binding affinity calculations, LIE analysis is commonly
used to tune the balance between the electrostatic and van der Waals interactions. To check
whether the LIE analysis improves the correlations between the calculated results and
experiments, we performed the LIE analysis using the four ligands whose experimental
IC50 were known. (Figure 6).

It is identified that the LIE analysis did not improve the correlations between results
obtained with different force fields. The correlation coefficient between the results of ff99sb
and g54a7 deteriorated from 0.45 to 0.11. Meanwhile, the correlation coefficient between
c36 and g54a7 elevated to 0.31 from 0.14, which is the highest among the LIE results. The
correlation between c36 and ff99sb remained low after the LIE analysis with a Pearson
correlation coefficient of 0.09. These results demonstrate that, even with the LIE analysis,
the MM-PBSA results strongly depend on the choice of force field.
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(a) (b) (c)

Figure 6. A comparison between MM-PBSA calculation results fitted by the linear interaction energy
analysis. The left plot corresponds to the correlation between c36 and ff99sb. (a) A comparison
between ff99sb and c36 results fitted by the LIE analysis. (b) A comparison between c36 and g54a7
results fitted by the LIE analysis. (c) A comparison between g54a7 and ff99sb results fitted by the
LIE analysis. The red dots correspond to the ligand whose experimental IC50 values are identified.
The dark shaded and light shaded regions correspond to an absolute error of 1 and 2 kcal/mol,
respectively.

3.4. A Comparison of Polar Solvation Energy

In this section, we compared ∆EPB from the MM-PBSA calculation results with three
different force fields to investigate the effect of solvation on ligand binding shown in
Figure 7. Usually, the PB energies contributed unfavorably to ligand binding. Specifically,
the c36 force field showed the most unfavorable contribution for the binding of 13b and
darunavir. 13b with c36 showed that E166 and R188 have ∆EPB of 19.1 and 15.3 kcal/mol,
respectively. Moreover, darunavir with c36 also showed that E166 and R188 have ∆EPB of
19.8 and 11.3 kcal/mol, respectively, while 13a contributed to ∆EPB of 6.2 and 4.9 kcal/mol
for E166 and R188, respectively.
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Figure 7. A comparison of ∆EPB with ff99, c36, and g54a7 force fields from MM-PBSA analysis.

On the other hand, in the cases of lopinavir and indinavir, which are moderate binders
with ff99sb, the ∆EPB showed favorable energy. The exposed residues showed highly
favorable ∆EPB. The D263 residue had highly favorable ∆EPB of −20.6 kcal/mol with
lopinavir and −19.7 kcal/mol with indinavir, respectively, whereas that of 11r is only
−5.6 kcal/mol. Additionally, E178 also showed highly favorable ∆EPB of −16.6 kcal/mol
with lopinavir and −19.0 kcal/mol with indinavir, while that of 11r is only −11.3 kcal/mol.

3.5. Summary of MM-PBSA Results

In summary, the MM-PBSA estimates obtained with c36 is showing a different trend
with those obtained with ff99sb and g54a7 (Table 1 and Figure 8). The absolute values of
binding energies obtained with c36 are smaller than those with ff99sb and g54a7. Unfortu-
nately, all three force fields failed to predict the rankings of known experimental binding
affinity data. All three force fields predicted that 13b ligand was the weakest binder among
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11r, 13a, and 13b; however, 13b was the second strong binder based on the experimental
data. Only ff99sb correctly identified the 11r ligand as the strongest binder. However, more
experimental data are necessary to evaluate the accuracy of force fields more rigorously in
obtaining correct absolute binding free energies of Mpro complexes.

These results show that, based on the MM-PBSA calculations, no force field is accurate
enough to obtain the absolute binding affinities of Mpro-ligand complexes yet, and the
calculation results may show large variations according to the tested force field. Thus, our
results also show that a care should be taken to interpret the absolute binding free energy
estimates obtained with MM-PBSA and different force fields. These results also emphasizes
the necessity of using more rigorous absolute binding free energies approaches [65–68].
The complete results of all energies are Supplementary Information Table S1.
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Figure 8. Overall binding free energy from MM-PBSA. All values has kcal/mol energy unit.

