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Abstract
Background: In systems biology, network-based pathway analysis facilitates understanding or
designing metabolic systems and enables prediction of metabolic flux distributions. Network-based
flux analysis requires considering not only pathway architectures but also the proteome or
transcriptome to predict flux distributions, because recombinant microbes significantly change the
distribution of gene expressions. The current problem is how to integrate such heterogeneous data
to build a network-based model.

Results: To link enzyme activity data to flux distributions of metabolic networks, we have
proposed Enzyme Control Flux (ECF), a novel model that integrates enzyme activity into
elementary mode analysis (EMA). ECF presents the power-law formula describing how changes in
enzyme activities between wild-type and a mutant are related to changes in the elementary mode
coefficients (EMCs). To validate the feasibility of ECF, we integrated enzyme activity data into the
EMCs of Escherichia coli and Bacillus subtilis wild-type. The ECF model effectively uses an enzyme
activity profile to estimate the flux distribution of the mutants and the increase in the number of
incorporated enzyme activities decreases the model error of ECF.

Conclusion: The ECF model is a non-mechanistic and static model to link an enzyme activity
profile to a metabolic flux distribution by introducing the power-law formula into EMA, suggesting
that the change in an enzyme profile rather reflects the change in the flux distribution. The ECF
model is highly applicable to the central metabolism in knockout mutants of E. coli and B. subtilis.

Background
In systems biology, a mathematical approach is required
to integrate heterogeneous data, such as transcriptome,
proteome, metabolome, and fluxome, to build compre-
hensive metabolic models. Mathematical models are con-
sistently improved or modified by accommodating new
experimental data with the current models, thereby
enhancing the validation of metabolic networks or the
prediction of their dynamic behaviors[1,2].

Network-based pathway analysis becomes a core method
for constructing a mathematical model that predicts the
flux distribution for large-scale metabolic networks. Net-
work-based analysis generally employs a constraint-based
modelling approach [3], e.g., Flux Balance Analysis (FBA)
that uses a stoichiometric matrix and objective function
that define a network's allowable solution space. The tar-
get flux capacity is provided by optimizing specific objec-
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tive functions such as cell growth, energy, or metabolite
synthesis maximization[3,4].

Recent network-based metabolic pathway analysis has
focused on two approaches, elementary modes (EMs) [5]
and extreme pathways[6]. Both consist of a convex set of
vectors used to characterize all steady-state flux distribu-
tions of a biochemical network. The elementary mode is
the minimal set of enzymes that can operate at steady-
state, with all the irreversible reactions operating properly.
Elementary mode or extreme pathway analysis enables an
understanding of a large-scale network, predicting opti-
mal or suboptimal metabolic fluxes under constrained
conditions.

Since some genetic or environmental perturbations often
cause a significant change in gene expression, a network-
based flux analysis requires considering not only pathway
architectures but also the proteins or mRNA transcripts to
predict a flux distribution. However, only a few methods
have been developed that connect such heterogeneous
data to network-based analyses[7,8], e.g., the constraints
from absent model genes with Boolean logic were
employed. A current problem is to explore the relation-
ship between an enzyme activity profile and a metabolic
flux distribution, or how to mathematically integrate such
heterogeneous data to build a network-based model.

To elucidate theoretical relationships between transcrip-
tome or enzyme activities and flux, the control-effective
flux (CEF) method has previously been proposed to pre-
dict gene expression (enzyme) levels through elementary
mode analysis[9], but CEF does not estimate metabolic
flux distributions from transcriptome or enzyme activities
data. In our limited knowledge, there are few efficient
mathematical models that use an enzyme activity profile
to estimate a metabolic flux distribution. The mathemati-
cal connections between enzymes and flux distributions
are a very important task for a network-based model.

To link metabolic enzyme data to flux distributions, we
propose Enzyme Control Flux (ECF), a non-mechanistic
and static method that integrates enzyme activities into
EMA. The ECF model presents a novel mathematical for-
mula describing how the change in enzyme activities
between wild-type and a mutant are related to that in the
EM coefficients (EMCs). To validate the feasibility of ECF,
we integrated enzyme activity data into the EMCs of the
central metabolism of E. coli and B. subtilis wild-type to
simulate the metabolic flux distributions of the mutants.

