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Artificial Intelligence model to predict
resistances in Gram-negative
bloodstream infections
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Artificial intelligence (AI) models are promising tools for predicting antimicrobial susceptibility in
gram-negative bloodstream infections (GN-BSI). Single-center study on hospitalized patients with
GN-BSI, over 7-year period, aimed to predict resistance to fluoroquinolones (FQ-R), third
generation cephalosporins (3GC-R), beta-lactam/beta-lactamase inhibitors (BL/BLI-R) and
carbapenems (C-R) was performed. Analyses were carried out within a machine learning
framework, developed using the scikit-learn Python package. Overall, 2552 patients were included.
Enterobacterales accounted for 85.5% of isolates, with E. coli, Klebsiella spp, and Proteus spp
being most common. Distribution of resistance was FQ-R 48.6%, 3GC-R 40.1%, BL/BLI-R 29.9%,
and C-R 16.9%. Models’ validation showed good performance predicting antibiotic resistance for
all four resistance classes, with the best performance for C-R (AUC-ROC 0.921 ± 0.013). The
developed pipeline has been made available (https://github.com/EttoreRocchi/ResPredAI), along
with documentation for running the same workflow on a different dataset, to account for local
epidemiology and clinical features.

Correct empirical antibiotic therapy for Gram-negative bloodstream
infection (GN-BSI) is crucial due to its high impact on morbidity and
mortality1,2. Not only patients’ underlying conditions and clinical severity at
presentation, but also local epidemiology and rates of antibiotic resistance
aremilestones in the process of choosing an adequate empirical therapy3,4. If
a broader antibiotic spectrum offers more guarantees in terms of antibiotic
coverage, the narrowest antimicrobial spectrum gives more chances to
reduce pressure and emergence of resistance and/or adverse events asso-
ciated with antibiotic misuse5.

Several studies aimed to predict multidrug resistance in patients with
GN-BSI in order to guide clinicians in the correct empirical therapy choice,
even if they usually addressed a single resistance type or mechanism6–8. In
recent studies, growing attention was driven to find the best time-window
for drug-resistance-predicting models9,10. According to the local laboratory

workflow, predictive models could be used at different windows, such as
Gram staining stage or early species identification, with or without rapid
detection of genotypicmechanisms11. Currently, MALDI-TOF is one of the
most common methods used for rapid identification of pathogens from
positive blood cultures12.

Our study aims to develop an artificial intelligence (AI) model able
to predict a microorganism’s susceptibility to different antibiotic classes
(i.e., fluoroquinolones, 3rd generation cephalosporins, beta-lactam/
beta-lactamase inhibitors, and carbapenems), in patients with a Gram-
negative bloodstream infection identified at species level using the
MALDI-TOF species identification system. The MALDI-based system
was chosen according to the microbiological BSI workflow process of
our laboratory and in order to increase the specificity of our pre-
dictive model.
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Results
Characteristics of population
During the study period, 4497 GN-BSI occurred in our cohort. After
excluding 1945 episodes meeting the exclusion criteria, 2552 patients were
included for analysis (Supplementary Fig. 1). Baseline characteristics of
populations andmicroorganisms are shown in Tables 1 and 2, respectively.

Coefficients of the multivariate logistic regression
The coefficients of the variables used in themultivariable logistic regression
have been computed and reported in Fig. 1 (referred to the whole dataset)
and Supplementary Fig. 2 (restricted only to Enterobacterales). Rectal swab
positivity emerged as a strong predictive factor of antibiotic resistance, in
particular for carbapenem resistance (C-R), fluoroquinolone resistance
(FQ-R), and beta-lactam/beta-lactamase inhibitors resistance (BL/BLI-R).
Among Enterobacterales, Klebsiella pneumoniae was associated with all

types of antibiotic resistance. Conversely, Escherichia coli and Proteus spp.
could strongly predict carbapenem susceptibility.

Results ofmodel validations are shown inFig. 2. Themodel showed the
best performance in predicting carbapenem resistance with AUROC about
0.921 ± 0.013. Subsequently BL/BLI resistance, 3rd generation cephalos-
porins (3GC) and FQ resistance showed accurate prediction with AUROC
of 0.786 ± 0.033, 0.737 ± 0.022, 0.732 ± 0.029, respectively. The same ana-
lysis has been performed also on the Enterobacterales subset; results are
reported in Supplementary Fig. 3.

The detailed performances for the extreme gradient boosting classifier
and themulti-layer perceptron are reported in Supplementary Figs. 4 and 5.

