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Abstract: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and
plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives
were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model
to obtain correlation information between HPPD inhibitory activity and the molecular structure. A
credible and predictive Topomer CoMFA model was established by “split in two R-groups” cutting
methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used
to screen out more active compounds and was optimized through the auto in silico ligand directing
evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds
with theoretically good HPPD inhibition were obtained by combining the high-activity contribution
substituents in the existing molecules with the R-group search via Topomer search. Molecular
docking results revealed that most of the 22 fresh compounds could form stable π-π interactions.
The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like
properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated
that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean
square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new
compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This
study provides beneficial insights for subsequent HPPD inhibitor design.

Keywords: HPPD; Topomer CoMFA; molecular docking; molecular dynamics; AILDE

1. Introduction

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a catalytic enzyme in the synthesis
of plastoquinone (PQ) and tocopherol in organisms that converts 4-hydroxyphenylpyruvate
(HPPA) to homogentisic acid (HGA) [1–3]. Phytoene will accumulate once the production
of PQ is affected. If the HPPD inhibitor interferes with the conversion of HPPA to HGA, it
will lead tissue necrosis and albinism symptoms and even plant death [4,5]. Plants in the
sun may eventually suffer death with albino symptoms if HPPD inhibitors interfere with
the transformation of HPPA to HGA. As a consequence, HPPD becomes a critical latent
target for developing novel herbicides [6–9]. HPPD based herbicides play a vital role in
rice production by inhibiting the photosynthesis of weeds [10,11]. However, contradictions,
such as crop selectivity, weed resistance, herbicide residues, and cost in the development of
new herbicides, appear gradually, so it is urgent to explore new green HPPD inhibitors to
address these challenges [12,13].

Computer technology promotes drug development and provides theoretical guidance
for drug design. Topomer comparative molecular field analysis (Topomer CoMFA), a
combination of the initial “Topomer” method and CoMFA technology with 3D-quantitative
structure-activity relationship (3D-QSAR) technology and autocomplete regression analysis
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can be used to predict the physicochemical properties or biological activity of compounds
and screen the database [14,15]. Topomer CoMFA model has been widely used in drug
design, such as for Alzheimer’s disease, human immunodeficiency virus (HIV), hyperc-
holesterolemia, and breast, lung or renal cell carcinoma [16–19]. The most attractive feature
is that Topomer CoMFA provides a relatively objective model because of the wholly auto-
matic process [20,21]. In addition, it facilitates the development of emerging target enzyme
inhibitors. The models based on 37 derivatives of 2-phenylquinazolin-4-one predicted
novel quinazolinone derivatives as potent tankyrase inhibitors [22–24]. A Topomer CoMFA
model was established based on sulfonylurea herbicides, by which 36 new potential in-
hibitors were obtained by filtration in the ZINC database [25]. Novel antibacterial agents
against phytophthora capsici and cucumber peronospora were developed by the Topomer
CoMFA model based on carboxylic acid amide fungicides [26]. Fourteen potential human
HPPD (hHPPD) inhibitors were identified by Topomer CoMFA model screening [27].

Molecular dynamics (MD) simulation is useful for studying protein motion. Drug
binding and molecular recognition can be studied by MD simulations [28,29]. Binding free
energy identifies the stability of the binding of major residues in protein-ligand interac-
tions, and the molecular mechanical potential energy and solvation free energy during the
binding process of the enzyme and the inhibitor have been calculated [30,31]. It revealed
that hesperidin, remdesivir, quercetin and sulabiroin-A may be potential natural inhibitors
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [32]. Two potential trike-
tone herbicides have been compared with commercial mesotrione and (2-(aryloxyacetyl)
cyclohexane-1,3-dione) by MD simulations, and the screening results are helpful to obtain
HPPD inhibitors [33]. The calculation results are more intuitively represented by root mean
square deviation (RMSD) and root mean square fluctuation (RMSF) [34].

Hit-to-lead (H2L) is employed to optimize the structure of the compounds, which
has been increasingly studied in medicinal chemistry. It has been used against hepatitis
B virus (HBV) polycyclic pyridone drugs [35]. In research on antimalarial drugs, two
potential drugs were designed via the H2L method, and the obtained compound activities
were verified [36]. Auto in silico ligand directing evolution (AILDE, http://chemyang.
ccnu.edu.cn/ccb/server/AILDE/ accessed on 10 February 2021) technology can rapidly
identify drug leads in close chemical space [37]. AILDE greatly improves the discovery and
synthesis efficiency of potential inhibitors, by which it chemically modifies the molecular
fragments of the hit compounds [38].

