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SUMMARY

Sequencing technologies are capturing longer-range
genomic information at lower error rates, enabling
alignment to genomic regions that are inaccessible
with short reads. However,manymethods are unable
to align reads to much of the genome, recognized as
important in disease, and thus report erroneous re-
sults in downstream analyses. We introduce EMA, a
novel two-tiered statistical binning model for bar-
coded read alignment, that first probabilistically
maps reads to potentially multiple ‘‘read clouds’’
and then within clouds by newly exploiting the non-
uniform read densities characteristic of barcoded
read sequencing. EMA substantially improves down-
stream accuracy over existing methods, including
phasing and genotyping on 10x data, with fewer false
variant calls in nearly half the time. EMA effectively
resolves particularly challenging alignments in
genomic regions that contain nearby homologous
elements, uncovering variants in the pharmacoge-
nomically important CYP2D region, and clinically
important genes C4 (schizophrenia) and AMY1A
(obesity), which go undetected by existing methods.
Our work provides a framework for future generation
sequencing.

INTRODUCTION

Sequencing is the most fundamental operation in genomics,

transcriptomics, and metagenomics. As sequencing technolo-

gies continue to advance beyond the initial introduction of

next-generation sequencing (NGS), we have begun to see the

emergence of the so-called ‘‘third-generation’’ sequencing plat-

forms, which seek to improve on the standard short-read

sequencing that has thus far been at the heart of most NGS

(Mardis, 2017). Several organizations are at the center of this

new sequencing revolution, including Pacific Biosciences (Eid

et al., 2009), Oxford Nanopore (Wang et al., 2014), and 10x Ge-
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nomics (Zheng et al., 2016). While the former two have devel-

oped sequencing technologies that produce much longer

physical reads (e.g., 10–200 kb) at typically higher error rates,

the latter is an example of a barcoded sequencing technology,

which typically produces short reads (up to 300 bp) with low error

rates (Goodwin et al., 2016).

At a high level, barcoded sequencing is any sequencing

method where long DNA fragments are sheared and the sheared

pieces have some identifier (‘‘barcode’’) relating them back to

the source fragment. These barcodes can be explicit (a physical

barcode is ligated to each sheared piece, e.g., as in 10x

sequencing) or implicit (the fragments are distributed to identifi-

able wells, e.g., as in Illumina’s TruSeq Synthetic Long-Read

sequencing, henceforth referred to as TruSeq SLR). These

sheared pieces are then sequenced using standard short-read

sequencing, thereby producing barcoded short reads (Fig-

ure 1A). Other barcoded sequencing technologies include Illumi-

na’s Continuity Preserving Transposition technology (CPT-seq),

Complete Genomics’ Long Fragment Read technology, Drop-

seq, and CEL-Seq2 (Zheng et al., 2016; McCoy et al., 2014; Ma-

cosko et al., 2015; Hashimshony et al., 2016; 10x Genomics,

2018). Because they help identify the original source fragment,

these barcodes implicitly carry long-range information, which

can have a significant impact on alignment and many down-

stream analyses such as structural variation detection and

phasing.

Barcoded reads have several advantages over physically long

reads. First, and perhaps most important, barcoded read

sequencing is substantially cheaper than long-read sequencing;

whereas PacBio’s andOxford Nanopore’s sequencing platforms

currently cost anywhere from $750 to $1,000 per GB of data,

barcoded sequencing is a comparatively cheap add-on to stan-

dard short-read sequencing and therefore bears the same cost

(e.g., 10x sequencing costs $30 per GB plus a $500 overhead

per sample) (Goodwin et al., 2016). Second, the error profile of

barcoded reads is very similar to that of standard short reads

(roughly 0.1% substitution errors), which enables us to augment

the tools and algorithms that have been developed for regular

short reads to handle their barcoded counterparts. By contrast,

long-read sequencing typically produces high rates of erroneous

indels (ranging from 12%–13%), which presents a challenge

when trying to use preexisting algorithms. Beyond these
gust 22, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 219
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Figure 1. Overview of EMA Pipeline

(A) An idealized model of barcoded read

sequencing, wherein some number of unknown

source fragments in a single droplet or well are

sheared, barcoded, and sequenced to produce

barcoded reads.