Results and discussion
The algorithm of ECF that links an enzyme activity profile
to a metabolic flux distribution is presented as shown in
Figure 1. The mathematical procedure of ECF is intelligi-

bly illustrated (see Additional file 1). The power law for-
mula uses the change in an enzyme activity profile
between wild-type and a mutant to calculate the EMCs of
the mutant, thereby simulating the flux distribution of the
mutant. To guarantee the generality and applicability of
ECF, we simulate the flux distributions of E. coli and B.
subtilis mutants by integrating the change in an enzyme
activity profile into the EMCs of their wild-type.

ECF algorithm
Elementary mode analysis
Biological networks can be represented by a stoichiomet-
ric matrix (S). The rows of S correspond to metabolites in
a reaction network. The columns of S correspond to the
reactions in a network, with elements corresponding to
stoichiometric coefficients of the associated reactions. At
steady-state, mass balance provides the flux-balance equa-
tions:

S·v = 0, (1)

where v = (v1, v2, ..., vn)t is the vector whose elements cor-
respond to fluxes through the associated reactions in S.
The set of all possible solutions can be described by a set
of basis vectors. The elementary mode (EM) is the mini-
mal set of enzymes that can operate at steady-state with all
the irreversible reactions operating properly[5]. The ele-
mentary mode matrix (P) is uniquely determined from
the stoichiometric matrix and the flux vector is provided
by:

v = P·c, (2)

A flow chart for the ECF-based estimation of a flux distribu-tion of a mutantFigure 1
A flow chart for the ECF-based estimation of a flux distribu-
tion of a mutant.
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where c = (λ1, λ2, ..., λm)t is the EMC vector, n is the
number of reactions, and m is the number of EMs. The
ingredients of these vectors and matrix are displayed as:

The i-th column for the P matrix is the i-th EM vector: ei =
(e1i, e2i, ..., eni)t. The flux distribution can be also repre-
sented as a superposition of the EM vectors with non-neg-
ative EMCs as follows:

EMC spectrum for wild-type
Generally the EMCs are not uniquely determined. For
FBA, an objective function can be designed for phenome-
nological behaviors such as cell growth and product for-
mation to determine the solution spectra of EMCs. Here
we do not define any specific objective function involving
phenomenological behaviors. Based on the α-spectrum
[10], the allowable solution space of the EMCs is calcu-
lated by maximizing or minimizing each EMC in a given
steady-state flux distribution as follows:

for j = 1, 2, ..., m

Maximize λj, subject to v = P·c, λj ≥ 0 (j = 1, 2, ..., m),
(5)

for j = 1, 2, ..., m

Minimize λj, subject to v = P·c, λj ≥ 0 (j = 1, 2, ..., m).
(6)

Linear programming is performed using Matlab (Math-
works Inc., Natick, MA) to optimize the EMC vectors for
wild type. For each j in Eqs. (5, 6), as the EMC vectors (c),
r2j-1 = (γ1,2j-1, γ2,2j-1, ..., γm,2j-1)tand r2j = (γ1,2j, γ2,2j, ..., γm,2j)t

are obtained. Consequently, 2m of the EMC vectors for
wild type: rj = (γ1j, γ2j, ..., γmj)t (j = 1, 2, ..., 2m) are gener-
ated, where γij is the i-th EMC value of the j-th EMC vector.

Enzyme-Control Flux (ECF)
In the ECF model, the power law formula integrates the
change in an enzyme activity profile between wild-type
and a mutant into the EMCs of wild-type to calculate the
EMCs of the mutant, thereby simulating the flux distribu-
tion of the mutant.

First, the ECF model is constructed based on the correla-
tion equation between the intermediate EMC vectors for a
mutant:

and the EMC vectors of wild-type rj. The superscript of

mutant indicates a mutant. EMCs indicate the weight of
flux through their corresponding EMs, which is affected
by the enzyme activities that belong to the EM. Generally,
Metabolic Control Analysis (MCA) says that control of
metabolic flux is not determined by a rate-limiting step
but shared in many enzyme reactions. In analogy to MCA,
we assume that the fluxes through EMs are shared in the
enzyme reactions that belong to the EMs. On the other
hand, it is difficult to identify the degree by which each
enzyme affects the EMC involving it. Thus, assuming that
changes in the enzyme activities that belong to an EM
affect the flux through the EM synergistically, the power-
law formalism provides the correlation between

( ) and rj(γij):

or

where β is the power factor. The symbol of αpi is defined
by:
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where αp is the relative enzyme activity of a mutant to
wild-type for the p-th flux. The power factor of β is the
unique parameter that adjusts ECF to a real metabolic sys-
tem. For simplification, the power factor is set as the same
value for each enzyme activity. If a given enzyme activity
is zero, the EMC involving it is zero according to the
power-law formula.

