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Breast cancer is a complex, heterogeneous disease at the phenotypic and
molecular level. In particular, the transcriptional regulatory programs are
known to be significantly affected and such transcriptional alterations are able
to capture some of the heterogeneity of the disease, leading to the emergence
of breast cancer molecular subtypes. Recently, it has been found that network
biology approaches to decipher such abnormal gene regulation programs, for
instance by means of gene co-expression networks, have been able to recapitu-
late the differences between breast cancer subtypes providing elements to
further understand their functional origins and consequences. Network biology
approaches may be extended to include other co-expression patterns, like those
found between genes and non-coding transcripts such as microRNAs (miRs).
As is known,miRs play relevant roles in the establishment of normal and anom-
alous transcription processes. CommodoremiRs (cdre-miRs) have been defined
as miRs that, based on their connectivity and redundancy in co-expression net-
works, are potential control elements of biological functions. In this work, we
reconstructed miR–gene co-expression networks for each breast cancer molecu-
lar subtype, from high throughput data in 424 samples from the Cancer
GenomeAtlas consortium.We identified cdre-miRs in three out of fourmolecu-
lar subtypes. We found that in each subtype, each cdre-miR was linked to a
different set of associated genes, as well as a different set of associated biological
functions.We used a systematic literature validation strategy, and identified that
the associated biological functions to these cdre-miRs are hallmarks of cancer such
as angiogenesis, cell adhesion, cell cycle and regulation of apoptosis. The rel-
evance of such cdre-miRs as actionable molecular targets in breast cancer is
still to be determined from functional studies.

1. Background
Breast cancer is a heterogeneous disease with many different manifestations.
The heterogeneous nature of breast cancer can be observed at the transcriptional
level, in the different gene expression patterns observed. These differences in
breast cancer are at the basis of molecular classifications, such as the breast
cancer molecular subtypes: Luminal A, Luminal B, Basal and HER2-enriched
[1,2]. These different molecular patterns are associated with different
physiopathological properties, which can be used for clinical applications [3,4].

The transcriptional patterns of breast cancer have been explored in previous
works. Our group has found that, by representing the transcriptional program
of breast cancer molecular subtypes as co-expression networks, it is possible to
capture the differences found between each cancer manifestation [5]. We have
also shown how genes with coordinated expression patterns are found associ-
ated with each cancer subtype, and through these, it is possible to identify and
associate functional perturbations to molecular subtypes [6,7].
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Figure 1. The cdre-miR analysis workflow.
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The regulatory programs of biological phenotypes are not
limited to gene interactions. Elements such as non-coding
RNAs are also involved in the regulation of gene expression.
It has been shown that the transcriptional patterns of these
non-coding RNAs also capture the heterogeneity of breast
cancer molecular subtypes [8]. The species known as micro-
RNA (miR) are a class of non-coding RNA that is currently a
major study subject in cancer. Our group has studied such
miRs from a network biology perspective [9].

Control in complex networks has important applications
[10]. In the context of gene expression regulation, the control
of gene expression, and more importantly, the concerted
regulation of genes associated with biological functions,
could have important biomedical applications. Similar con-
cepts, such as master regulators [11–13], have been explored
in different biological concepts, including cancer. In recent
work, we introduced the concept of Commodore miRs (cdre-
miRs): miRs that are highly connected and non-redundant
in miR–gene co-expression networks in breast cancer, that
are theoretically capable of controlling the state of specific
biological functions by themselves [14]. In this work, we
intend to explore whether this Commodore behaviour can be
found for miRs in networks of different breast cancer sub-
types, how these cdre-miRs differ in each subtype, and how
they are potentially able to influence the activity of biological
processes important for cancer manifestation.
2. Material and methods
The workflow that was followed in this paper consists of the
breast cancer gene and miR data acquisition, the co-expression
network reconstruction, the identification of cdre-miRs, the func-
tional enrichment of cdre-miR neighbourhoods, and the
literature validation of the identified biological functions. This
workflow is represented in figure 1.



Table 1. Network parameters.

Luminal A Luminal B Basal
HER2-
enriched

connected

nodes, miR

269 384 414 587

connected

nodes, gene

2630 2731 2699 4011

edges 6942 6942 6942 6951

connected

components

97 174 212 202
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2.1. Expression data
Expression data for miR and genes in breast cancer were
obtained from the Cancer Genome Atlas. The subset of breast
cancer samples used in the 2012 TCGA publication [8] includes
the molecular subtype sample classification. We acquired this
information from the cBioportal website [15,16]. We downloaded
the expression data for gene and miR, for each molecular sub-
type: Luminal A (lumA), Luminal B (lumB), Basal and HER2-
enriched (HER2) from the Genome Data Commons website
(https://portal.gdc.cancer.gov/repository). In total, 92 basal
subtype samples, 57 HER2-enriched samples, 155 Luminal A
samples and 120 Luminal B samples were acquired.

Thedatasets found in theGDCplatformareprocessedaccording
to the bioinformatic pipelines found in https://docs.gdc.cancer.
gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipe
line/ for genes and https://docs.gdc.cancer.gov/Data/Bioinforma
tics_Pipelines/miRNA_Pipeline/ for miR, which are referenced in
the relevant original publications [8,17]. For this work, we used
FPKM—normalized data as expression values for mRNA, and
reads per million miRNA mapping (RPMMM) data as expression
values for miR.

2.2. MicroRNA–gene bipartite network reconstruction
We reconstructed a bipartite network representing the
co-expression between miR and genes in each molecular subtype.
For this, we used mutual information (MI) as a measure of
miR–gene co-expression. MI has been widely used for the recon-
struction of co-expression networks [5,18–22]. In previous work
by our group, we have successfully reconstructed miR–gene
co-expression networks using this approach [9,14].

For each molecular subtype, we calculated MI for each miR–
genepair based on their expression levels in order to fill an incidence
matrix. We then selected the miR–gene pairs that will be connected
in the network based on their MI values. Those pairs with an MI
value above a certain threshold were kept as links in the network,
while those with an MI value below the threshold were discarded.