In this study, a Topomer CoMFA model was built based on 35 pyridine HPPD in-
hibitors, and potential inhibitors were formed through virtual screening of the more active
R-groups in the Bailingwei database (approximately 50,000 fragments). Molecular docking
studies further elucidated the interaction between the ligand and receptor. The absorption,
distribution, metabolism, excretion and toxicity (ADMET) of the obtained compounds were
calculated. The compounds with the best MD simulation verification were submitted to
the AILDE server to promote the hit compounds. The filter strategy is shown in Figure 1.

http://chemyang.ccnu.edu.cn/ccb/server/AILDE/
http://chemyang.ccnu.edu.cn/ccb/server/AILDE/
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Table 1. Statistical Results of the Topomer CoMFA. 

Cutting Method q2 r2 N F SEE Intercept 
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The large q2 and r2 (q2 = 0.703, r2 = 0.957) indicated that the prediction was statistically 
significant. Linear regression plots of experimental and predicted data of HPPD inhibition 
are shown in Figure 2, showing that the experimental and predicted values were uni-
formly distributed near the 45° line, which indicated excellent prediction ability. This fea-
ture was common in multiple models with screening and prediction capabilities [39–41]. 
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Figure 1. The screening workflow applied to design novel HPPD inhibitors.

2. Results and Discussion
2.1. Topomer CoMFA Analysis

The Topomer CoMFA model statistical results are shown in Table 1.

Table 1. Statistical Results of the Topomer CoMFA.

Cutting Method q2 r2 N F SEE Intercept

“split in two R-groups” 0.703 0.957 6 95.338 0.046 4.98

The large q2 and r2 (q2 = 0.703, r2 = 0.957) indicated that the prediction was statistically
significant. Linear regression plots of experimental and predicted data of HPPD inhibition
are shown in Figure 2, showing that the experimental and predicted values were uniformly
distributed near the 45◦ line, which indicated excellent prediction ability. This feature was
common in multiple models with screening and prediction capabilities [39–41].
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The steric and electrostatic fields are displayed as contour maps. Figure 3a,b show the
steric contour maps of the R1 and R2 groups. The green profile enhanced the herbicidal
activity by bulky substituents, while the yellow profile enhanced the inhibitory effect by
small substituents. A green outline with a large overlap with the plane of the 2-, 3- and
4-positions of the piperidinone of ZD-12 (IC50 = 0.325 µM) indicated that the activity can
be increased by selecting bulkier substituents at these sites (Figure 3a). As displayed in
Figure 3b, a large green outline near the 3-position was also found in the R2 group. For
example, compounds ZD-8 (IC50 = 0.283 µM) and ZD-9 (IC50 = 0.261 µM) exhibited good
activities because of mesyl substituents.
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The electrostatic fields are shown in red and blue in the contour maps (Figure 3c,d).
For increased weeding activity, red is suitable for negatively charged substituents, and
blue isolines are suitable for positively charged substituents. As revealed in Figure 3c,
position 4 of the pyridine ring showed a large red outline, and this position should be
substituted by a negative charge. The blue outline near the N atom indicated that selecting
a positively charged substituent at the N atom site would increase the activity. In Figure 3d,
there is a large red outline at the 2 and 3 positions of the phenyl group, indicating that
negative charge substitution at this position would increase the activity. For example, ZD-24
(IC50 = 1.202 µM) was less active than ZD-27 (IC50 = 0.425 µM) due to the methyl being
replaced by -Br at the 2-position. For example, the activity of ZD-3 (IC50 = 1.365 µM) was
worse than ZD-4 (IC50 = 0.998 µM) due to methyl being replaced by -CF3 at the 3-position,
and the activity of ZD-29 (IC50 = 1.589 µM) was worse than ZD-26 (IC50 = 0.998 µM) due to
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the methyl being replaced by -Cl at the 3-position. A similar effect was observed between
compounds ZD-33 (IC50 = 7.656 µM) and ZD-32 (IC50 = 1.419 µM).