Second, the EMC vector for the mutant, as defined by:

is mathematically connected to  under the

constraint that the incoming flux (vq) is setting to 100

(e.g., v19 = 100 in Figure 2) as follows:

or

Here, uq is the m-dimensional raw unit vector with the q-
th component of 1.

Finally, the flux distribution of the mutant

 is provided by:

The ECF model does not use any kinetics to calculate the
steady-state flux distributions for mutants. In this context
ECF is a static or non-mechanistic model that links an
enzyme activity profile to a metabolic flux distribution.

Characterization of ECF for an enzyme activity profile

To demonstrate the validity of ECF, ECF is applied to sim-
ulate the flux distribution of a mutant by integrating
enzyme activity data into the EMC vector of wild type.
Since a distribution occurs in the simulated flux vectors of

 in Eq. (12), the mean and the rel-

ative standard deviation are calculated for each flux. The

mean simulated flux distribution of  is defined by:

or

The relative model error for the i-th flux is defined by:
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A schematic diagram of central metabolism for E. coliFigure 2
A schematic diagram of central metabolism for E. 
coli. The network map is made based on our previous exper-
iments. The numbers in the figure are those of reactions 
shown in Table 1. The gene name is representative of the 
genes related to the reaction. The metabolites indicated by 
squares, i.e., B (biomass), Glc_ext (environmental glucose) 
and Acetate_ext (environmental acetate), are external. All 
other metabolites, enclosed by rounded rectangles, are inter-
nal.
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where  is the i-th flux for an experimental mutant.

The subscript of "exp" means experimental data.

To characterize the overall accuracy of ECF, the model
error, which is the difference between the estimated flux
distribution and the experimental one for each optimized
EM vector, is defined by:

Since the model error has a distribution, the mean and the
relative standard deviation are calculated. Model accuracy
becomes high as the mean model error decreases.

Characterization of ECF for combinatorial enzyme activity profiles
For the metabolic systems employed in this study, enzyme
activities are not given for all metabolic reactions. Thus, it
raises a question: if the ECF-estimated flux distributions
depend on the members of the enzymes incorporated into
the model. Therefore, the flux distributions for a mutant
need to be simulated for all combinations of the enzymes
with measured activities.

The combination number of incorporated enzyme activi-
ties (Nc) is provided by:

Nc = yCx, (17)

where y is the total number of measured enzymes and x is
the number of incorporated enzymes in the ECF model.
For each combination the flux distributions of

 (j = 1, 2, ..., 2m) are simulated.

When x enzyme activities are incorporated, the number of

 is given to:

L = 2m·yCx. (18)

Consequently, the flux distribution of a mutant is pro-
vided by:

The mean estimated flux of  is defined by:

The model error profile with respect to each optimized
EM vector is given by:

where  is the i-th experimental flux distribution.

Since the model error has a distribution, the mean and the
relative standard deviation are calculated. Eq. (21) corre-
sponds to Eq. (16) at y = x.

Application example of ECF to a pykF knockout mutant 
model
Estimation of EMCs in wild-type
The pykF(-) knockout mutant in E. coli is employed to
explain the algorithm of ECF (Figure 2 and Table 1)[11]
and to demonstrate the feasibility of ECF by applying it to
estimation of the flux distribution of the mutant. Elemen-
tary mode analysis generated 73 EMs from 30 reactions of
the central metabolic network by using FluxAnalyzer [12].
The flux distributions in wild type and the mutant were
measured (Table 2). One hundred and forty-six (= 73 × 2)
sets of the EMC vectors for wild type rj = (γ1,j, γ2,j, ..., γm,j)t

(j = 1, 2, ..., 146) were optimized by Eqs. (5,6). The result-
ing EMC vectors showed similar spectrums, i.e., their
resultant spectrums do not greatly vary with changes in
optimization trials (see Additional file 2). Here we charac-
terized the profiles for the EMC vectors. Figure 3a shows
the allowable solution spectrum for each EM, where the
spectrum for each EMC contains 146 data points. To
explore representative values of each EMC, we calculated
the mean (m) and standard deviation (σ) for the EMC
spectrum and plotted the relative standard deviation (σ/
m) with respect to m, as shown in Figure 3b. For small
mean values of the EMCs, the relative standard deviations
are large, revealing that many data points are scattered
apart. In contrast, for large mean values the relative stand-
ard deviations are much smaller, showing that most data
points are located around the mean.