Table 1. Overall MM-PBSA difference energy results. All values in a kcal/mol energy unit. The
superscript a means that all the energies are from the AMBER18 MD engine with ff99sb, while
the superscript b indicates the results from the AMBER18 MD engine with c36. The superscript c

indicates that all the energy values are from GROMACS-2019.4 MD engine with g54a7. NMA ∆S
is that the entropy is calculated with normal mode analysis and QH ∆S means that the entropy is
estimated by quasiharmonic (QH) approximation with only c36 system because MMPBSA.py package
only supports normal mode analysis with ff99sb, not c36. All entropy values are computed by
MMPBSA.py in AMBER18 MD package.

Ligand MM-PBSA a MM-PBSA b MM-PBSA c NMA ∆S QH ∆S

X0072 −34.857 −17.302 −13.659 −16.455 −12.441
X0689 −23.223 3.943 −22.241 −16.899 −12.723
X0691 −9.075 12.182 −20.549 −18.119 −12.761
X0749 −18.167 −13.242 −22.040 −17.327 −12.677
X1336 −23.727 −8.932 −22.734 −19.280 −12.791

11r −54.990 −10.177 −37.905 −31.088 −13.369
13a −37.971 −28.523 −43.613 −27.803 −13.389
13b −29.535 5.579 −31.927 −25.499 −13.404

darunavir −50.288 −1.556 −46.640 −29.247 −13.330
indinavir −29.238 −21.343 −36.142 −30.431 −13.430
lopinavir −17.064 −13.166 −40.744 −27.693 −13.451

3.6. Hot Spot Residues for Ligand Binding

To identify hot spot residues playing important roles in ligand binding, we performed
a per-residue energy decomposition analysis and calculated the average binding energy
contribution of all ligands. The top 10 residues that contribute most to ligand binding of
Mpro based on the average per-residue interaction energy is illustrated in Figure 9. All the
top 10 contributing residues have ∆EMM lower than −1.0 kcal/mol on average.
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N142
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R188
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K137

D176

D295
Q299

R298

Figure 9. Averaged contribution energy from MM-PBSA and corresponding hot spot residues (left)
are illustrated. Hot spot residues are highlighted on the surface of Mpro (right). Because the X0072
and X0691 ligands were detached from Mpro, they were omitted when generating the figure. Because
the terminal residues are in the backside of the figure, their orange-colored regions were hidden.

The M165 residue is identified as the top contributing residue consistently across all
tested force fields. M165 showed ∆Econtrib

avg = −5.0 kcal/mol which is 2∼3 fold stronger
than other residues’ ∆EMM. This result is consistent with the fact that most strongly binding
ligands remained stably around the S4 subsite. The decomposition analysis revealed that
M165 interacts favorably with ligands via both electrostatic and van der Waals interactions.
With the strongest binder 11r with ff99sb and 13a with c36, M165 also was the most favorable
residue. For the 11r case, Evdw, Eelec, and EPB were −2.508, −1.977, and 1.462 kcal/mol
with ff99sb and −1.564, −1.614, and 1.714 kcal/mol with c36, respectively. For the 13a
case, Evdw, Eelec, and EPB were −1.304, 0.842, and 1.003 kcal/mol with ff99sb and −1.721,
−0.910, and 1.343 kcal/mol with c36, respectively. These results show that Evdw mostly
contribute to ligand binding.

From the atomic contact figures (Figures S18 and S19) generated by ligPlot+ [69],
we identified that there are many short-range interactions between Mpro and the ligands,
represented by red semicircles on protein residues or ligand atoms. Many atoms in the
rings of ligands, mostly aromatic rings, are in close contact with the binding site residues.
For example, most nonpolar atoms of three six-membered rings (two benzene rings and
one cyclohexyl ring) of 11r showed that they form close contacts with binding site residues:
S46 with the P1’ benzene ring, E166 with the P3 benzene ring, and H164, M165, R188, and
Q189 with the cyclohexyl ring.

Additionally, indinavir, 13a, and 13b have a large nonpolar group, a tert-butyl group,
participating in protein–ligand binding (Figure S18). The tert-butyl groups of the ligands
have many close contacts with surrounding residues: N119 with 13a, and N119 with 13b,
and L141, S144, C145, and H164 with indinavir. Specifically, N119, which is away from the
center of the binding site, largely interacts with ligands. Thus, we assume that the tert-butyl
groups interact strongly with N119 via van der Waals interaction due to its bulky volume.
Therefore, nonpolar groups, such as ring structure and tert-butyl group, play important
roles in Mpro–ligand binding with many residues at diverse locations. The presence of
many contacts between nonpolar atoms makes Evdw the most contributing energetic term
than the other terms.