2.2. Topomer Search

Topomer search was employed to screen similar structures or high contribution sub-
stituents with HPPD inhibitory activity. The R2-group model was developed to screen for
approximately 50,000 fragments. The hit substituents were ranked according to their value
of contribution to activity. Ninety-five new compounds were generated with a contribution
value greater than 0.2 as the standard. Then, 64 candidates were obtained by selecting
the configuration with the highest score in molecular docking. Finally, 22 molecules were
obtained based on the existence of metal coordination bonds. The molecular structures and
docking results are shown in Table 2.

Table 2. Structures and -CDOCKER Energy (kcal/mol) of novel designed compounds.

Comp. Structure -CDOCKER Energy Comp. Structure -CDOCKER Energy
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 

Table 2. Structures and -CDOCKER Energy (kcal/mol) of novel designed compounds. 

Comp. Structure -CDOCKER 
Energy 

Comp. Structure -CDOCKER 
Energy 

ZD-9 

H
N

OO

OH SO2CH3

NO2  

53.62 
Native 

ligand 
NN

N

O

O

O OH

 

51.69 

Y1 

H
N

OO

OH

O

O NH
H2N

 

62.76 Y12 

H
N

O

OO

OH

O
O

 

65.51 

Y2 

H
N

H
N

OO

OH

O

 

51.79 Y13 

H
N

O

OO

OH

O
N

F

 

61.75 

Y3 

H
N

H
N

OO

OH

N
H

N
N

 

51.66 Y14 

H
N

OO

OH

O NH2

 

69.09 

Y4 

H
N

OO

OH

O N
H

N

Br

 

63.96 Y15 

H
N

O

OO

OH

O
N NH

 

59.92 

Y5 

H
N

OO

OH

O N
H

N

F

 

54.27 Y16 

H
N

H
N

OO

OH

S

 

59.81 

Y6 

H
N

OO

OH

O

O

N
NH

 

59.48 Y17 

H
N

H
N

OO

OH

N

HN

F

 

58.60 

Y7 

H
N

OO

OH

O

O

N
N

 

65.57 Y18 

H
N

H
N

OO

OH

O

 

54.28 

Y8 

H
N

OO

OH

O
N

 

53.29 Y19 

H
N

OO

OH

N
H

N

 

59.89 

59.81

Y6

Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 5 of 23 
 

 

2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.2. Topomer Search 
Topomer search was employed to screen similar structures or high contribution sub-

stituents with HPPD inhibitory activity. The R2-group model was developed to screen for 
approximately 50,000 fragments. The hit substituents were ranked according to their 
value of contribution to activity. Ninety-five new compounds were generated with a con-
tribution value greater than 0.2 as the standard. Then, 64 candidates were obtained by 
selecting the configuration with the highest score in molecular docking. Finally, 22 mole-
cules were obtained based on the existence of metal coordination bonds. The molecular 
structures and docking results are shown in Table 2. 
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2.3. Molecular Docking Analysis

The CDOCKER program was used to explore the interaction between HPPD (PDB ID:
6JX9) protein residues and ligands [42]. The results were verified by comparing the RMSD
between the original ligand and the same interaction site as the original ligand. As shown
in Figure 4, the ligand after redocking of the original ligand (red) completely overlapped
with the ligand in the complex (cyan) and had exactly the same π-π stacked interactions of
Phe381 and Phe424, indicating that the selected protein can be used as a docking model.
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Subsequently, all the newly designed molecules and the most active ZD-9 were docked
into 6JX9, and the -CDOCKER energy is shown in Table 2. The -CDOCKER energies were
all above that of the native ligand (51.69 kcal/mol), which confirmed that the designed
compounds exhibited better docking results coincidence than the native ligand. The
-CDOCKER energy (65.51 kcal/mol) of Y12 was greater than that of the native ligand. The
π-π stacked interactions between Y12 and Phe392 may be the reason for the -CDOCKER
energies of Y12 compared with the native ligand. The most active compound, ZD-9, was
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selected as the template for detailed description. Two compounds, Y12 and Y14, with the
best -CDOCKER energy were selected to analyze the binding mode at the active pocket.