Flux estimation in a pykF knockout mutant

In this estimation, the factor of β is set to 1, which will be
validated in the later section (Validation of the unique

parameter of β). Notice that a β factor of 1 does not reflect
any linear relationship between flux and each enzyme
activity, as shown in Eqs. (10, 11). In order for ECF to sim-
ulate the flux distribution in the central metabolic path-
ways of the pykF(-) knockout mutant, we integrated the
enzyme activity data (Table 2) into the EMC vectors for
wild type according to the power law formalism of Eqs. (7,
8, 9), simulating the EMC vectors for the mutant
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Table 1: Reactions from the E. coli central metabolic network

Reaction Gene name Enzyme Chemical reaction

1 ptsH, ptsI
crr, glk

Glucose phosphotransferase system Glc + PEP => G6P + PYR

2 pfkA, pfkB
fba
tpi

Phosphofructokinase
Fructose-16-bisphosphatate aldolase
Triphosphate isomerase

F6P => 2 GAP

3 gapA
pgk

gpmA

Glycelaldehyde-3-phosphate dehydrogenase
Phosphoglycerate kinase
Phosphoglycerate mutase I

GAP => PEP

4 pykF
pykA

Pyruvate kinase I PEP => PYR

5 aceE
aceF
lpdA

Pyruvate dehydrogenase PYR => AcCoA

6 pta, ackA Acetyl-CoA synthetase AcCoA => Acetate
7 gltA

acnA, acnB
Citrate synthase
Aconitase A

AcCoA + OAA => ICT

8 icdA Isocitrate dehydrogenase ICT => AKG
9 sucA, sucB, lpdA

sucC, sucD
sdhC

fumA, fumB, fumC

2-ketoglutarate dehydrogenase
Succinyl-CoA synthetase
Succinate dehydrogenase
Fumarase

AKG => MAL

10 mdh Malate dehydrogenase MAL => OAA
11 ppc Phosphenolpyruvate carboxylase PEP => OAA
12 mez Malic enzyme MAL => PYR
13 zwf Glucose-6-phosphate-1-dehydrogenase G6P => 6PG
14 gnd 6-phosphoglycononate dehydrogenase 6PG => Ru5P

rpiA Ribose-5-phosphate isomerase A Ru5P => R5P
rpe Ribose phosphate 3-epimerase Ru5P => X5P

15 tktA Transketolase I X5P + R5P => GAP + Sed7P
16 tktB Transketolase II X5P + E4P => F6P +GAP
17 talB Transaldolase B GAP + Sed7P => F6P + E4P
18 pgi Phosphoglucoisomerase G6P => F6P
19 Glucose uptake Glc_ext => Glc
20 Materials are used for biomass synthesis G6P => Biomass
21 Materials are used for biomass synthesis F6P => Biomass
22 Materials are used for biomass synthesis GAP => Biomass
23 Materials are used for biomass synthesis PEP =-> Biomass
24 Materials are used for biomass synthesis PYR => Biomass
25 Materials are used for biomass synthesis AcCoA => Biomass
26 Membrane transport reaction Acetate => Acetate_ext
27 Materials are used for biomass synthesis AKG => Biomass
28 Materials are used for biomass synthesis OAA => Biomass
29 Materials are used for biomass synthesis R5P => Biomass
30 Materials are used for biomass synthesis E4P => Biomass

Abbreviation: AcCoA Acetyl-CoA, AKG α-ketoglutarate, E4P erythrose-4-phosphate, F6P fructose-1,6-bisphosphate, Glc glucose, GAP 
glyceraldehydes-3-phosphate, G6P glucose-6-phosphate, ICT isocitrate, Mal malate, OAA oxaloacetate, PEP phosphoenolpyruvate, 6PG 6-
phosphogluconate, Ru5P ribulose-5-phosphate, X5P, xylulose 5-phosphate, R5P ribose-5-phosphate, Sed7P sedoheptulose-7-phosphate, Glc_ext 
Glucose external, Acetate_ext Acetate external.

by Eqs. (10, 11). The EMC vectors for the mutant were
employed to simulate the flux distribution for the mutant
vj

mutant = (v1j
mutant, v2j

mutant, ..., v7j
mutant)t (j = 1, 2, ..., 146).

Figure 4a shows the spectrums of the estimated flux distri-

butions in the mutant, where the mean  and the

standard deviation are plotted for each flux. The resultant
solution spectrums were broad.