Based on the fact that 11r with ff99sb and 13a with c36 are the strongest binders, we
performed a residuewise binding free energy decomposition analysis to identify the hot
spot residues of Mpro. The top contributing residues of 11r with ff99sb were D295, D187,
D176, and H163 with binding energies of −5.538, −4.983, −4.350 and −3.624 kcal/mol,
respectively. Except for D176 (4.185 kcal/mol), their Eelec were lower than −5.0 kcal/mol.
The top contribution residues of 13a with c36 were D295, Y161, R298, L58, L50 with binding
energies of −3.457, −3.308, −3.195, and −3.025 kcal/mol, respectively. They also had low
Eelec except for Y161 (1.435 kcal/mol).
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Interestingly, the terminal charged residues, D295, R298, and Q299, which are far from
the binding site interacted strongly with ligands. Although they were far from the binding
site over about 30 Å during MD simulation, the energy decomposition analysis showed
that these residues have strong electrostatic or polar solvation attractive interaction for
ligand’s binding. Recently, T. Sztain et al. reported that the C-terminal region was examined
as a potential allosteric site [70], which is consistent with our per-residue decomposition
analysis result.

It is observed that the residues consisting of the S1’ subsite contributed less to ligand
binding than the other subsites, which is consistent with the 3D histogram analysis. Except
for the terminal D295, R298, and Q299 residues that are far from the binding site, the hot
spot residues (N142, M165, D176 and, R188) are identified in the S1 or S4 subsites. This
result suggests that the residues of the S4 and S1 subsites may interact stronger than the
residues of the S1’ and S2 subsites with ligands.

3.7. Hydrogen Bonds Analysis

We carried out a hydrogen bond analysis and investigated its percentage to find which
residues are forming hydrogen bonds strongly with the ligands. The complete hydrogen
bond analysis results are in Supplementary Information Figures S12–S14. It is identified
that if a specific hydrogen bond lasts long during a simulation, it contributed strongly to
binding free energy. For the cases of 11r and 13a, which were the strongest binders with
ff99sb and c36, respectively, the hydrogen bonds that existed for more than 60% of the
entire trajectory were identified to be the most strongly contributing residues H142, S144,
163, and E166. Noticeably, the 11r ligand with ff99sb formed two stable hydrogen bonds,
which existed more than 70% of the entire trajectory (Figure 10).

For the simulation of 11r with ff99sb, the hydrogen atom attached at the NE atom of
H163 formed hydrogen bonds with 11r for 79% of the trajectory. The hydrogen atom at the
N atom of E166 formed hydrogen bonds with 11r for 73%. For the simulation of darunavir
with ff99sb, the oxygen atom at H164 and the hydrogen atom at the N atom of E166 also
formed the hydrogen bonds with darunavir with 84% and 66%, respectively. For the case of
13a with c36, which is the strongest binder with c36, the hydrogen atom at N atom of E166
also existed for 61%, while other hydrogen bonds existed lower than 10% of the trajectory.
Except for the ligands discussed above (11r, 13a, and darunavir), the other ligands showed
that the Mpro–ligand complexes formed hydrogen bonds under 30% with both ff99sb and
c36 (Table 2). For example, X0749, which is the weakest binder with ff99sb, showed that
all hydrogen bonds lasted lower than 10%. These results show that hydrogen bonds play
important roles in strong binding affinity between Mpro–ligand complexes.

E166

N142

T26

Q192

Q189

S46

M49
H41

Figure 10. The hydrogen bond analysis of 11r, which was strongest binder with ff99sb at left. The
residues that were frequently captured in hydrogen bond analysis at right.

The residues consisting of the subsites formed diverse hydrogen bonds during MD
simulation with all of ligands (Tables 3 and 4). N142, E166, and Q189 formed highly stable
hydrogen bonds with the ligands. The atoms that were frequently involved in forming
hydrogen bonds were similar both with ff99sb and c36. Based on these results, the stable
hydrogen bonds appeared to be independent of the force field. Most stable hydrogen bonds
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were formed by the atoms in side chain. Except for the H-N atom in E166, all the frequencies
of each backbone atom involved in hydrogen bonds were less than 10 times. This section
may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation, and the experimental conclusions that can
be drawn.