The mean F1-scores over the iterations for the resistant class were
0.626, 0.639, 0.560, and 0.606, while for the susceptible class were 0.889,
0.690, 0.797, 0.727, respectively for carbapenem, fluoroquinolone, BL/BLI
and 3GC resistance. The false omission rates for each antibiotic’s class were
0.035, 0.341, 0.156, and 0.262 respectively for carbapenem,fluoroquinolone,
BL/BLI and 3GC resistance.

The developed pipeline has been made available (https://github.com/
EttoreRocchi/ResPredAI), along with documentation for running the same
workflow on a different dataset, to account for local epidemiology and
clinical features.

Discussion
Using a large database of adult hospitalized patients with GN-BSI, an AI
model was derived and trained to predict resistance or susceptibility to each
of the fourmost commonly used antibiotic classes (i.e.,fluoroquinolones, 3rd

generation cephalosporins, BL/BLI and carbapenemes) starting from
pathogen identification. Applying a penalized approach, our model was
suited to be trained on many variables reducing overfitting and decreasing
the effect of features collinearity. It was validated on 10 iterations (due to the
10-foldouter cross-validation) thus it is robustwith respect to the splittingof
the data between training and testing. The model was trained balancing the
weight of each outcome classes (resistance and susceptibility) based on the
class frequency, so that it can bemore effective also in the prediction on the
underrepresented class.

We deem ourmodel could be useful in the clinical practice to improve
therapeutic management and outcome of patients with GN-BSI. Indeed,
initiation of appropriate antibiotic therapy >12 h from drawing BCs has
been associated with a significant increased risk ofmortality in a large study
of almost 10,000 patients with BSI13. Generally, using MALDI-TOF on
positive BCs, pathogen identification is available within 12 h after collecting
BCs in a significant number of patients. Thus, our model could be useful in
hospitals whereMALDI-TOF is available, to predict resistance pattern from
species identification and starting or modifying empirical treatment. It
could be also complementary to the use of rapid diagnostic assays providing
data on genotype resistance in patients with GN-BSI14. Indeed, genotype
antibiogram forGNbacteria has several limitations as (i) it doesnot account

Table 1 | Characteristics of the study population

Total Population n = 2552

Demographic

Age (years) [mean ± std] 69.5 ± 16.5

Gender (male) 1483 (58.1%)

Underlying Diseases

Congestive heart failure 436 (17.1%)

Chronic Kidney Disease 357 (14%)

Chronic obstructive pulmonary disease 415 (16.3%)

Solid Tumor 698 (27.4%)

Diabetes Mellitus 535 (21%)

Moderate to Severe Liver Disease 316 (12.4%)

Dementia 312 (12.2%)

Immunosuppression

Neutropenia 190 (7.4%)

HIV 12 (0.5%)

Steroids 139 (5.4%)

HSCT 99 (3.9%)

SOT 224 (8.8%)

Setting

Internal Medicine 1791 (70.2%)

Surgery 302 (11.8%)

Intensive Care Unit (ICU) 281 (11%)

Emergency Department 178 (7%)

Site of BSI acquisition

Community acquired 1126 (44.1%)

Hospital acquired 1426 (55.9%)

Rectal Swab positivity for CPE prior BSI 502 (19.7%)

BSI sources

Primary 561 (22%)

Secondary

Lung 224 (8.8%)

Intra-abdominal 602 (23.6%)

UTI 841 (33%)

CVC-related 159 (6.2%)

Other 165 (6.5%)

Length ofHospital Stay after BSI onset (mean
±SD, days)

12.9 ± 20.9

sd standard deviation, HSCT hematopoietic stem cell transplantation, SOT solid organ
transplantation, CPE carbapenemase producing Enterobacterales, BSI bloodstream infection, UTI
urinary tract infection, CVC central venous catheter.

Table 2 | Characteristics of pathogens

Pathogen N C-R
N (%)
432
(16.9%)

FQ-R
N (%)
1242
(48.6%)

BL/BLI-R
N (%)
764
(29.9%)

3GCs-R
N (%)
1024
(40.1%)

Escherichia coli 1126 8 (0.7) 621 (55.1) 204 (18.1) 416 (36.9)

Klebsiella spp. 748 299 (40) 448 (59.9) 444 (59.3) 475 (63.5)

Enterobacter spp. 128 17 (13.3) 16 (12.5) 39 (30.5) 47 (36.7)

Proteus spp 79 0 45 (57) 1 (1.3) 28 (35.4)

Enterobacterales 2181 324 (14.9) 1130 (51.8) 688 (31.5) 966 (44.3)

Pseudomonas spp. 291 54 (18.5) 65 (22.3) 72 (24.7) 55 (18.9)

Acinetobacter spp. 80 54 (67.5) 47 (58.7) 4 (5) 3 (3.7)