(B) EMA’s ‘‘read clouds’’ are constructed by

grouping nearby-mapping reads sharing the same

barcode; these clouds represent possible source

fragments. EMA then partitions the clouds into a

disjoint-set induced by the alignments, where two

clouds are connected if there is a read aligning to

both; connected components in this disjoint-set

(enclosed by dashed boxes) correspond to alter-

nate possibilities for the same unknown source

fragment. EMA’s latent variablemodel optimization

is subsequently applied to eachof these connected

components individually to deduce each of the

potentially many fragments sharing this barcode.

(C) EMA applies a novel read density optimization

algorithm to clouds containing multiple alignments

of the same read to pick out the most likely

alignment, by optimizing a combination of align-

ment edit distances and read densities within the

cloud. The green regions of the genome are ho-

mologous, thereby resulting in multi-mappings

within a single cloud.

(D) While the read density optimization operates

within a single cloud, EMA’s latent variable model

optimization determines the best alignment of

a given read between different clouds and pro-

duces not only the final alignment for each read

but also interpretable alignment probabilities (see

Figure S1).
advantages, barcoded reads are compatible with doing hybrid-

capture exome sequencing, and not sequencing introns (which

is not possible with long-read sequencing technologies, as a

contiguous long-read cannot only sequence the exons in a

gene). This is a very substantial additional cost-advantage for

barcoded reads (exome sequencing can mean a 10- to 20-fold

reduction in sequencing cost over whole genome sequencing)

(Schwarze et al., 2018). These and other benefits have led to

the recent proliferation of barcoded sequencing technologies

for various use cases; for example, 10x and TruSeq SLR

sequencing for whole genome sequencing, as well as Drop-

seq and CEL-Seq2 for single-cell RNA sequencing (RNA-seq),

10x for single-cell VDJ sequencing and so on (Zheng et al.,

2016; McCoy et al., 2014; Macosko et al., 2015; Hashimshony

et al., 2016; 10x Genomics, 2018). A comprehensive review of

many of these methods is available (Ziegenhain et al., 2017).

Furthermore, barcoded sequencing is also playing a greater

role in downstream applications such as the generation of tran-

scriptomic profiles (Cleary et al., 2017).

Aswith virtually all sequencing data, the first step in the analysis

pipeline forbarcoded reads is typically alignment.Whilebarcoded

reads can, in theory, be aligned by a standard short-read aligner

(e.g.,CORA [Yorukogluet al., 2016] (COmpressiveRead-mapping

Accelerator), BWA (Burrows-Wheeler Aligner) [Li and Durbin,

2009], Bowtie2 [Langmead and Salzberg, 2012]), this would fail

to take advantage of the information provided by the barcodes.

An alternative approach (McCoy et al., 2014) is to assemble the

reads for each particular barcode and to treat the result as a single
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‘‘synthetic long read.’’ While this strategyworkswell for technolo-

gies such as TruSeqSLR, inwhich source fragments are generally

sequenced with high coverage, it is not practical when fragments

are shallowly sequenced as with 10x, which achieves high

coverage not by having high per-barcode coverage but rather

by having many barcodes. Also worth noting is the fact that

TruSeq SLR’s sequencing fragments at high coverage inflate

their sequencing costs to be on par with PacBio’s and Oxford

Nanopore’s, whereas 10x circumvents this high cost via shallow

fragment sequencing (Goodwin et al., 2016).