As shown in Figure 5a, ZD-9 was fully embedded into the active pocket. The hydrogen
atom of the imino formed hydrogen bonds with the oxygen atoms of Ser267; the two
carbonyls produced metal coordination bonded with cobalt ions; and the benzene rings
formed π-π interactions with Phe381 and Phe424. This was consistent with the docking
results reported earlier [43]. Figure 5b showed that the π-π interaction of the pyridine
ring of Compound Y12 was similar to that of ZD-9. Moreover, Phe381 also formed a π-π
interaction with the furan ring of Compound Y12, and Gln379 formed hydrogen bonds
with carbonyl outside the pyridine ring, which made Compound Y12 binding more stable
than ZD-9. Compound Y14 was also well inserted into the active site of the protein, as
shown in Figure 5c. It also interacted with amino acids Phe381 and Phe424, similar to ZD-9,
and the necessary metal coordination bonds and hydrogen bonds also exist.
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2.4. ADMET Prediction

Then, the 22 newly designed compounds were subjected to ADME analysis. The
molecules that exist in the 99% confidence interval of the blood–brain barrier permeability
model and the 99% confidence interval of the human intestinal absorption model were
selected as the hit compounds, and 18 of them showed ADME properties in the acceptable
range (Figure 6). The bayesian score of compounds in the hepatotoxic were less than −0.41
(Table 3). Therefore, these newly designed molecules had excellent physical and chemical
properties, low toxicity and good crop protection.
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Table 3. The ADME predictions of compounds.

Comp. Solubility Level Hepatotoxic CYP2D6_
Applicability

Y1 3 −2.52 13.33
Y2 3 −0.71 18.64
Y3 3 −0.99 15.80
Y4 3 −1.57 14.34
Y5 3 −0.46 13.20
Y6 3 −0.89 12.68
Y7 3 −2.85 15.91
Y8 3 −2.03 14.99
Y9 3 −0.43 17.18
Y10 3 −4.56 11.17
Y11 4 −3.20 12.81
Y12 3 −1.68 11.07
Y13 3 −2.06 13.78
Y14 3 −3.28 13.22
Y15 3 0.84 15.14
Y16 4 −0.73 13.56
Y17 3 −2.25 14.67
Y18 3 −3.45 13.58
Y19 4 −1.24 15.39
Y20 4 −0.09 19.39
Y21 4 −1.01 18.93
Y22 3 −3.68 13.27

Solubility Level: Categorical solubility level. 2: Yes, low; 3: Yes, good; 4: Yes, great. Hepatotoxic: <−0.41: nontoxic;
>−0.41: toxic.

The toxicity prediction (extensible model of ADME) results indicated that the reference
compound ZD-9 is non-mutagenic, noncarcinogenic and degradable. Only nine of the
newly designed compounds met the criteria of non-mutagenicity, non-carcinogenicity and
degradability (Table 4).



Int. J. Mol. Sci. 2022, 23, 7822 9 of 20

Table 4. Toxicity prediction of the new compounds and reference compounds.

Comp. Degradability Mutagenicity Carcinogenicity

ZD-9
√

× ×
Y1 × × ×
Y2

√
× ×

Y3 ×
√

×
Y4 × ×

√

Y5 ×
√

×
Y6 × × ×
Y7

√
× ×

Y8 ×
√

×
Y9

√
× ×

Y10
√

× ×
Y11 × × ×
Y12

√
× ×

Y13 × × ×
Y14

√
× ×

Y15
√

× ×
Y16 × × ×
Y17 ×

√
×

Y18
√

× ×
Y19

√
× ×

Y20
√

× ×
Y21 × × ×
Y22 × × ×

2.5. MD Simulations

To further determine the accuracy of the docking procedure, the native ligand and the
redocked ligand were simulated by MD simulation. The active pocket of the 5 Å residue
around the ligand stabilizes after 10 ns, and the redocked ligand was below the native
ligand, indicating that the redocking procedure will be more stable (Figure 7a). The skeleton
Cα atoms of redocked ligand and native ligand fluctuate at about the same trend after
7.5 ns (Figure 7b). The heavy atoms of the native ligand-receptor were 2.5 ns ahead of the
redocked ligand-acceptor (Figure 7c). The native ligand and the redocked ligand proved
the docking procedure was correct under similar fluctuations and stability.