FQ-R fluoroquinolone resistance, 3GCs-R third generation cephalosporins resistance, BL/BLI-R
beta lactam/beta lactamase inhibitor resistance (amoxicillin/clavulanate and piperacillin/
tazobactam), C-R carbapenem resistance.
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for differential phenotypic expression or penetrance of a given resistance
gene which could lead to overestimates of resistance; (ii) potential dis-
crepancies between genotype and phenotype due to a broad spectrum of
resistance determinants mainly in non-fermenting strains, mostly Pseudo-
monas aeruginosa; (iii) potential off-target mechanisms; and (iv) costs15.
Thus, application of an AI model in settings where drug resistance is
endemic could be useful for either diagnostic or antibiotic stewardship
purposes. In addition, the application of AI model may be feasible even in
centers where clinical microbiologists, infectious disease consultants and/or
antimicrobial stewardship staff are not available 24/716.

In our model, higher sensitivity rather than specificity in predicting
resistance to antibiotics’ class was accepted. This means we obtained high
negative predictive value and consequently very little false omission rates,
particularly for carbapenem resistance. This choice minimizes the prob-
ability of inappropriate antibiotic therapy in the very early phase. On the
other hand, from a stewardship perspective, it could lead to unnecessary
broader spectrum antibiotics use, at least in the empirical phase. To avoid
antibiotic misuse, if applicable, prompt de-escalation as soon as phenotypic
antibiogram is available is strongly recommended17.

Our study has some limitations. The single-center design may be a
limit to the generalization of our results. The model trained on the
described cohort could have been influenced by the local epidemiology
and the patient case mix during the study period. To address this lim-
itation, we have provided the developed pipeline to be trained and tested
potentially in any center, to properly capture geographical, epidemio-
logical and clinical differences, we expect to find in hospitals from dif-
ferent regions.

To conclude, our AI model is a promising tool able to support clin-
icians in the very early clinical decision-process, integrating Gram-negative
MALDI-TOF species identification with very few significant demographic,
clinical and microbiological variables, to return rapid information on
potential resistance to main antibiotic classes in patients with GN-BSI.
Prospective multicentric studies are needed in order to further improve its
performance in different settings and validate its clinical usefulness.

Methods
Observational cohort study on all consecutive adult patients hospitalized at
our center and diagnosedwithGN-BSI, from January 1st 2013 toDecember
31st 2019. Patients were excluded if on palliative care, if death occurred
within 48 h from index BSI and when clinical data were incomplete or
unavailable.

The study was conducted according to the declaration of Helsinki and
Good Clinical Practice guidelines and approved by the local Ethics Com-
mittee (no. 894/2021/Oss/AOUBo). Research ethics board approval was
obtained in agreement with Comitato Etico Area Vasta Emilia Centro della
Regione Emilia-Romagna (CE-AVEC). Informed consent was obtained
before enrollment.

Data sources and predictor variables
Patients were screened for enrolment using local microbiology registries.
Clinical charts and hospital electronic records were data sources. Data were
gathered using a dedicated REDCap electronic case report form (eCRF)
hosted by Alma Mater Studiorum - University of Bologna18.

The primary endpoint was antibiotic resistance to four different anti-
biotic classes including FQ-R, 3GC-R, BL/BLI-R and C-R. Beta-lactam/
beta-lactamase inhibitors included amoxicillin/clavulanate and piperacillin/
tazobactam for Enterobacterales, only piperacillin/tazobactam for
Pseudomonas spp.

Exposure variables included demographic (i.e., age, gender), diabetes
(uncomplicated disease or end-organ disease), congestive heart failure,
dementia, chronic obstructive pulmonary disease (COPD), chronic kidney
disease (CKD), liver disease, solid organ tumor (localized or metastatic),
comorbidities according to Charlson comorbidity index19, presence of
immunosuppressive conditions (hematopoietic cell transplantation, neu-
tropenia, solid organ transplantation, HIV, corticosteroids therapy), length
of hospital stay (LOS) fromhospital admission to index BSI, BSI acquisition
source (hospital or community acquired) along with inpatient ward (i.e.,
internal medicine, intensive care unit-ICU, Surgery, Emergency depart-
ment). BSI sources, defined according to US Centers for Disease Control

Fig. 1 | Mean values of the most relevant coefficients of the logistic regressions,
over the 10 iterations of the outer cross-validation, for the four antibiotic
resistances. Each panel shows the mean values of the 10 largest coefficients (in
module, the positive ones, related to resistance, represented in red, the negative ones

in green) of the logistic regressions, over the 10 iterations of the outer cross-
validation. There is one panel for each of the four antibiotic resistances. The blue
error bar of each coefficient represents its standard deviation value over the 10 cross-
validation iterations.
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and Prevention criteria20 were also registered. BSI was defined as “primary”
in case of unidentified source of infection. Data about microbiological
strains were summarized into Enterobacterales (Klebsiella spp, Escherichia
coli, Enterobacter spp.) and non-fermentative Gram-negative (NF-GN)
(Pseudomonas spp., Acinetobacter spp). We also took record of rectal swab
colonization at BSI onset. Correlation heatmap among variables are shown
in Supplementary Fig. 6a, b.