This strategy is the same that was used by our group in pre-
vious miR–gene co-expression network studies [9,14]. The MI
threshold selected for each network was set to be that which
allowed us to keep the 0.9999 upper quantile of all possible
links; this is based on a heuristic described by our group pre-
viously [23]. This allows to recover networks that have a
comparable number of edges for each molecular subtype.

2.3. Network analyses
The bipartite networks were analysed for basic network topolo-
gical properties using the igraph package for R [24]. The
calculation of bipartite network properties, including the redun-
dancy coefficient as defined in [25], was computed using the
NetworkX package [26] for Python.

2.4. Commodore microRNA identification
In our previous work regardingmiR–gene co-expression networks
[14], we defined the concept of a cdre-miR: a miR that has a high
number of neighbours, but a low redundancy coefficient (as
defined by [25]) in a miR–gene co-expression network. Briefly,
the redundancy coefficient of a node in a bipartite network
measures the contribution of said node to the connectivity of the
opposite layer: if a highly redundant node is removed, nodes in
the opposite layer will remain connected; whereas if a non-redun-
dant node is removed, the paths connecting the nodes in the
opposite layer may be lost. Consistently with the work cited
above, we are considering a highly connected, non-redundant
miR node to be, in the context of breast cancer, that which has a
degree k≥ 100, and a redundancy coefficient rc≤ 0.5.
2.5. Functional enrichment of Commodore microRNA
neighbourhoods

Each identified cdre-miR has, by definition, a neighbourhood of
at least 100 genes. We identified biological functions that are
associated with these neighbourhoods, and therefore to each
cdre-miR. We performed this functional enrichment through an
over-representation analysis, using the HTSanalyzer package
for R [27]. We tested over-representation of the genesets encom-
passed in the gene ontology biological process (GO-BP) database
[28,29]. We considered a significance threshold of Adjusted
p-value ≤ 10−3 in the hypergeometric test.

2.6. Functional category aggregation
We decided to present all the GO-BP categories found to be signifi-
cantly associated with each cdre-miR. However, it is possible to
leverage the ontological nature of the GO-BP database to group
GO-BP categories that are both functionally related and composed
of similar gene sets. To do this, we used the Wang similarity score
[30], which measures the similarity between GO terms.

We calculated this similarity score for the GO-BP enriched for
each cdre-miR of each subtype (using the GoSemSim package
[31]). Then, we used this as the basis for a hierarchical clustering
method, with which we generated for each cdre-miR, ten sets of
functionally similar GO-BPs. We then selected as a representative
GO-BP for each group, the GO-BP that had the lowest Adjusted.p-
value within the group. The intention behind this is to obtain a
more interpretable set of potential functional targets of cdre-miRs.

2.7. Literature validation
We performed systematic queries to the Pubmed database to
identify previously reported associations between the cdre-
miRs and the functions identified in this work. To do so, we
used the Rentrez package for R (https://github.com/ropensci/
rentrez). For each subtype, for each cdre-miR, we performed a
query of the form mirþ Representative GO� BP considering
each of the 10 function groups associated with each cdre-miR.
3. Results
3.1. MicroRNA–gene co-expression networks
We reconstructed miR–gene co-expression networks for each
molecular subtype. These networks are comparable, by con-
struction, in terms of the number of edges that they contain,
and the number of miR and gene nodes (as they contain all
the miRs and genes measured in the original experiments).
The number of connected (k > 0) nodes and connected com-
ponents (non-single nodes) in each network is variable,
but they are, overall, comparable; this can be seen in table 1.
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Figure 2. miR–gene co-expression network visualizations for each breast cancer molecular subtype; largest connected component shown. (a) Luminal A, (b) Luminal
B, (c) Basal and (d ) HER2-enriched.
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Visualizations of the largest connected components are found in
figure 2. Other network parameters, including degree distri-
bution, are found in electronic supplementary material, file 2.

It should be noted that in the case of HER2, we observe a
slightly higher number of edges—6951, as opposed to 6942 in
the rest of the subtype networks: this is explained due to the
fact that there are links that have the exact same value as the
threshold for HER2, and we did not implement any
tie-breaking methods; we do not consider that the presence
of these marginal edges may affect our downstream analyses.
3.2. Identification of Commodore microRNAs: non-
redundant, highly connected microRNAs

We identified 5 miRs that are non-redundant, and highly
connected in at least one molecular subtype. These are:

— mir-139 and mir-150 in the Luminal A subtype
— mir-99a and mir-708 in the Luminal B subtype
— mir-136 and mir-139 in the Basal subtype.

Figure 3 illustrates how these commodores are rare in the con-
text of miRs in breast cancer subtypes. It should be noted that
there are no cdre-miR in the HER2 molecular subtype, while
each of the other subtypes possesses two cdre-miRs.

Another issue to highlight is the fact that mir-139 is a
commodore in both the Luminal A and Luminal B subtypes.
The scatter plot shows, however, that they do not exhibit the
exact same behaviour in terms of connectivity and redun-
dancy. Electronic supplementary, file 3, contains the degree
and redundancy values of each cdre-miR in every subtype,
which showcases that the behaviour of miRs is different in
each breast cancer manifestation.

3.3. Functional enrichment of Commodore microRNA
neighbourhoods

We analysed whether the neighbourhoods of each cdre-miR
could be associated with biological functions, by means of
a hypergeometric test. We found that all cdre-miRs identified
are linked in this fashion to a number of biological processes,
as seen in table 2. The whole set of enriched processes is
found in electronic supplementary material, file 4.

In figure 4, we represent the biological processes associ-
ated with each cdre-miR as a network. This helps illustrate
how there are some processes associated with several cdre-
miRs, while each cdre-miR has a set of processes that are
uniquely associated with it. Since cdre-miRs are phenotype
dependent, figure 5 helps illustrate more clearly the way in
which cdre-miRs are associated with different functions in
each subtype. Finally, in figure 5d the different behaviour of
mir-139 in the Luminal A and Basal subtypes is illustrated.