To further determine the accuracy of the hit, 9 compounds screened by ADMET
were simulated by MD simulation to determine whether the binding of the HPPD-ligand
complex was stable. The overall stability of the system was evaluated by monitoring the
RMSD of skeleton atoms. Skeleton Cα atoms of proteins, active pockets of 5 Å residues
around ligands and heavy atoms of ligands-receptor were simulated in 50 ns. The side
chain flexibility was generally higher than that of the backbone atoms; therefore, the RMSD
of the main chain is a crucial indicator of system stability.

Figure 8a showed that the residues within 5 Å around the protein active pocket ligand
stabilized after 20 ns, and then, the RMSD value remained unchanged. In Figure 8b,
the HPPD-Y12 and HPPD-Y14 complexes fluctuated in a small range at the beginning
and gradually reached equilibrium after 5 ns of simulation. The RMSD values of the
remaining seven HPPD complexes were stable after 10 ns. The stable RMSD values of
complexes Y12 (1.0 Å) and Y14 (0.5 Å) were significantly lower than those of the other
seven compounds, indicating that these two complexes were more stable. The heavy atoms
of the ligands-receptor tended to balance after 10 ns, and the RMSD value remained stable
(Figure 8c).
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A lower RMSD of the docking complexes was a good indicator of system stability. The
structural fluctuations of the HPPD-Y12 and HPPD-Y14 systems were relatively lower than
those of the other molecules. These results suggested that Y12 and Y14 exhibited relatively
favorable binding affinity with HPPD.

In addition, the results of RMSF are shown in Figure 9. The peak represents the region
where the protein fluctuates the most during the simulation. Due to hydrogen bonding
between Asn282, Ser267 and ligands, structural flexibility was significantly increased in the
residue index of 250–300, and the residue index of 350–400 was the π-π stacked interactions
on account of Phe381 (Figure 9a). It was generally observed that the tail (N-terminal and
C-terminal) fluctuated more than other parts of the protein. Secondary structural elements
such as alpha helical and beta strands are generally less volatile than unstructured parts of
proteins than loop regions. This phenomenon was also seen in (Figure 9b,c). All compounds
characterized local changes in the protein chain and simulated fluctuations in RMSF values
corresponding to the terminal portion which were higher than the intermediate portion.
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2.6. AILDE Optimized Hit Compounds and Physicochemical Properties

The AILDE method was the ligand substitution scanning mutagenesis calculation
method, one of the strategies used in H2L optimization in agricultural chemical design [44].
Compound Y12 was submitted to the online server for AILDE verification because it exhib-
ited the best molecular docking and MD simulation verification results. The activities of the
compounds were input into the AILDE server, and computation substituent optimization
was performed by replacing the hydrogen number in the structure (Figure 10a). The results
of the heat map in Figure 10b showed that the redder the compound was, the better the
activity was. For example, if the hydrogen at position 5871 was replaced by chlorine,
the hydrogen at position 5897 was replaced by chlorine or amino, or if the hydrogen at
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positions 5898 and 5903 were replaced by bromine, more active compounds would be
obtained. The overall results based on the corresponding substituents are illustrated in the
histogram in Figure 10c.
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The greatest potential transformation was shown at positions 5871, 5897, 5898, and
5903. Then, five compounds were obtained after screening (Table 5). If the substitution
of the hydrogen atom at position 5897 was by an amino group, the ∆G value was the
smallest; thus, the compound had priority. In summary, the use of AILDE will improve the
efficiency of initial drug discovery, which also provides favorable guidance for subsequent
synthesis work.

The amount of HBA, HBD and AR in the compound is positively correlated with
biological activity [45,46]. It is worth noting that the number of HBA and HBD of S3 is
slightly higher than that of Y12 (Table 6). The electronegativities of the five compounds
obtained are very similar, and their predicted pKa values are less than 6.0, which are even
lower than that of Y12 without optimization. Weak acidity and low Log p are conducive to
the spread and absorption of plants. Based on the physical and chemical properties, the
optimized process is beneficial for obtaining new HPPD inhibitors.
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Table 5. Screening result for 5 compounds.

Comp. S1 S2 S3 S4 S5
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Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. (a) Hydrogen serial numbers; (b) Heat map showing the relationship matrix between the 
substituent positions and substituents (darker red colors indicate compounds with better activities); 
(c) Histogram illustrating the overall result based on substituent positions, which helps to elucidate 
which positions possess the most potential for substitution (X: Hydrogen number, Y: Score). 