Data analysis
The analyses were carried out within a machine learning framework,
developed using the scikit-learn Python package. The problem here posed
fell in the category of classification tasks, since the aim was to predict the
resistance or susceptibility of a given pathogen to four antibiotic families
evaluating clinical and demographic features. A multivariable logistic clas-
sifier has been used for this purpose since it represents a well-calibrated

model for binary classification. A comparative analysis has been carried out
to evaluate the most predictive model among an extreme gradient boosting
classifier, a multi-layer perceptron and a logistic regression. Although each
model produced robust and consistent performances, the logistic regression
model has been chosen in this study not only because of its interpretability
(especially when compared to a black box model as the multi-layer per-
ceptron), but in particular because of its higher accuracy in predicting the
resistant class of the four antibiotics. The machine learning workflow
consists of a One Versus Rest (OVR) framework that allows to train the
multivariable logistic classifier so that it learns to classify each pathogen as
resistant or susceptible to the four antibiotic classes. The model was trained
within a nested cross validation (CV) to avoid overfitting and ensure more
robust results. The purpose of the 5-fold inner CV was to fine-tune the
hyperparameters of the logistic regression, i.e., the type of penalization
(among no penalization, lasso, ridge and elastic-net) and the penalization

Fig. 2 | Mean confusion matrices and performance metrics over the outer cross-
validation iterations for different types of antibiotic resistance. Each panel shows
the mean row-normalized confusion matrices over the 10 iterations of the outer
cross-validation. The mean value of the weighted F1-score, Matthews Correlation

coefficient and Area Under Receiver Operating Characteristic Curve (AUROC) are
reported for each antibiotic resistance; the associated uncertainty is the standard
deviation of the metrics over the above mentioned 10 iterations.
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factor (see Supplementary Table 1). The 10-fold outer CV evaluated the
robustness of the model to training and test splitting, since the validation
metricswere computedon the test set (corresponding to 10%of the dataset)
for each different split. A sketch of the nested CV workflow is presented in
Supplementary Fig. 7.

Before training the model, a pre-processing step was required; in
particular, after a one-hot encoding to obtain dummy variables for all the
categorical variables present in the dataset, the two continuous variables, i.e.,
the age and the length of hospital stay of the patient, underwent the pro-
cedure of feature scaling through standardization.

As already stated above, in addition to anon-penalizedmodel, different
regularization techniques were also considered: the L1 penalization (lasso),
the L2 penalization (ridge), and a balanced mix between the two (elas-
tic-net).

After training, the models were validated using three metrics: Area
Under Receiver-Operating Curve (AUROC), weighted F1-score and Mat-
thews Correlation coefficient being the most common choices when vali-
dating a binary classifier (especially if the dataset contains unbalanced
classes) since they each provide a different insight on model performance.

As already describedabove, thiswork considers four antibiotics classes.
The first step of the machine learning framework was to train a logistic
regression for each one of these classes independently within a nested cross
validation framework.More specifically, for each antibiotics class, data were
split into 10 folds of the outer CV. The inner CV is instead a 5-folds.

Thus, for each antibiotics class, 10 values for each of three considered
metrics (one for each iteration of the outer CV) were obtained, allowing to
determine a variabilitymeasure (standard deviation) of themetrics over the
10 iterations.

Once themodel was trained, the coefficients for each feature have been
extracted to see the impact of each variable on the outcome of the model.
Since each logistic regression is trained 10 times (for a 10-folds CV), each
feature has been associated with 10 coefficients that have been summarized
using their mean and standard deviation.

Finally, we evaluated the positive predictive values (PPV) and the
negative predictive values (NPV) of our model, and specifically the false
omission rate (FOR) for each antibiotic’s class, defined as FOR= 1 - NPV,
which more accurately represents the risk of a wrong classification of a
pathogen as susceptible, when it is actually resistant21.

Data availability
The raw data supporting the conclusions of this article and additional,
related documents are available from the corresponding author on rea-
sonable request in the Institutional Research Repository.

Code availability
The code is available online in: https://github.com/EttoreRocchi/
ResPredAI.
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