First, to explore a representative value for such broad spec-
trums, we plotted the relative standard deviation of the
estimated flux with respect to the mean as shown in Figure
4b. For very small mean values of the estimated fluxes (<
2), the relative standard deviations were large, revealing

that much of the flux data were scattered. In contrast, for
large values the relative standard deviations were much
smaller, indicating that most flux data were located
around the mean. These findings suggest that the mean
flux with a relatively large value can be representative for
the estimated flux. To further confirm if the mean is rep-
resentative, we plotted the frequency distribution with
respect to flux (see Additional file 3). The frequency den-
sity is very high around the mean and only a few flux
points are scattered away from the mean. Thus, the mean
value is regarded as the estimated flux.

Second, to characterize the precision of ECF we compared
the mean estimated fluxes with the experimental ones for

vmean
mutant
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the pykF(-) mutant. The relative model error for each flux
(Eq. (15)) is plotted with respect to the experimental flux
for the mutant as shown in Figure 4c. As the experimental
flux of the mutant increases, the relative model error for
flux decreases, showing that ECF simulates high flux val-
ues accurately. Out of 30 reactions, ECF estimates 20
fluxes with a low relative model error for flux of less than
0.5.

Third, we provide a physiological validation for the esti-
mated flux distribution. To investigate which EMCs are
enhanced in the pykF(-) knockout mutant, we calculated

the part of Eqs. (7, 8), , where β is 1 and ει is

1 for wild-type. The ει values of the EMs that contain the

reactions of 11 (ppc) and 12 (mez) are greater than 1,

whereas the ει values of the EMs that do not have them are

less than 1. These show the fluxes that contain ppc and mez
are enhanced, which are consistent with the fact that the
pykF-knockout-mediated blockage of the PEP to PYR path-
way greatly activates both ppc and mez enzymes to supply
PYR through alternative pathways[11].

ε β
i pi

p

n
a=

=
∏

1

Estimated EMCs in the pykF(-) knockout mutantFigure 3
Estimated EMCs in the pykF(-) knockout mutant. (a) 
Spectrum for the EMCs with respect to elementary modes. 
The EMCs with respect to the (2j-1 and 2j)-th optimization 
trial are calculated by maximizing or minimizing the j-th EMC 
(j = 1, 2, ..., 73). EMs are sorted according to their maximum 
values. The vertical lines indicate the allowable ranges for the 
EMCs. Each line has two transverse dashes at the right: The 
lower one indicates the mean (m) and the upper one is the 
sum of the mean and the standard deviation (σ). (b) Relative 
standard deviation of the estimated EMC spectrum. The rela-
tive standard deviations (σ/m) are plotted with respect to the 
means (m). Note that the mean EMCs are not zero.
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Table 2: Experimental data of flux and enzyme activities in wild 
type and the pykF(-) knockout mutant

Flux in the 
wild type

Flux in the 
mutant

Relative enzyme activities 
in the pykF(-) mutant

1 100 100 0.57
2 83 65 0.57
3 163 151 1
4 30 1 0.14
5 107 103 1
6 20 1 0.37

7 (gltA) 87 81 0.45
8 87 81 1
9 78 73 1
10 75 52 1.47
11 17 44 2.3
12 3 21 3.5
13 34 79 1.7
14 34 79 1.44
15 11 25 1
16 8 22 1
17 11 25 1
18 65 20 0.59
19 100 100 1
20 1 1 1
21 1 2 1
22 11 1 1
23 16 6 1
24 26 19 1
25 1 21 1
26 19 1 1
27 9 8 1
28 5 15 1
29 4 7 1
30 3 3 1

The cells were cultivated at a dilution rate of 0.1 h-1. The glucose 
uptake flux was normalized to 100. The relative enzyme activities in 
the mutant were normalized by those in the wild type. Enzymes were 
extracted from the cultured cells and their activities were measured 
in vitro.
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Effect of the number of integrated enzyme activities
To investigate how the number of integrated enzyme
activities affects the estimated fluxes in the pykF(-) mutant,
we calculated the model error profile defined by Eq. (21)
for all combinations of the enzymes as shown in Figure 5.
The spectrum for the model error is described with respect
to the number of integrated enzyme activities. The allow-
able ranges of the model error were broad, but the mean
model error for all the enzyme combinations decreased as
the number of integrated enzymes increased. To character-
ize the relationships between the model error and the
number of integrated enzymes, we calculated the standard
deviation for each number of integrated enzymes and
plotted the frequency distribution with respect to the
model error (see Additional file 4). The standard devia-
tions were less than the means and the frequency distribu-
tion indicated a high density around the mean. The mean
can be regarded as an indicator of the model error profile.
The model error decreased with an increase in the number
of integrated enzymes, indicating that enzyme data is
effectively used by ECF.