Each panel in figure 5 shows an overlap between the func-
tions associated with each cdre-miR: this could be due to
similarity between their respective neighbourhoods. In elec-
tronic supplementary material, file 5, we provide a similarity



hsa-mir-139

hsa-mir-150

hsa-mir-708

hsa-mir-99a hsa-mir-136

hsa-mir-139

1

10

100

1000

0 0.25 0.50 0.75 1.00

redundancy

de
gr

ee

subtype
lumA
lumB
Basal
HER2

Figure 3. Scatter plot of degree versus redundancy coefficient for miR nodes in breast cancer molecular subtype networks. Each subtype is represented by a different
colour. The plot is divided by the commodore thresholds for degree (100) and redundancy coefficient (0.5). The upper-left quadrant contains commodore miRs.

Table 2. Enriched gene ontology biological processes in the gene
neighbourhoods of cdre-miRs.

subtype miR enriched GO-BP

Luminal A hsa-mir-139 113

Luminal A hsa-mir-150 170

Luminal B hsa-mir-708 36

Luminal B hsa-mir-99a 46

Basal hsa-mir-136 102

Basal hsa-mir-139 19
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matrix of each cdre-miR neighbourhood to show that this is
not the case. In other words, each cdre-miR is affecting
biological functions through different co-expressed gene sets.
3.3.1. Biological processes aggregated by functional similarity
We grouped biological processes associated with each cdre-
miR based on their functional similarity, as described in the
methods section. The purpose of this was to reduce the
number of GO-BP terms and aggregate them into the most
representative (and biologically informative) terms. In table 3,
we show, for demonstration purposes, the characteristic
terms for mir-139 in the Luminal A subtype. The full set of
groups is provided as electronic supplementary material, file 6.

3.4. Literature validation results
We systematically searched the biomedical literature to ident-
ify previous mentions of the identified biological functions
associated with each cdre-miR. Table 4 shows the cdre-
miR/function pairs for which at least one literature mention
was found.
4. Discussion
In previous work [23], we identified non-redundant, highly
connected miRs in miR–gene co-expression networks of
breast cancer. We proposed that these so-called ‘commodore’
miRs are important regulatory elements, as they are poten-
tially able to influence the expression level of a large set of
genes by themselves. Furthermore, through this regulatory
action, these miRs could be able to regulate specific biological
processes. As such miR behaviour was not found in healthy
breast tissue networks, we speculated that cdre-miRs could
confer adaptive advantages to the tumour phenotype.

In this work,we explored cdre-miRs in the context of differ-
entmanifestations of breast cancer: themolecular subtypes.We
compared and contrasted these cdre-miRs, as well as their
associated functions, and identified common and unique
traits across the breast cancer landscape. In what follows, we
will be discussing key findings of our analyses; we should
point out that the full set of reconstructed networks, as well
as the sets of cdre-miR gene neighbourhoods, are provided as
electronic supplementary material, files 7 and 8. These open
datasets may lead to further insights beyond what is currently
discussed in this paper.

4.1. Differences in microRNA roles in breast cancer
subtypes

Considering that expression patterns are different between
the molecular subtypes, we expected to find different sets
of cdre-miRs associated with each molecular subtype. This
was the case for three subtypes: Luminal A, Luminal B and
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Basal. In the case of the HER2-enriched, we did not find any
miR that was considered a commodore as by our previously
established definition.

For each of the remaining subtypes, we identified two
miRs that we considered to be highly connected and non-
redundant. None of the subtypes had the same pair of
cdre-miR. Indeed, the only miR that had a commodore
behaviour in two subtypes was mir-139, in the Luminal A
and Basal subtypes; nevertheless, as we mentioned in the
Results section, this miR is linked to a different gene set, as
well as a different function set, in each subtype.

Previous studies have shown that the expression patterns
of molecular subtypes are different not only for genes, but
also for miRs [8]. Since co-expression networks can be
thought to be abstractions of the regulatory program
behind these expression patterns [32], it is expected to find
differences in these networks between subtypes, including
differences in central nodes in the network. The fact that



Table 3. Luminal A, miR-139.

group number characteristic GO-BP characteristic GO-BP name number of GO-BPs

1 GO:0001525 angiogenesis 14

2 GO:0007186 G protein-coupled receptor signalling pathway 15

3 GO:0010628 positive regulation of gene expression 7

4 GO:0043066 negative regulation of apoptotic process 17

5 GO:0006954 inflammatory response 15

6 GO:0006936 muscle contraction 11

7 GO:0006869 lipid transport 13

8 GO:0006069 ethanol oxidation 9

9 GO:0070374 positive regulation of ERK1 and ERK2 cascade 7

10 GO:0098609 cell–cell adhesion 5

Table 4. Literature validation of biological functions associated with cdre-miRs.

subtype miR GO representative term Pubmed mentions

Luminal A hsa-mir-139 angiogenesis 3

Basal hsa-mir-139 angiogenesis 3

Luminal B hsa-mir-708 cell adhesion 1

Basal hsa-mir-136 cell adhesion 5

Basal hsa-mir-139 cell adhesion 2

Luminal A hsa-mir-139 negative regulation of apoptotic processes 2

Luminal A hsa-mir-139 positive regulation of gene expression 7

Basal hsa-mir-136 regulation of signalling receptor activity 1

Luminal A hsa-mir-150 signal transduction 30
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non-redundant, highly connected miRs emerge in most (but
not all) subtypes could be indicative that having such regulat-
ory element provides an advantage for the cancer phenotype.

4.2. Functional roles of Commodore microRNAs
The five cdre-miRs found with our methodology have been
previously reported to be determinant in breast cancer, as
well as other types of cancer. Such is the case of miR-139.
This miR has been found to be a regulator of metastasis-related
pathways in breast cancer [33]. miR-139 has been also reported
as a suppressor of invasion and migration in breast cancer cell
lines, by targeting RAB1A gene [34]. Additionally, it controls
resistance to radiotherapy by targeting pathways of DNA
repair [35]. This miR has been observed in colorectal and gas-
tric cancer [36,37]. In fact, miR-139 is considered as a
biomarker for gastric cancer. It is important to mention that
for breast cancer and breast cancer cell lines, this miR acts on
luminal or basal-like cell lines [33,34], which coincides with
our finding of miR-139 as a cdre-miR in Luminal A and
Basal breast cancer subtypes.