Currently, the state-of-the-art in terms of barcoded read align-

ment employs ‘‘read clouds’’—groups of reads that share the

same barcode andmap to the same genomic region—to choose

the most likely alignment from a set of candidate alignments for

each read. Intuitively, read clouds represent the possible source

fragments from which the barcoded reads are derived. The read

cloud approach to alignment effectively begins with a standard

all-mapping to a reference genome to identify these clouds, fol-

lowed by an iterative update of the reads’ assignments to one of

their possible alignments, guided by a Markov random field that

is used to evaluate the probability of a given read-to-cloud

configuration (taking into account the alignment scores, clouds,

etc.). This method was first implemented for Moleculo data as

Random Field Aligner (RFA) and was subsequently the founda-

tion for the 10x aligner Lariat, which we compare to extensively

in this work (Bishara et al., 2015). Notably, in this framework,

clouds are inherently fixed entities to which some number of

reads are assigned at any given point, which does not take



into account the fact that reads can have suitable alignments in

several different clouds. Since this information can be valuable in

downstream analyses such as genotyping, phasing, and struc-

tural variation detection, we wish to account for it.

Confounding barcoded read alignment is the fact that multiple

fragments can share the same barcode; it is in general not

possible to infer the source fragment of a read (and thus its cor-

rect alignment within a reference genome) merely by looking at

its barcode. In order to deduce the correct placement of a

read, and thus its unknown source fragment, all possible align-

ments of that read need to be examined. Even then, it can be

difficult to determine the correct alignment, particularly in homol-

ogous regions of the genome that result in multi-mappings within

a single cloud.

Here, we propose a general paradigm for barcoded read align-

ment that newly employs a probabilistic interpretation of clouds:

EMerAld, or EMA for short (Figure 1). Our two-tiered statistical

binning approach enables themore accurate placement of reads

in and within read clouds, which is the critical step in barcoded

read alignment. The two tiers consist of (1) a novel latent variable

model to probabilistically assign reads to clouds, which intro-

duces the notion of clouds as distributions over generated reads

rather than simply fixed groups of reads; and (2) newly exploiting

expected read coverage (read density) to resolve the difficult

case of multiple alignments of reads within clouds. The idea

and subsequent observation of the fixed read density distribu-

tionwithin source fragments are novel to EMAand can be utilized

by many barcoded read analysis tools: for example, an assem-

bler might use our idea to model the distance between reads

within the same source fragment and thus break ties, if any.

Note that these ambiguous alignments account for a large frac-

tion of the rare variants that currently cannot be resolved and are

of great interest to biologists (Ingelman-Sundberg, 2004; Sekar

et al., 2016; Falchi et al., 2014).

By thinking of cloudsnot as arbitrary clusters of readsbut rather

as distributions, EMA’s latent variable model (tier I) is able to

generatemore accurate alignments and to newly assign interpret-

able probabilities to its alignments, which greatly improves down-

stream analyses. Genotyping improvements and,more generally,

the resolution of distant homologs (e.g., longer than fragment

length or interchromosomol) stem from our probabilistic interpre-

tation. We demonstrate EMA’s performance by evaluating down-

streamgenotyping andphasing accuracy first using real 10xdata.

We discovered that roughly 20% of all reads in our datasets had

multiple suitable alignments and were therefore able to be tar-

geted by EMA’s optimization algorithm.We also found that geno-

types called from EMA’s alignments contained over 30% fewer

false positives than those called from 10x’s Lariat aligner—and

at the same time contained fewer false negatives—on inde-

pendent 10x datasets of NA12878, NA24149, NA24143, and

NA24385. The National Institute of Science and Technology’s

‘‘Genome in a Bottle’’ high-confidence variant calls were used

as a gold standard. EMA also improved phasing performance

by reducing switch errors and producing larger phased blocks.

Focusing on uncovering novel biology, we additionally demon-

strate that—through its read density optimization (tier II)—EMA

improves alignments in several clinically important and highly

homologous genes: CYP2D6/CYP2D7 (of great pharmacoge-

nomic importance [Ingelman-Sundberg, 2004]), C4 (linked to
schizophrenia [Sekar et al., 2016]), and AMY1A (conjectured as-

sociation with obesity [Falchi et al., 2014]). We discovered using

EMA and validated through published studies (Jain et al., 2017;

Mostovoy et al., 2016; Pendleton et al., 2015) several variants

in these regions that go undetected by Lariat and BWA. More-

over, we sought to demonstrate that our approach generalizes

to other barcoded sequencing technologies by applying it to

TruSeq SLR data as well as CPT-seq data, where we observe

similar results. Intuitively, EMA’s ability to handle shorter

homologies (i.e., those within a cloud) leads to these novel

findings.