We investigated the mechanism of how the allowable
model error showed a broad range. We compared the
combinations for the incorporated enzymes between the
mutants showing underestimated and overestimated
model errors, clarifying that the members of the incorpo-
rated enzymes and the reaction 7 (gltA) are critical. The
model error was relatively small when multiple enzymes
responsible for branching reactions were incorporated
together (data not shown). In contrast, when no enzyme
at the branching reactions was integrated, the model error
was relatively large. These findings suggest that incorpora-
tion of branching reactions can be effective in enhancing
estimation accuracy, although it does not change the
model error remarkably.

Next, we investigated the relationship between enzyme
activities and their associated fluxes. While the flux of the
gltA reaction in the mutant was almost the same as that in
wild-type, the enzyme activity for the mutant was less
than a half of that for wild-type. The mutants that incor-
porate gltA show relatively large errors, whereas the
mutants without it indicate small errors. Thus, the incor-
poration of gltA is suggested to cause the model error to
increase. To confirm it, we excluded the enzyme activity of
gltA and simulated the model error with respect to the
number of integrated enzymes. The allowable ranges of
the model error became narrow significantly (data not
shown). In the case of gltA being integrated, some meta-
bolic factors, such as changes in the concentration of
AcCoA, may be involved to compensate the decreased gltA
activity.

Characterization of each estimated flux in the pykF(-) knock-out mutantFigure 4
Characterization of each estimated flux in the pykF(-) 
knockout mutant. (a) Spectrum for the ECF-simulated 
metabolic flux in central metabolic pathways of the pykF(-) 
mutant. One hundred forty-six sets of EMCs optimized for 
wild-type were employed to estimate the flux distribution 
profiles. The vertical lines indicate the allowable ranges for 
the estimated flux. Each line has two transverse dashes at the 
right: The lower one indicates the mean (m) and the upper 
one is the sum of the mean and the standard deviation (σ). 
(b) Relative standard deviations for the estimated flux spec-
trum. The relative standard deviations (σ/m) are plotted with 
respect to the means (m). (c) Relative model error for flux. 
The relative model error for each flux is plotted with respect 
to the experimental flux for the mutant.
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Validation of the unique parameter of β
Here, we demonstrate that a β factor of 1 is a best choice.
As shown in Figure 6, we investigated how a change in the
β factor affected the mean and relative standard deviation
of the model error profile of Eq. (21). The β factor deter-
mines the degree by which the change in an enzyme pro-
file affects the flux distribution for a mutant. A β factor of
0 indicates that no enzyme data is used by ECF (Eqs. (7,
8)). In a factor range from 0.5 to 2, the mean model error
decreases as the number of incorporated enzymes
increases (Figure 6a). At a factor value of 4, the mean
model error does not decrease monotonically with respect
to the number of incorporated enzymes and the mean
model error becomes larger than any other value of β. The
mean model error becomes very low at a β factor of 1. In
Figure 6b, the relative standard deviation increases as the
β factor increases. Since accurate estimation requires that
both the mean and the relative standard deviation are
small, a β factor of 1 is a reasonable value.

Generality and applicability of ECF
To guarantee the generality and applicability of ECF, we
demonstrate that (i) a β factor of 1 is consistent for avail-
able mutants, and (ii) the mean model error decreases
with an increase in the number of integrated enzymes, by

using E. coli ppc[13], cra, fnr (data not shown), gnd[14],
pgi[15], and zwf[14,16] knockout mutants, and an als-
overexpressing and pta (-) knockout mutant of Bacillus
subtilis (see Additional file 5)[17].