In the case of miR-150, it has been observed to suppress
metastasis in triple-negative breast cancer by targeting
HMGA2 gene [38]. However, it has been reported to have an
opposite behaviour. miR-150 promotes growing and invasion
in breast cancer cell lines by targeting the P2X7 receptor, which
is a pro-apoptotic protein [39]. Further investigation is necess-
ary to clearly distinguish the dual behaviour of this molecule.
The case of miR-99 and miR-708 (cdre-miRs for Luminal B
subtype) is interesting, since there are no reports of its effect in
Luminal B breast cancer subtype or Luminal B-like cell line. In
fact, in Luminal A subtype the miR cluster mir-99a/let-7c/
mir-125b-2 is upregulated compared with Luminal B [40].
However, it has been reported that miR-99a reduced breast
cancer cell proliferation, invasion and migration by targeting
FGFR3 [41]. In a similar case, miR-708 is considered a possible
potential target in triple-negative breast cancer, since miR-708
targets inhibit proliferation pathways inMCF7 andMDA-MB-
231 breast cancer cell lines [42], and reduce metastasis in
triple-negative breast cancer [43].

In the Basal subtype, we found two cdre-miRs, miR-136
and the already mentioned miR-139. miR-136 is considered
a potential target for cancer therapy since it suppresses inva-
sion and metastasis [44,45]. In 2019, Tang et al. [46] observed
that miR-136, miR-139-3p, mir-139-5p, and others resulted
underexpressed in triple-negative breast cancer. This report
strongly supports our finding regarding the functional rel-
evance of miR-136 and miR-139 in Basal-like breast cancer
subtype.

All the aforementioned reports regarding the crucial role
that those miRs exert in cancer phenotypes reinforces our
hypothesis of that miRs with low redundancy, but a high
number of targets (high node degree) may serve as potential
targets for a directed therapy. Further investigation is necess-
ary; however, this approach opens the possibility that an
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automated bioinformatic pipeline may suggest novel
potential biomarkers for other types of cancer.

4.3. Possible advantages of studying Commodore
microRNAs in breast cancer

It is well known that miRs provide a regulatory mechanism
for the control of gene expression [47]. Also known is the
fact that miRs are widely deregulated in most cancers,
although whether these are at the genesis of the disease, or
a consequence of the pathological state, it is not known
[48]. Since cancer is a complex disease, it is possible that
both situations could happen, and even coexist.

Potentially oncogenic miRs are able to confer functional
features to cancer through their action as regulatory elements
of gene expression [49]. Highly central miR nodes in
miR–gene co-expression networks could act as control
elements of gene expression based on their network connec-
tivity, just like other genetic elements have been identified
[50]. By controlling the expression of genes involved in bio-
logical functions, these miRs could in turn control the
activity of the function itself. In this context, cdre-miRs,
both highly connected and non-redundant, could theoreti-
cally be the primary drivers of specific alterations of
biological function.

4.4. Functional heterogeneity and functional
convergence

Having different cdre-miRs in each subtype leads to a varied
landscape of altered functions. As we have shown, each cdre-
miR in each subtype is associated with the expression of
different genes, which in turn leads to differences in the
associated functions. We observe that each cdre-miR has a
set of functions that are unique to it, in the context of the phe-
notype in which it acts as a commodore. This could be one of
the origins of the functional diversity observed and widely
reported in breast cancer [51].

On the other hand, we observe that some functions may
be affected by different cdre-miRs, either in the same or in
different subtypes. The first explanation for this could be
related to the (small) overlaps in gene neighbourhoods
observed between the cdre-miRs. But on a deeper level, this
could be indicative of a convergence in biological process
(de-)regulation. In other words, the control of a given func-
tion (or a significant subset of said function) may confer an
advantage to the tumour phenotype, which emerges regard-
less of the clinical (or molecular) manifestation, through
different regulatory mechanisms. This could also be related
to the lack of cdre-miRs in the HER2-enriched molecular sub-
type: being mostly driven by the amplification of a genomic
region [52], the emergence of cdre-miRs is not needed for
the development of this disease manifestation.

When we observe the terms that define the groups of
functions associated with our cdre-miRs, it can be observed
that several of these refer to well-known processes altered
in cancer. Furthermore, when we look at the list of processes
that were previously mentioned in the literature as being
associated with breast cancer, we see that all of these
belong to the set of functions known as the hallmarks of
cancer [53,54]. While experimental validation is still needed,
if cdre-miRs are indeed acting as functional control elements
specific to different breast cancer manifestations, then these
could be attractive therapeutic options in the context of
precision medicine [55–57].

4.5. Limitations and future directions
Aswith other data-driven approaches to understand transcrip-
tional alterations in cancer, there are some considerations to be
made to reach meaningful conclusions. The presented results
depend on (i) how reliable the data generation process is;
(ii) the use of a proper data preprocessing pipeline; (iii) the suit-
ability of the downstream analysis pipeline. In this regard, we
relied on thewell-documented andwidely validated processes
used by the Cancer Genome Atlas for data generation and
preprocessing. The downstream analysis pipeline presented
here, on the other hand, builds on work developed by many
groups, including ours, around network reconstruction using
information-theoretic measures [5,7,14,23,32] and the wider
computational biology community [58–60].

One open issue remains the way to properly validate the
results. The most straightforward validation is perhaps the
use of a secondary validation dataset. In this regard, previous
studies by our group [61] have used the METABRIC dataset
[62]. However, for the purpose of network reconstruction,
issues such as batch effects and sample sizes may introduce
additional confounding factors. An alternative approach is
the use of cross-validation strategies, such as the ones used
for recent multiomic network reconstructions [63]. Such
approaches have shown that these methods lead to robust
link prediction results.

For this particularwork, our focus is to validate not only the
predictions, but whether action on these miRs offers control on
the identified biological activities. For that purpose, an exper-
imental approach is needed. By using a combination of
agomirs, antagomirs, electrophysiology and biochemical
measures, quantitative results on the effect of our proposed
miRs will be gathered.