Table 2. The number of hydrogen bonds of each ligand, which satisfies the thresholds with both
ff99sb and c36. The total 10,000 number of frames was used to perform hydrogen bond analysis.

Threshold 0.1 0.2 0.3 0.5 0.7

Ligand ff99sb c36 ff99sb c36 ff99sb c36 ff99sb c36 ff99sb c36

X0072 0 0 0 0 0 0 0 0 0 0
X0689 2 2 1 2 1 1 0 1 0 1
X0691 1 0 0 0 0 0 0 0 0 0
X0749 0 0 0 0 0 0 0 0 0 0
X1336 3 1 1 0 0 0 0 0 0 0

11r 7 2 4 1 4 1 2 0 2 0
13a 6 1 6 1 2 1 0 1 0 0
13b 2 3 0 1 0 1 0 0 0 0

darunavir 4 4 3 3 3 2 3 1 1 0
lopinavir 5 2 1 1 1 0 0 0 0 0
indinavir 3 1 2 1 1 0 1 0 0 0

Table 3. The Mpro backbone atoms on residues that frequently formed hydrogen bonds with ff99sb
and c36 during simulations. The atoms were based on the hydrogen bonds in the top 5 existence
percentage of each ligand MD simulation by hydrogen bond analysis. The number in parentheses
indicates how many atoms formed hydrogen bonds in all ligand cases.

Residue Backbone

Force Field ff99sb c36

T26 H-N(5), O(2) H-N(7)

H41 O(1) O(1)

S46 O(3), H-N(5) O(1), H-N(5)

N142 H-N(1), O(1) H-N(1)

E166 H-N(10), O(4) H-N(7)

Q189 O(3), H-N(2) O(3), H-N(1)

Table 4. The Mpro side chain atoms on residues that frequently formed hydrogen bonds with ff99sb
and c36 during simulations. The atoms were based on the hydrogen bonds in the top 5 existence
percentage of each ligand MD simulation by hydrogen bond analysis. The number in parentheses
means that how many atoms formed hydrogen bonds in all ligand cases.

Residue Side Chain

Force Field ff99sb c36

T26 HG1-OG1(2), OG1(1) HG1-OG1(3)

H41 HE2-NE2(7), ND1(2), NE2(1) HD1-ND1(5), NE2(2)

S46 HG-OG(10), OG(7) HG-OG(7), OG(4)

N142
HD21-ND2(10),
HD22-ND2(8), HD22-ND2(8), HD21-ND2(7),

OD1(12), ND2(3) OD1(6), ND2(3)

E166 OE1(6), OE2(7) OE1(6), OE2(4)

Q189 HE22-NE2(10), HE21-NE2(10), HE21-NE2(11), HE22-NE2(11),
OE1(1), NE2(1) OE1(15), NE2(1)
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4. Discussion

The ligand binding behaviors depended on which functional group (named branch in
our manuscript) is interacting with the binding site and how a ligand posed in the binding
site. Thus, we investigated their binding behaviors where the branches of ligands were
located at the binding site and how they fluctuated during the MD simulations. In terms of
binding pose, the 11r, 13a, and 13b ligands’ branches are located at different subsites for
11r, 13a, and 13b (Figures 3, S15 and S16).

First, the P1 branch, which is a five-membered ring, is a common functional group
for 11r, 13a, and 13b. The P1 branch of 11r and 13a consistently occupied the S1 subsite
with both ff99sb and c36 (blue circle in Figure 3a,b). With the ff99sb force field, the RMSF
values of the P1 branch of 11r and 13a are 11.1 Å and 10.7 Å, respectively. However,
the P1 of 13b did not occupy the S1 subsite with an RMSF value of 14.9 Å. These results
suggest that the occupancy of the S1 subsite of the P1 branch may play an important role in
Mpro–ligand binding.

Second, the P3 branch of 13a (red circle in Figure 3b, RMSF; 15.9 Å with ff99sb and
14.6 Å with c36, respectively) fluctuated more than the P1’ branch of 11r (yellow circle in
Figure 3a, RMSF; 13.2 Å with ff99sb and 15.4 Å with c36, respectively) at the S1’ subsite.

Additionally, the exposed P3 branch of 13b (red circle in Figure 3c) fluctuated most
during simulations in terms of RMSF of 18.6 Å with ff99sb and 15.2 Å with c36, respectively.
Although the different branch are located at the S1’ subsite, the RMSF values indicate that
occupancy of the S1’ subsite is less important in ligand binding.