Optimization of the β factor in the pykF (-) knockout mutantFigure 6
Optimization of the β factor in the pykF (-) knockout 
mutant. The model error profile is simulated with respect 
to the number of integrated enzymes when the β factor is 
changed as 0.5 (yellow), 1 (red), 2 (black), 4 (green). (a) Mean 
model error. (b) Relative standard deviation of the model 
error. The mean for each β is not consistent when the 
number of incorporated enzymes is zero. This is caused by a 
non-zero enzyme activity for pykF in the mutant.
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Effect of the number of integrated enzyme activities on the model error in the pykF(-) knockout mutantFigure 5
Effect of the number of integrated enzyme activities 
on the model error in the pykF(-) knockout mutant. 
The model error was calculated for all combinations of the 
enzymes with measured activities. The vertical lines indicate 
the regions between the minimum and maximum values. 
Each line has three transverse dashes at the right: The middle 
dash is the mean of the model error. The upper and lower 
dashes indicate m + σ and m - σ, respectively (m and σ are 
the mean and the standard deviation of the model error, 
respectively).
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As shown in Figure 7, we investigated how a change in the
β factor affected the mean and relative standard deviation
of the model error of Eq. (21). The model accuracy for the
pgi, gnd, and zwf knockout mutants was not significant
due to the small number of incorporated enzymes (n ≤ 4)
(data not shown). However, for a relatively large number
(n ≥ 6) of integrated enzymes, the mean model error of
the ppc, cra, and fnr knockout mutants and the als-overex-
pressing and pta (-) knockout mutant decreased greatly.
For these mutants a β factor of 1 is a best choice, which
minimizes the mean model error with a relatively small
value of the relative standard deviation. Furthermore, the
mean model error for a β factor of 1 clearly decreases with
an increase in the number of integrated enzymes, indicat-
ing that an enzyme activity profile is effectively used by
ECF. The comparison between the estimated and experi-
mental fluxes for each reaction is shown in Figure 8, where
all available enzyme data are used by ECF and a β factor
of 1 is employed. A small value of the relative model error
for flux means consistency with experimental data. For a
relatively large value of experimental flux, the simulated
flux by ECF is rather consistent with the experimental one
of these mutants as well as that of the pykF knockout
mutant (Figure 4c).

Conclusion
It is important to explore some relationships between an
enzyme activity profile and a metabolic flux distribution
for rationally designing organism production systems or
for understanding the physiological dynamics within a
cell. The ECF model is a non-mechanistic model to math-
ematically link enzyme data to metabolic flux. Assuming
that the flux through each EM is synergistically affected by
all enzyme activities that belong to the EM, the power-law
formula is used to integrate all enzyme activities into
EMA. The ECF model successfully links enzyme activities
to the flux distributions of E. coli and B. subtilis mutants,
indicating that many enzyme activities affect the flux
through each EM simultaneously. In other words, the ECF
model is highly applicable to the metabolic models
whose flux distribution would be determined by the
effects of multiple enzyme activities rather than by a few
rate-limiting reactions. In addition, the incorporation of
branching reactions is suggested to play a significant role
in enhancing model accuracy.

In the power-law formula the β factor determines the
degree by which the change in an enzyme profile affects
the flux distribution for a mutant. A β factor from 0.5 to 1
is effective in decreasing the model error for all available
mutants. A β factor of 1 is a best choice in all experimental
mutants, but it does not mean that the change in an ele-
mentary mode flux is linear to an enzyme activity because
the relationship between a flux and enzymes is compli-
cated than expected from a β factor of 1 as shown in Eqs.

(10, 11). A β factor of 1 is not the exact optimal value but
an approximate or representative one. The important
thing would be to notice that the ECF model decreases the
model error at an appropriate value of β rather than to
insist biological basis of a β factor of 1.

In the metabolic engineering field, powerful analyses had
been proposed to simulate the change in flux distribu-
tions in response to environmental or genetic changes.
For example, network rigidity had extensively been inves-
tigated to reveal how the rigidity of some principal nodes
at branch reactions is generated by complex enzyme regu-
lations including allosteric regulation[18]. Such a study
reduces the analysis of large-scale metabolic networks to
that of the principal nodes, intensively analyzing local
kinetics around them to improve flux distributions. The
principal nodes showing strong rigidity play a major role
in determining the flux distribution in response to differ-
ent stimulus. On the other hand, the ECF model adopts a
different way from such principal node analysis. The ECF
model neither considers any allosteric kinetics nor
reduces large-scale network analysis to local one. Despite
such a plain idea, ECF predicts how the change in enzyme
profiles affects the flux distribution. This indicates that the
change in an enzyme profile plays a major role in deter-
mining flux distributions or it rather reflects the change in
the flux distribution.