5. Conclusion
In this work, we identify highly connected, non-redundant
cdre-miRs in the context of breast cancer molecular subtypes.
cdre-miRs may become important regulatory elements whose
functionality arises from their hierarchy in the co-expression
networks. We found that different molecular subtypes exhibit
different sets of these cdre-miRs, each associated with a specific
set of biological functions. A number of these functions are rel-
evant for the tumour phenotype. Such is the case of
angiogenesis, cell adhesion, regulation of apoptosis and regu-
lation of inter- and intracellular signalling. We observed that
some of the associated functions are unique to each subtype,
reflecting their functional diversity, while others are common.
In many cases, these functions may be behind robustness of
the tumour phenotype via adaptive processes. We found evi-
dence in the literature that supports the fact that some of
these functions are indeed affected by our set of identified
miRs. Such functions are, as stated, well-known hallmarks of
cancer, which could make targeting these miRs a potential
therapeutic alternative for different breast cancer manifes-
tations. Detailed functional studies both in vitro and in vivo
are needed, however, in order to pave the way to clinical inter-
ventions based on this small, specific set of molecular targets.

Data accessibility. Data used were obtained from the Cancer Genome
Atlas through the Genome Data Commons: https://gdc.cancer.

https://gdc.cancer.gov/
https://gdc.cancer.gov/


royalsocietypublishing.org/jo

9
gov/. The list of URLs for each individual dataset, as well as all other
code needed to reproduce the results of this paper can be found at
https://github.com/guillermodeandajauregui/cdre-miR-BrCanSub.

Authors’ contributions. G.D.J. designed the experiment, implemented and
executed computational analysis, wrote first draft. E.H.L. identified
suitable metrics for statistical and biological comparisons, assisted
with model formalization. J.E.E. analysed current and prospective
biological significance of results. All authors contributed to the writ-
ing of the final manuscript. Guillermo de Anda Jáuregui: designed
analysis pipeline; wrote analysis code; performed analyses; wrote
first draft of the manuscript. Jesús Espinal Enriquez: participated in
discussion. Enrique Hernández Lemus: proposed statistical analyses,
designed illustrations, participated in the discussion, edited the
manuscript.
Competing interests. We declare we have no competing interests.

Funding. This work was supported by the Consejo Nacional de Ciencia
y Tecnología through the Cítedras CONACYT program, and the
National Institute of Genomic Medicine, Míxico. Additional support
has been granted by the Laboratorio Nacional de Ciencias de la
Complejidad, from the Universidad Nacional Autínoma de Míxico.
E.H.L. is recipient of the 2016 Marcos Moshinsky Fellowship in the
Physical Sciences.
urnal/rsfs
References
Interface
Focus

11:20200073
1. Hu Z et al. 2006 The molecular portraits of breast
tumors are conserved across microarray platforms.
BMC Genomics 7, 96. (doi:10.1186/1471-2164-7-96)

2. Perou CM et al. 2000 Molecular portraits of human
breast tumours. Nature 406, 747–52. (doi:10.1038/
35021093)

3. Chia SK et al. 2012 A 50-gene intrinsic subtype
classifier for prognosis and prediction of benefit
from adjuvant tamoxifen. Clin. Cancer Res. 18,
4465–72. (doi:10.1158/1078-0432.CCR-12-0286)

4. Parker JS et al. 2009 Supervised risk predictor of
breast cancer based on intrinsic subtypes. J. Clin.
Oncol. 27, 1160–1167. (doi:10.1200/JCO.2008.18.
1370)

5. de Anda-Jáuregui G, Velázquez-Caldelas TE, Espinal-
Enríquez J, Hernández-Lemus E. 2016
Transcriptional network architecture of breast cancer
molecular subtypes. Front. Physiol. 7, 568. (doi:10.
3389/fphys.2016.00568)

6. Alcalá-Corona SA, de Anda-Jáuregui G, Espinal-
Enríquez J, Hernández-Lemus E. 2017 Network
modularity in breast cancer molecular subtypes.
Front. Physiol. 8, 915. (doi:10.3389/fphys.2017.00915)

7. Alcalá-Corona SA, Espinal-Enríquez J, de Anda-
Jáuregui G, Hernández-Lemus E. 2018 The
hierarchical modular structure of HER2+ breast
cancer network. Front. Physiol. 9, 1423. (doi:10.
3389/fphys.2018.01423)

8. Cancer Genome Atlas Network. 2012 Comprehensive
molecular portraits of human breast tumours.
Nature 490, 61–70. (doi:10.1038/nature11412)

9. Drago-García D, Espinal-Enríquez J, Hernández-
Lemus E. 2017 Network analysis of EMT and MET
micro-RNA regulation in breast cancer. Sci. Rep. 7,
13534. (doi:10.1038/s41598-017-13903-1)

10. Liu Y-Y, Slotine J-J, Barabási AL. 2011 Controllability
of complex networks. Nature 473, 167–73. (doi:10.
1038/nature10011)

11. Lefebvre C et al. 2010 A human B-cell interactome
identifies MYB and FOXM1 as master regulators of
proliferation in germinal centers. Mol. Syst. Biol. 6,
377. (doi:10.1038/msb.2010.31)

12. Moran B, Rahman A, Palonen K, Lanigan FT,
Gallagher WM. 2017 Master transcriptional
regulators in cancer: discovery via reverse
engineering approaches and subsequent validation.
Cancer Res. 77, 2186–2190. (doi:10.1158/0008-
5472.CAN-16-1813)
13. Tovar H, García-Herrera R, Espinal-Enríquez J,
Hernández-Lemus E. 2015 Transcriptional master
regulator analysis in breast cancer genetic networks.
Comput. Biol. Chem. 59, 67–77. (doi:10.1016/j.
compbiolchem.2015.08.007)

14. de Anda-Jáuregui G, Espinal-Enríquez J, Drago-
García D, Hernández-Lemus E. 2018 Nonredundant,
highly connected microRNAs control functionality in
breast cancer networks. Int. J. Genomics 2018,
9585383. (doi:10.1155/2018/9585383)