The greatest potential transformation was shown at positions 5871, 5897, 5898, and 
5903. Then, five compounds were obtained after screening (Table 5). If the substitution of 
the hydrogen atom at position 5897 was by an amino group, the ΔG value was the small-
est; thus, the compound had priority. In summary, the use of AILDE will improve the 
efficiency of initial drug discovery, which also provides favorable guidance for subse-
quent synthesis work. 

Table 5. Screening result for 5 compounds. 

Comp. S1 S2 S3 S4 S5 

Structure 

NH

OO

O
OH

O
O

Cl

 

NH

O
O

O

OH

O
O

Cl  

H
N

O
O

O

OH

O
O

H2N  

NH

O
O

O

OH

O
O

Br

 

HN O

O
O

OH

O O

Br

 

Hydrogen Number 5871 5897 5897 5898 5903 

ΔG 

(kcal/mol) 
−1.23 −0.98 −1.87 −1.53 −1.23 

ΔH 

(kcal/mol) 
−1.61 −1.27 −2.24 −1.72 −1.25 

−TΔS 
(kcal/mol) 

0.38 0.29 0.37 0.19 0.03 

Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. (a) Hydrogen serial numbers; (b) Heat map showing the relationship matrix between the 
substituent positions and substituents (darker red colors indicate compounds with better activities); 
(c) Histogram illustrating the overall result based on substituent positions, which helps to elucidate 
which positions possess the most potential for substitution (X: Hydrogen number, Y: Score). 

The greatest potential transformation was shown at positions 5871, 5897, 5898, and 
5903. Then, five compounds were obtained after screening (Table 5). If the substitution of 
the hydrogen atom at position 5897 was by an amino group, the ΔG value was the small-
est; thus, the compound had priority. In summary, the use of AILDE will improve the 
efficiency of initial drug discovery, which also provides favorable guidance for subse-
quent synthesis work. 

Table 5. Screening result for 5 compounds. 

Comp. S1 S2 S3 S4 S5 

Structure 

NH

OO

O
OH

O
O

Cl

 

NH

O
O

O

OH

O
O

Cl  

H
N

O
O

O

OH

O
O

H2N  

NH

O
O

O

OH

O
O

Br

 

HN O

O
O

OH

O O

Br

 

Hydrogen Number 5871 5897 5897 5898 5903 

ΔG 

(kcal/mol) 
−1.23 −0.98 −1.87 −1.53 −1.23 

ΔH 

(kcal/mol) 
−1.61 −1.27 −2.24 −1.72 −1.25 

−TΔS 
(kcal/mol) 

0.38 0.29 0.37 0.19 0.03 

Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. (a) Hydrogen serial numbers; (b) Heat map showing the relationship matrix between the 
substituent positions and substituents (darker red colors indicate compounds with better activities); 
(c) Histogram illustrating the overall result based on substituent positions, which helps to elucidate 
which positions possess the most potential for substitution (X: Hydrogen number, Y: Score). 

The greatest potential transformation was shown at positions 5871, 5897, 5898, and 
5903. Then, five compounds were obtained after screening (Table 5). If the substitution of 
the hydrogen atom at position 5897 was by an amino group, the ΔG value was the small-
est; thus, the compound had priority. In summary, the use of AILDE will improve the 
efficiency of initial drug discovery, which also provides favorable guidance for subse-
quent synthesis work. 

Table 5. Screening result for 5 compounds. 

Comp. S1 S2 S3 S4 S5 

Structure 

NH

OO

O
OH

O
O

Cl

 

NH

O
O

O

OH

O
O

Cl  

H
N

O
O

O

OH

O
O

H2N  

NH

O
O

O

OH

O
O

Br

 

HN O

O
O

OH

O O

Br

 

Hydrogen Number 5871 5897 5897 5898 5903 

ΔG 

(kcal/mol) 
−1.23 −0.98 −1.87 −1.53 −1.23 

ΔH 

(kcal/mol) 
−1.61 −1.27 −2.24 −1.72 −1.25 

−TΔS 
(kcal/mol) 

0.38 0.29 0.37 0.19 0.03 

Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. (a) Hydrogen serial numbers; (b) Heat map showing the relationship matrix between the 
substituent positions and substituents (darker red colors indicate compounds with better activities); 
(c) Histogram illustrating the overall result based on substituent positions, which helps to elucidate 
which positions possess the most potential for substitution (X: Hydrogen number, Y: Score). 