Furthermore, hydrogen bond patterns between the ligands and the binding site
residues also showed different patterns by ligands. With ff99sb, 13b formed hydrogen
bonds with Mpro less frequently than 11r and 13a (Figure S12). 11r formed hydrogen bonds
with H163 and E166 for more than 75% of the trajectory (Figure S12f). 13a formed hydrogen
bonds with N142 and S144 for more than 40% (Figure S12g). However, 13b did not form
any hydrogen bond with a frequency of more than 40% (Figure S12h). The maximum
frequency of hydrogen bond of 13b is about 20%, which is less than the halves of those
of 11r and 13a. These indicate that 11r and 13a stay longer in a specific binding pose or
location than 13b because the corresponding binding pose is more stable than the others.
This pattern is also consistent with the MM-PBSA results; ∆G of 11r and 13a are lower than
that of 13b with ff99sb in Figure 8.

In addition to the hydrogen bonds mentioned above, most other hydrogen bonds
of 11r and 13a formed for more than 20 % of the trajectory, whereas 13b did not. This
suggests that 11r and 13a strongly interact with residues at the S1 (F140, N142, C145, H163,
E166, and H172) and the S4 (L167, F185, Q189, Q192) subsite (Figure S12f,g). Thus, this
supports the fact that MM-PBSA analysis can identify the hot spot residues discussed in
Section 3.6. Moreover, only 13b formed hydrogen bonds with the S46 and the T26 residues,
which were not observed in the hydrogen bond patterns of 11r and 13a. T26 and S46
residues are located at the S1’ and S2 subsites, respectively. It suggests that the 13b can
more interact with residues in S1’ andS2 subsite, resulting in different ligand behaviors
compared to 11r and 13a. This result is also consistent with the c36 force field results. 13a,
the strongest binder with c36, showed the most stable hydrogen bond among 11r, 13a, and
13b. Furthermore, 13b more frequently formed a hydrogen bond with T26 in Figure S13.

In this study, we utilized the MM-PBSA approach to investigate the hot spot residues
of SARS-CoV-2 Mpro with three different force fields: ff99sb, c36, and g54a7. There was
no study that performed a comparison between different force fields. Here, we used the
force fields ff99sb, c36, and g54a7 and compared their MM-PBSA analysis results. If the
MM-PBSA methodology and all three force fields are well matured, all binding affinity
estimates would have been be similar and show a reasonable correlation.

However, the estimated absolute binding energies of Mpro and known ligands calcu-
lated with MM-PBSA were not consistent between three different force fields. By comparing
the MM-PBSA results from the tested force fields, we found that only the ff99sb and g54a7
results have a weak correlation. On the contrary, the c36 results showed almost no corre-
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lation with the g54a7 and ff99sb results. The binding energies from c36 were consistently
estimated higher than those of both ff99sb and g54a7. These results suggest that MM-PBSA
results heavily depend on the choice of force field and that no single force field is able
to predict the correct relative ranking of experimental binding affinities of the Mpro com-
plexes. In other words, one should be careful in comparing binding free energy estimates
obtained with different force fields and the MM-PBSA method, suggesting that the accu-
racy of MM-PBSA calculation is limited. From a practical perspective of drug design, our
results indicate that the MM-PBSA analysis should be used only in the early stage of drug
discovery and more rigorous absolute binding free energy methods, such as alchemical
relative/absolute binding free energy calculations [26,71], should be used in later stages for
more accurate lead optimization.

Based on the residuewise decomposed energies, the terminal residues (D295, R298,
and Q299) were identified to contribute strongly to ligand binding. Because they were far
from the known binding site, they were not considered as a residue that contributes the
binding energy at first glance. However, the terminal residues had averaged decomposed
energy in our ligands: −4.065, −2.582, and −1.383 kcal/mol, respectively, which has
been suggested by the other study that the terminal residues were important in ligand
binding [70]. The decomposed residue energies showed that the residues of the S1 or S4
subsites contributed more strongly to binding energy than the residues in the S1’ or S2
subsites, supporting that the ligand’s atoms or branches located in S1’s subsite fluctuated
more freely than those residues in the S1 or S4 subsites.

5. Conclusions

In growing threat of COVID-19, SARS-CoV-2 main protease (Mpro) is one of the
potential pharmaceutical target protein because Mpro enzyme has no human analogue and
is conserved among corona viruses [5].