15. Cerami E et al. 2012 The cBio cancer genomics
portal: an open platform for exploring
multidimensional cancer genomics data. Cancer
Discov. 2, 401–404. (doi:10.1158/2159-8290.CD-12-
0095)

16. Gao J et al. 2013 Integrative analysis of complex
cancer genomics and clinical profiles using the
cBioPortal. Sci. Signal 6, pl1. (doi:10.1126/scisignal.
6273er1)

17. Chu A, Robertson G, Brooks D, Mungall AJ, Birol I,
Coope R, Ma Y, Jones S, Marra MA. 2016 Large-scale
profiling of microRNAs for the cancer genome atlas.
Nucleic Acids Res. 44, e3. (doi:10.1093/nar/gkv808)

18. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS.
2000 Discovering functional relationships between
RNA expression and chemotherapeutic susceptibility
using relevance networks. Proc. Natl Acad. Sci. USA
97, 12182–12186. (doi:10.1073/pnas.220392197)

19. Chan TE, Stumpf MPH, Babtie AC. 2019 Gene regulatory
networks from single cell data for exploring cell fate
decisions. Methods Mol. Biol. 1975, 211–238. (doi:10.
1007/978-1-4939-9224-9_10)

20. Margolin AA, Nemenman I, Basso K, Wiggins C,
Stolovitzky G, Favera RD, Califano A. 2006 ARACNE:
an algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular
context. BMC Bioinf. 7(Suppl. 1), S7. (doi:10.1186/
1471-2105-7-S1-S7)

21. Meyer PE, Kontos K, Lafitte F, Bontempi G. 2007
Information-theoretic inference of large
transcriptional regulatory networks. EURASIP
J. Bioinform. Syst. Biol. 2007, 79879. (doi:10.1155/
2007/79879)

22. Watkinson J, Liang K-C, Wang X, Zheng T,
Anastassiou D. 2009 Inference of regulatory gene
interactions from expression data using three-way
mutual information. Ann. N. Y. Acad. Sci. 1158,
302–313. (doi:10.1111/j.1749-6632.2008.03757.x)
23. de Anda-Jáuregui G, Alcalá-Corona SA, Espinal-
Enríquez J, Hernández-Lemus E. 2019 Functional
and transcriptional connectivity of communities in
breast cancer co-expression networks. Appl. Netw.
Sci. 4, 1–13. (doi:10.1007/s41109-018-0108-x)

24. Csardi G, Nepusz T. 2006 The igraph software
package for complex network research. Inter
J. Complex Syst. 1695, 1–9.

25. Latapy M, Magnien C, Vecchio ND. 2008 Basic
notions for the analysis of large two-mode
networks. Soc. Netw. 30, 31–48. (doi:10.1016/j.
socnet.2007.04.006)

26. Hagberg AA, Schult DA, Swart PJ. 2008 Exploring
network structure, dynamics, and function using
networkX. In Proc. 7th Python in Science Conf.,
Pasadena, California, USA (eds G Varoquaux, T
Vaught, J Millman), pp. 11–15.

27. Wang X, Terfve C, Rose JC, Markowetz F. 2011
HTSanalyzeR: an R/Bioconductor package for
integrated network analysis of high-throughput
screens. Bioinformatics (Oxford, England) 27,
879–880. (doi:10.1093/bioinformatics/btr028)

28. Ashburner M. 2000 Gene ontology: tool for the
unification of biology. The gene ontology
consortium. Nat. Genet. 25, 25–29. (doi:10.1038/
75556)

29. The Gene Ontology Consortium. 2017 Expansion of
the Gene Ontology knowledgebase and resources.
Nucleic Acids Res. 45, D331–D338. (doi:10.1093/
nar/gkw1108)

30. Wang JZ, Du Z, Payattakool R, Yu PS, Chen C-F.
2007 A new method to measure the semantic
similarity of GO terms. Bioinformatics (Oxford,
England) 23, 1274–1281. (doi:10.1093/
bioinformatics/btm087)

31. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. 2010
GOSemSim: an R package for measuring semantic
similarity among GO terms and gene products.
Bioinformatics 26, 976–978. (doi:10.1093/
bioinformatics/btq064)

32. de Anda-Jáuregui G, Espinal-Enriquez J, Hernández-
Lemus E. 2019 Spatial organization of the gene
regulatory program: an information theoretical
approach to breast cancer transcriptomics. Entropy
21, 195. (doi:10.3390/e21020195)

33. Krishnan K et al. 2013 mir-139-5p is a regulator of
metastatic pathways in breast cancer. RNA 19,
1767–1780. (doi:10.1261/rna.042143.113)

https://gdc.cancer.gov/
https://github.com/guillermodeandajauregui/cdre-miR-BrCanSub
https://github.com/guillermodeandajauregui/cdre-miR-BrCanSub
http://dx.doi.org/10.1186/1471-2164-7-96
http://dx.doi.org/10.1038/35021093
http://dx.doi.org/10.1038/35021093
http://dx.doi.org/10.1158/1078-0432.CCR-12-0286
http://dx.doi.org/10.1200/JCO.2008.18.1370
http://dx.doi.org/10.1200/JCO.2008.18.1370
http://dx.doi.org/10.3389/fphys.2016.00568
http://dx.doi.org/10.3389/fphys.2016.00568
http://dx.doi.org/10.3389/fphys.2017.00915
http://dx.doi.org/10.3389/fphys.2018.01423
http://dx.doi.org/10.3389/fphys.2018.01423
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.1038/s41598-017-13903-1
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/msb.2010.31
http://dx.doi.org/10.1158/0008-5472.CAN-16-1813
http://dx.doi.org/10.1158/0008-5472.CAN-16-1813
http://dx.doi.org/10.1016/j.compbiolchem.2015.08.007
http://dx.doi.org/10.1016/j.compbiolchem.2015.08.007
http://dx.doi.org/10.1155/2018/9585383
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1126/scisignal.6273er1
http://dx.doi.org/10.1126/scisignal.6273er1
http://dx.doi.org/10.1093/nar/gkv808
http://dx.doi.org/10.1073/pnas.220392197
http://dx.doi.org/10.1007/978-1-4939-9224-9_10
http://dx.doi.org/10.1007/978-1-4939-9224-9_10
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1186/1471-2105-7-S1-S7
http://dx.doi.org/10.1155/2007/79879
http://dx.doi.org/10.1155/2007/79879
http://dx.doi.org/10.1111/j.1749-6632.2008.03757.x
http://dx.doi.org/10.1007/s41109-018-0108-x
http://dx.doi.org/10.1016/j.socnet.2007.04.006
http://dx.doi.org/10.1016/j.socnet.2007.04.006
http://dx.doi.org/10.1093/bioinformatics/btr028
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1093/nar/gkw1108
http://dx.doi.org/10.1093/nar/gkw1108
http://dx.doi.org/10.1093/bioinformatics/btm087
http://dx.doi.org/10.1093/bioinformatics/btm087
http://dx.doi.org/10.1093/bioinformatics/btq064
http://dx.doi.org/10.1093/bioinformatics/btq064
http://dx.doi.org/10.3390/e21020195
http://dx.doi.org/10.1261/rna.042143.113


royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20200073

10
34. Zhang W, Xu J, Wang K, Tang X, He J. 2019 mir-
139-3p suppresses the invasion and migration
properties of breast cancer cells by targeting rab1a.
Oncol. Rep. 42, 1699–1708. (doi:10.1007/s12094-
019-02103-0)

35. Pajic M et al. 2018 mir-139-5p modulates
radiotherapy resistance in breast cancer by
repressing multiple gene networks of DNA repair
and ROS defense. Cancer Res. 78, 501–515. (doi:10.
1158/0008-5472.CAN-16-3105)

36. Hou J, Zhuo H, Chen X, Cheng J, Zheng W, Zhong
M, Cai J. 2020 Mir-139-5p negatively regulates
pmp22 to repress cell proliferation by targeting the
nf-κb signaling pathway in gastric cancer.
Int. J. Biol. Sci. 16, 1218. (doi:10.7150/ijbs.40338)

37. Miyoshi J, Toden S, Yoshida K, Toiyama Y, Alberts
SR, Kusunoki M, Sinicrope FA, Goel A. 2017 Mir-
139-5p as a novel serum biomarker for recurrence
and metastasis in colorectal cancer. Sci. Rep. 7,
43393. (doi:10.1038/srep43393)

38. Tang W, Xu P, Wang H, Niu Z, Zhu D, Lin Q, Tang L,
Ren L. 2018 MicroRNA-150 suppresses triple-
negative breast cancer metastasis through targeting
hmga2. OncoTargets Therapy 11, 2319. (doi:10.
2147/OTT.S161996)

39. Huang S et al. 2013 mir-150 promotes human
breast cancer growth and malignant behavior by
targeting the pro-apoptotic purinergic p2x 7
receptor. PLoS ONE 8, e80707. (doi:10.1371/journal.
pone.0080707)

40. Søkilde R et al. 2019 Refinement of breast cancer
molecular classification by miRNA expression
profiles. BMC Genomics 20, 1–12. (doi:10.1186/
s12864-018-5379-1)

41. Long X, Shi Y, Ye P, Guo J, Zhou Q, Tang Y. 2020
MicroRNA-99a suppresses breast cancer progression
by targeting fgfr3. Front. Oncol. 9, 1473. (doi:10.
3389/fonc.2019.01473)

42. Senthil Kumar KJ, Gokila Vani M, Hsieh H-W, Lin C-
C, Liao J-W, Chueh P-J, Wang S-Y. 2019 MicroRNA-
708 activation by glucocorticoid receptor agonists
regulate breast cancer tumorigenesis and metastasis
via downregulation of nf-κb signaling.
Carcinogenesis 40, 335–348. (doi:10.1093/carcin/
bgz011)

43. Ramchandani D, Lee SK, Yomtoubian S, Han MS,
Tung C-H, Mittal V. 2019 Nanoparticle delivery of
mir-708 mimetic impairs breast cancer metastasis.
Mol. Cancer Ther. 18, 579–591. (doi:10.1158/1535-
7163.MCT-18-0702)

44. Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J,
Kołacińska A, Zawlik I. 2017 Dysregulation of
microRNAs in triple-negative breast cancer. Ginekol.
Pol. 88, 530–536. (doi:10.5603/GP.a2017.0097)

45. Yan M, Li X, Tong D, Han C, Zhao R, He Y, Jin X.
2016 mir-136 suppresses tumor invasion and
metastasis by targeting rasal2 in triple-negative
breast cancer. Oncol. Rep. 36, 65–71. (doi:10.3892/
or.2016.4767)

46. Tang Q, Ouyang H, He D, Yu C, Tang G. 2019
MicroRNA-based potential diagnostic, prognostic
and therapeutic applications in triple-negative
breast cancer. Artif. Cells Nanomed. Biotechnol.
47, 2800–2809. (doi:10.1080/21691401.2019.
1638791)

47. Catalanotto C, Cogoni C, Zardo G. 2016 MicroRNA in
control of gene expression: an overview of nuclear
functions. Int. J. Mol. Sci. 17, 1712. (doi:10.3390/
ijms17101712)

48. Macfarlane L-A, Murphy PR. 2010 MicroRNA:
biogenesis, function and role in cancer. Curr.
Genomics 11, 537–561. (doi:10.2174/
138920210793175895)

49. O’Bryan S, Dong S, Mathis JM, Alahari SK. 2017 The
roles of oncogenic miRNAs and their therapeutic
importance in breast cancer. Eur. J. Cancer 72,
1–11. (doi:10.1016/j.ejca.2016.11.004)

50. Wakai R, Ishitsuka M, Kishimoto T, Ochiai T, Nacher
JC. 2017 Identification of genes and critical control
proteins associated with inflammatory breast cancer
using network controllability. PLoS ONE 12,
e0186353. (doi:10.1371/journal.pone.0186353)