The greatest potential transformation was shown at positions 5871, 5897, 5898, and 
5903. Then, five compounds were obtained after screening (Table 5). If the substitution of 
the hydrogen atom at position 5897 was by an amino group, the ΔG value was the small-
est; thus, the compound had priority. In summary, the use of AILDE will improve the 
efficiency of initial drug discovery, which also provides favorable guidance for subse-
quent synthesis work. 

Table 5. Screening result for 5 compounds. 

Comp. S1 S2 S3 S4 S5 

Structure 

NH

OO

O
OH

O
O

Cl

 

NH

O
O

O

OH

O
O

Cl  

H
N

O
O

O

OH

O
O

H2N  

NH

O
O

O

OH

O
O

Br

 

HN O

O
O

OH

O O

Br

 

Hydrogen Number 5871 5897 5897 5898 5903 

ΔG 

(kcal/mol) 
−1.23 −0.98 −1.87 −1.53 −1.23 

ΔH 

(kcal/mol) 
−1.61 −1.27 −2.24 −1.72 −1.25 

−TΔS 
(kcal/mol) 

0.38 0.29 0.37 0.19 0.03 

Int. J. Mol. Sci. 2022, 24, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 10. (a) Hydrogen serial numbers; (b) Heat map showing the relationship matrix between the 
substituent positions and substituents (darker red colors indicate compounds with better activities); 
(c) Histogram illustrating the overall result based on substituent positions, which helps to elucidate 
which positions possess the most potential for substitution (X: Hydrogen number, Y: Score). 

The greatest potential transformation was shown at positions 5871, 5897, 5898, and 
5903. Then, five compounds were obtained after screening (Table 5). If the substitution of 
the hydrogen atom at position 5897 was by an amino group, the ΔG value was the small-
est; thus, the compound had priority. In summary, the use of AILDE will improve the 
efficiency of initial drug discovery, which also provides favorable guidance for subse-
quent synthesis work. 

Table 5. Screening result for 5 compounds. 

Comp. S1 S2 S3 S4 S5 

Structure 

NH

OO

O
OH

O
O

Cl

 

NH

O
O

O

OH

O
O

Cl  

H
N

O
O

O

OH

O
O

H2N  

NH

O
O

O

OH

O
O

Br

 

HN O

O
O

OH

O O

Br

 

Hydrogen Number 5871 5897 5897 5898 5903 

ΔG 

(kcal/mol) 
−1.23 −0.98 −1.87 −1.53 −1.23 

ΔH 

(kcal/mol) 
−1.61 −1.27 −2.24 −1.72 −1.25 

−TΔS 
(kcal/mol) 

0.38 0.29 0.37 0.19 0.03 

Hydrogen Number 5871 5897 5897 5898 5903
∆G

(kcal/mol) −1.23 −0.98 −1.87 −1.53 −1.23

∆H
(kcal/mol) −1.61 −1.27 −2.24 −1.72 −1.25

−T∆S
(kcal/mol) 0.38 0.29 0.37 0.19 0.03

Table 6. Screening result for 5 compounds.

Comp. Log p a pKa a MW
a HBA a HBD a RB a SA a Electronegativity b

Y12 2.11 5.7 355.34 6 2 7 342.81
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3. Methods and Materials
3.1. Information Collection

The structures and bioactivities of the 35 pyridine derivatives employed in this ex-
periment were derived from our laboratory [43]. These pyridine derivatives are different
in aromatic subunit. The collection of derived compounds contained 28 compounds as
training sets and 7 compounds as test sets. Topomer CoMFA model was constructed with
these compounds, and the predictive ability of the model was tested. The bioactivity and
chemical structure are reported using the pIC50 data in Table 7.