There have been computational studies to predict the binding affinities of Mpro–ligand
complexes [13,28,29]. Previous studies only performed MM-GBSA [13,29] or investigated
only two ligands [28], using only one force field, which may affect the prediction quality
heavily. Compared to previous computational studies, we performed MD simulations
of 11 Mpro–ligand complexes with three different force fields and followed by the MM-
PBSA analysis, which yields more accurate binding free energy estimates in general than
MM-GBSA. There was no study that performed a comparison between different force
fields. Here, we used the force fields ff99sb, c36, and g54a7 and compared their MM-PBSA
analysis results. If the MM-PBSA methodology and all three force fields are well matured,
all binding affinity estimates would have been be similar and show a reasonable correlation.

In this study, we investigated the binding affinity of SARS-CoV-2 Mpro with its po-
tential inhibitors to offer insight about Mpro–ligand binding and accelerate Mpro drug
discovery. We benchmarked the absolute binding free energy estimated obtained with three
widely used force fields, ff99sb, c36, and g54a7. Unexpectedly, we identified that MM-PBSA
results with different force fields are not consistent with each other. Only the results with
ff99sb and g54a7 are weakly correlated. These results suggests that MM-PBSA results
highly depend on the choice of force field. This also shows that one should be careful in
comparing binding free energy estimates of Mpro–ligand complexes obtained with different
force fields and the MM-PBSA method. Through energy decomposition analysis, we found
that the residues of Mpro at the S1, S4 subsites or terminal regions play essential roles in
ligand binding. This suggests that these residues may play important roles in developing
drugs. We hope that our results could provide insight into the design and development of
more potency inhibitor against SARS-CoV-2 Mpro and facilitate the drug development for
the treatment of COVID-19.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life12010054/s1, Figure S1: The used ligands in this work. Figure S2:
The partial charge represented ligand figures generated by gaff. Ligands are x0072, x0689, x0691,
x0749, and x1336. Figure S3: The partial charge represented ligand figures generated by gaff. Ligands
are 11r, 13a, 13b, darunavir, lopinavir, and indinavir. Figure S4: The partial charge represented ligand
figures generated by charmm-gui. Ligands are x0072, x0689, x0691, x0749, and x1336. Figure S5:
The partial charge represented ligand figures generated by charmm-gui. Ligands are 11r, 13a, 13b,
darunavir, lopinavir, and indinavir. Figure S6: MM-PBSA decomposed energy per-reisdue with
ff99SB (a) X0072 (b) X0689 (c) X0691 (d) X0749 (e) X1336. Figure S7: MM-PBSA decomposed energy
per-residue with ff99SB (a) 11r (b) 13a (c) 13b (d) darunavir (e) lopinavir (f) indinavir. Figure S8:
MM-PBSA decomposed energy per-residue with c36 (a) X0072 (b) X0689 (c) X0691 (d) X0749 (e) X1336.
Figure S9: MM-PBSA decomposed energy per-residue with c36 (a) 11r (b) 13a (c) 13b (d) darunavir (e)
lopinavir (f) indinavir. Figure S10: MM-PBSA Decomposed energy per-residue with g54a7 (a) X0072
(b) X06889 (c) X0691 (d) X0749 (e) X1336. Figure S11: MM-PBSA Decomposed energy per-residue
with g54a7 (a) 11r (b) 13a (c) 13b (d) darunavir (e) lopinavir (f) indinavir. Figure S12: Hydrogen bond
existence map with ff99SB. The scatter plots show a formed hydrogen bond at corresponding frame.
Figure S13: Hydrogen bond existence map with c36. The scatter plots show a formed hydrogen bond
at corresponding frame. Figure S14: Hydrogen bond existene map with g54a7. The scatter plots show
a formed hydrogen bond at corresponding frame. Figure S15: 3D histogram from the production
trajectories with ff99sb. Figure S16: 3D histogram from the production trajectories with c36. Figure
S17: 3D histogram from the production trajectories with g54a7. Figure S18: The protein-ligand
interaction plot generated by ligPlot+ program with ff99sb force field. Figure S19: The protein-
ligand interaction plot generated by ligPlot+ program with c36 force field. Table S1: Each energetic
components of ∆G component (kcal/mol) of each ligand-M pro calculated by the MM-PBSA analysis.
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