51. Gao R et al. 2017 Nanogrid single-nucleus RNA
sequencing reveals phenotypic diversity in breast
cancer. Nat. Commun. 8, 228. (doi:10.1038/s41467-
017-00244-w)
52. Krishnamurti U, Silverman JF. 2014 HER2 in breast
cancer: a review and update. Adv. Anat. Pathol. 21,
100–107. (doi:10.1097/PAP.0000000000000015)

53. Hanahan D, Weinberg RA. 2000 The hallmarks of
cancer. Cell 100, 57–70. (doi:10.1016/S0092-
8674(00)81683-9)

54. Hanahan D, Weinberg RA. 2011 Hallmarks of
cancer: the next generation. Cell 144, 646–674.
(doi:10.1016/j.cell.2011.02.013)

55. Schmidt MF. 2017 miRNA targeting drugs: the next
blockbusters? Methods Mol. Biol. 1517, 3–22.

56. Sethi S, Ali S, Sethi S, Sarkar FH. 2014 MicroRNAs in
personalized cancer therapy. Clin. Genet. 86, 68–73.
(doi:10.1111/cge.12362)

57. Smith B, Agarwal P, Bhowmick NA. 2017 MicroRNA
applications for prostate, ovarian and breast cancer
in the era of precision medicine. Endocr. Relat.
Cancer 24, R157–R172. (doi:10.1530/ERC-16-0525)

58. Chan TE, Stumpf MPH, Babtie AC. 2017 Gene
regulatory network inference from single-cell data
using multivariate information measures. Cell Syst.
5, 251–267.e3. (doi:10.1016/j.cels.2017.08.014)

59. Khatamian A, Paull EO, Califano A, Yu J. 2018
SJARACNe: a scalable software tool for gene network
reverse engineering from big data. Bioinformatics 35,
2165–2166. (doi:10.1093/bioinformatics/bty907)

60. Villaverde AF, Ross J, Morán F, Banga JR. 2014
Mider: network inference with mutual information
distance and entropy reduction. PLoS ONE 9,
e96732. (doi:10.1371/journal.pone.0096732)

61. Mejía-Pedroza RA, Espinal-Enríquez J, Hernández-
Lemus E. 2018 Pathway-based drug repositioning
for breast cancer molecular subtypes. Front.
Pharmacol. 9, 905. (doi:10.3389/fphar.2018.00905)

62. Curtis C et al. 2012 The genomic and transcriptomic
architecture of 2000 breast tumours reveals novel
subgroups. Nature 486, 346–352. (doi:10.1038/
nature10983)

63. Ochoa S, de Anda-Jáuregui G, Hernández-Lemus E.
2021 An information theoretical multilayer network
approach to breast cancer transcriptional regulation.
Front. Genet. 12, 232. (doi:10.3389/fgene.2021.
617512)

http://dx.doi.org/10.1007/s12094-019-02103-0
http://dx.doi.org/10.1007/s12094-019-02103-0
http://dx.doi.org/10.1158/0008-5472.CAN-16-3105
http://dx.doi.org/10.1158/0008-5472.CAN-16-3105
http://dx.doi.org/10.7150/ijbs.40338
http://dx.doi.org/10.1038/srep43393
http://dx.doi.org/10.2147/OTT.S161996
http://dx.doi.org/10.2147/OTT.S161996
http://dx.doi.org/10.1371/journal.pone.0080707
http://dx.doi.org/10.1371/journal.pone.0080707
http://dx.doi.org/10.1186/s12864-018-5379-1
http://dx.doi.org/10.1186/s12864-018-5379-1
http://dx.doi.org/10.3389/fonc.2019.01473
http://dx.doi.org/10.3389/fonc.2019.01473
http://dx.doi.org/10.1093/carcin/bgz011
http://dx.doi.org/10.1093/carcin/bgz011
http://dx.doi.org/10.1158/1535-7163.MCT-18-0702
http://dx.doi.org/10.1158/1535-7163.MCT-18-0702
http://dx.doi.org/10.5603/GP.a2017.0097
http://dx.doi.org/10.3892/or.2016.4767
http://dx.doi.org/10.3892/or.2016.4767
http://dx.doi.org/10.1080/21691401.2019.1638791
http://dx.doi.org/10.1080/21691401.2019.1638791
http://dx.doi.org/10.3390/ijms17101712
http://dx.doi.org/10.3390/ijms17101712
http://dx.doi.org/10.2174/138920210793175895
http://dx.doi.org/10.2174/138920210793175895
http://dx.doi.org/10.1016/j.ejca.2016.11.004
http://dx.doi.org/10.1371/journal.pone.0186353
http://dx.doi.org/10.1038/s41467-017-00244-w
http://dx.doi.org/10.1038/s41467-017-00244-w
http://dx.doi.org/10.1097/PAP.0000000000000015
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1111/cge.12362
http://dx.doi.org/10.1530/ERC-16-0525
http://dx.doi.org/10.1016/j.cels.2017.08.014
http://dx.doi.org/10.1093/bioinformatics/bty907
http://dx.doi.org/10.1371/journal.pone.0096732
http://dx.doi.org/10.3389/fphar.2018.00905
http://dx.doi.org/10.1038/nature10983
http://dx.doi.org/10.1038/nature10983
http://dx.doi.org/10.3389/fgene.2021.617512
http://dx.doi.org/10.3389/fgene.2021.617512

	Highly connected, non-redundant microRNA functional control in breast cancer molecular subtypes
	Background
	Material and methods
	Expression data
	MicroRNA–gene bipartite network reconstruction
	Network analyses
	Commodore microRNA identification
	Functional enrichment of Commodore microRNA neighbourhoods
	Functional category aggregation
	Literature validation

	Results
	MicroRNA–gene co-expression networks
	Identification of Commodore microRNAs: non-redundant, highly connected microRNAs
	Functional enrichment of Commodore microRNA neighbourhoods
	Biological processes aggregated by functional similarity

	Literature validation results

	Discussion
	Differences in microRNA roles in breast cancer subtypes
	Functional roles of Commodore microRNAs
	Possible advantages of studying Commodore microRNAs in breast cancer
	Functional heterogeneity and functional convergence
	Limitations and future directions

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