The Sketch module in SYBYL was used to construct molecular structures. All com-
pounds were perfected using a Tripos force field and gradient descent with an energy charge
of 0.005 kcal/mol. Gasteiger–Huckel adds partial charges to all compounds. The maxi-
mum iteration coefficient was selected as 1000, and the other parameters default to SYBYL.
Energy minimization was optimized for all molecules. The minimum energy conformation
of the best active compound ZD-9 (6-hydroxy-5-(4-(methylsulfonyl)-2-nitrobenzoyl)-2,3-
dihydropyridin-4(1H)-one) was selected as the template compound.
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Table 7. Pyridine derivatives used for the Topomer CoMFA analysis.
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Unrecognized molecules needed to be cut manually. After cutting, the fragment conforma-
tion was adjusted according to empirical rules to generate the Topomer CoMFA model.
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Figure 11. Splitting scheme used to define the two fragments (R1—red and R2—blue) for developing
Topomer CoMFA model of HPPD inhibitors.

Highly active R-groups were screened from the Bailingwei (2012) database (approx-
imately 50,000 fragments) using Topomer Search. Topomer Search-Details of Distance
(TOPDIST) was selected at 185 to identify the degree of binding. Twenty-two novel pyri-
dine derivatives were obtained, and their activities were predicted by the established
Topomer CoMFA model.

3.3. Molecular Docking

Molecular docking studies were performed using CDOCKER of Discovery Studio
(DS) (Biovia Inc., San Diego, CA, USA, 2020). The pose cluster radius was set to 0.5
in this program to ensure that docking ideas were as diverse as possible. The complex
structure of HPPD (PDB ID: 6JX9) was obtained from the RCSB protein database [42].
Co-crystalline Y17107 was extracted from the enzyme structure, hydrogen was added, and
all the heteroatoms and water molecules were removed. After replenishing all the missing
amino acids, the structure of HPPD was protonated by the CHARMm force field, and all
amino acid side chains were optimized.

3.4. ADMET Prediction

The top 22 compounds for the molecular docking score were predicted in terms
of absorption, distribution, metabolism, excretion and toxicity (ADMET) with DS. Four
pharmacokinetic parameters were calculated, including water solubility, cytochrome P450
(CYP450) binding and hepatotoxicity [43]. Five parameters were selected for toxicity
prediction: oxygen biodegradability, carcinogenicity, ames mutagenicity, developmental
toxicity potential and skin irritation screening.

3.5. MD Simulation

To predict the stability of HPPD protein binding to inhibitors, Amber 16 software was
selected for the MD simulation. The side chain models of the cobalt coordination spheres
of His308, His226 and Glu394 were used to create a builder module in the center of the
metal by selecting the ff14SB field. The resulting structures were immersed in TIP3P water
at a distance of 10 Å around the complexes, and an appropriate amount of counter ions
were appended to the system to neutralize charges. The minimum process used a 2500-step
conjugate gradient and 2500-step maximum descent algorithm. The system was gradually
heated to 298 K by an isovolumic-isothermal, and equilibrium was achieved by simulating
1 ns in the isobaric-isothermal ensemble simulation. Finally, each system executed the
PMEMD program unconstrained in the NTP integration for 50 ns with a time step of 2 fs.
The root mean square deviation (RMSD) was used to evaluate the stability of the system.

3.6. AILDE and Physicochemical Properties

AILDE automatically performs calculations of substitution, energy minimization, and
binding affinity assessments. All hydrogen was removed from the docking ligand-protein
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complex, and the compound was submitted to the online server. The physicochemical
properties of molecules were calculated by the “Small Molecules” of DS. The following
parameters were predicted in the 2D topology descriptor: Log p, pKa, molecular weight
(MW), hydrogen bond acceptors (HBAs), hydrogen bond donors (HBDs), aromatic bonds
(ARs) and surface area (SA). The electronegativity of the compounds was calculated using
the “Connolly” of Gasteiger–Huckel of SYBYL software.

4. Conclusions

In this study, a reliable Topomer CoMFA model was established based on 35 pyridine
HPPD inhibition herbicides. Twenty-two new compounds were designed via Topomer
search according to the Topomer CoMFA model. The molecular docking results indicated
that the ligands formed hydrogen bonds with Ser267 and π-π interactions with Phe381
and Phe424 at the active site. The 22 newly designed compounds were filtered through
ADMET prediction, and finally, 9 compounds were obtained. MD simulations confirmed
that Compounds Y12 and Y14 bear potential HPPD inhibition. Y12 was submitted to the
AILDE platform, and 5 potential inhibitors were found in the activity-improved matrix.
The established screening procedure is of great significance for the design of novel HPPD
based herbicides.
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