Finally we show two limitations of ECF. One is that met-
abolic control analysis (MCA) is not applied to analysis
for the ECF model. The other is the limitation of network
size. Generally MCA is used to quantify flux control of
each reaction by estimating the logarithmic gain of a flux
with respect to changes in an enzyme activity [19-21]. In
the ECF model, the power factor in Eqs. (7, 8) seems to be
a logarithmic gain of the flux through an EM with respect
to an enzyme activity. However, MCA may not be applied
to the ECF model, because ECF is a non-mechanistic
model that neither considers detailed enzyme kinetics,
such as allosteric binding of inhibitors and activators, nor
the concentrations of substrates. The size of networks ana-
lyzed by ECF is limited. Since the number of EMs
increases exponentially with the network size, it is hard to
analyze large-scale networks with more than hundreds of
reactions. A few methods, which divide the network into
subsystems by redefining internal and external metabo-
lites [22] or improve the algorithm deriving EMs from a
stoichiometric matrix[23], have been proposed to reduce
calculation complexity, but they have not fully estab-
lished yet.

Methods
Metabolic model
For more than a decade, the metabolism of E. coli has
served as a testing ground for network analysis methods.
Page 10 of 14
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Applicability and generality of ECFFigure 7
Applicability and generality of ECF. Effect of the number of integrated enzymes and the β factor on the model error pro-
file is investigated for various mutants to demonstrate the applicability of the ECF model with a β factor of 1. (a) ppc(-) knock-
out mutant, (b) cra(-)knockout mutant, (c) fnr(-) knockout mutant in E. coli. (d) als-overexpressing and pta (-) knockout mutant 
in B. subtilis. The mean (a1, b1, c1, d1) and relative standard deviation (a2, b2, c2, d2) of the model error are simulated with 
respect to the number of integrated enzymes when the β factor is changed as 0.5 (yellow), 1 (red), 2 (black), 4 (green).
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Consistency of the estimated flux with experimental one for each reactionFigure 8
Consistency of the estimated flux with experimental one for each reaction. We compared the estimated flux with 
experimental data for each reaction: (a) ppc (-) knockout mutant, (b) cra (-) knockout mutant, and (c) fnr (-) knockout mutant 
in E. coli. (d) als-overexpressing and pta (-) knockout mutant of B. subtilis. A β factor of 1 is used. The relative model error for 
flux is plotted with respect to its experimental flux. A small value of the relative model error for flux indicates that the simu-
lated flux is consistent with the experimental one.

0

1

2

3

4

5

6

0 50 100 150 200

R
el

at
iv

e 
M

od
el

 E
rr

or
 fo

r F
lu

x

Experimental Flux of Mutant

(a)

0

1

2

3

4

5

6

0 50 100 150 200

R
el

at
iv

e 
M

od
el

 E
rr

or
 fo

r F
lu

x
Experimental Flux of Mutant

(b)

 

0

1

2

3

4

5

6

0 50 100 150 200

R
el

at
iv

e 
M

od
el

 E
rr

or
 fo

r F
lu

x

Experimental Flux of Mutant

(c)

0

1

2

3

4

5

6

0 50 100 150 200

R
el

at
iv

e 
M

od
el

 E
rr

or
 fo

r F
lu

x

Experimental Flux of Mutant

(d)



BMC Systems Biology 2007, 1:31 http://www.biomedcentral.com/1752-0509/1/31
The studies of this metabolic network have been facili-
tated by the extensive availability of E. coli biochemical
data. In the present analysis, we simplified the central
metabolic networks of glycolysis, the tricarboxylic acid
cycle (TCA), and the pentose phosphate pathway (Figure
2 and Table 1), which together contain 16 metabolites
and 30 reactions. The strains used were wild-type (E. coli
K-12) and the knockout mutants (pykF, ppc, cra, fnr, gnd,
pgi, and zwf), which were constructed by deletion of the
corresponding gene from E. coli derivative BW25113[24].
In these mutants, the internal metabolic flux had been
estimated using results from 13C-labeled glucose experi-
ments, and the key enzymes involving the branching reac-
tions (G6P, PYR, AcCoA, OAA, etc) were measured in the
main pathway of the TCA cycle and glycolysis [11,13-16].

Implementation
CADLIVE, which is freely available from http://
www.cadlive.jp, is employed to draw the E. coli metabolic
network map and describe its corresponding reactions in
XML format (SANAC)[25,26]. The generated XML file is
converted into a FluxAnalyzer readable format[12]. Flux-
Analyzer identified the stoichiometric matrix and elemen-
tary modes. The programs for optimization and ECF are
written in Matlab (Mathworks Inc., Natick, MA).
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