In addition to achieving superior accuracy, providing interpret-

able probabilities, and uncovering novel biology, the EMA pipe-

line is up to 23 faster than Lariat—which translates into days

faster for typical 10x datasets—and does not add any memory

overhead to the alignment process. Thus, we expect the

algorithms introduced here to be a fundamental component of

barcoded read methods in the future.

RESULTS

Experimental Setting
We first compared the performance of EMA against Lariat (10x

Genomics, 2017) (10x’s own aligner and a component of the

Long Ranger software suite) and BWA-MEM (‘‘Maximal Exact

Matches’’) (Li and Durbin, 2009) (which does not take advantage

of barcoded data and was therefore used as a baseline for what

can be achieved with standard short reads). In order to bench-

mark the quality of the aligners, we examined downstream gen-

otyping accuracy, alignments in highly homologous regions, and

downstream phasing accuracy.

We ran each tool on four 10x Homo sapiens datasets for

NA12878, NA24149, NA24143, and NA24385 and used the

corresponding latest NIST GIAB (Zook et al., 2014, 2016) high-

confidence variant calls as a gold standard for each. For both

EMA and BWA, we performed duplicate marking after alignment

using Picard’s MarkDuplicates tool (URL: https://broadinstitute.

github.io/picard/), with barcode-aware mode enabled in the

case of EMA; Long Ranger performs duplicate marking auto-

matically. Genotypes were called by HaplotypeCaller from the

Genome Analysis Toolkit (GATK) (McKenna et al., 2010; DePristo

et al., 2011) with default settings, while phasing was done by

HapCUT2 (Edgeet al., 2016) inbarcode-awaremode.Genotyping

accuracies were computed using RTG (‘‘Real Time Genomics’’)

Tools (Cleary et al., 2014). We also ran EMA and Lariat on a

much higher coverage NA12878 dataset (‘‘NA12878 v2’’) to test

genotyping accuracy at high coverage as well as scalability.

To test EMA’s improvements on other barcoded read

sequencing technologies, we ran EMA and BWA on an

NA12878 TruSeq SLR dataset (Bishara et al., 2015) as well as

an NA12878 CPT-seq dataset (Amini et al., 2014). All analyses

in this paper were performed with respect to the GRCh37 human

reference genome.

EMA Improves Downstream Genotyping Accuracy
EMA’s genotyping accuracy surpasses that of other aligners

(Figure 2). We found that for each of the four 10x H. sapiens

datasets, EMA produced 30% fewer false positive variant calls

compared to Lariat and produced fewer false negative calls as
Cell Systems 7, 219–226, August 22, 2018 221
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Figure 2. Genotyping and Phasing Results for Each Aligner

The top row shows true positive variant calls as a function of false positives for alignments produced by EMA (turquoise), Lariat (orange), and BWA-MEM (gray) on

the well-studied samples NA12878, NA24149, NA24143, and NA24385. Genotype confidences are determined by the genotype quality (GQ) annotations

generated by GATK’s HaplotypeCaller. The middle two rows contain cumulative histograms of false positives (top) and false negatives (bottom) throughout

chromosome 1 for each dataset, for both EMA (turquoise) and Lariat (orange). EMA achieves more than a 30% average improvement over the other methods in

terms of eliminating erroneous variant calls. The bottom row shows EMAand Lariat’s phasing results for several metrics: switch errors, mismatch errors, flat errors

(Edge et al., 2016), and phase block N50 (lower is better for the first three, while higher is better for the last). EMA outperforms Lariat in phasing on every metric.
well. Interestingly, BWA-MEM (which does not take barcodes

into account) performed marginally better than Lariat here.

Nevertheless, EMA also outperforms BWA-MEM, attaining the

fewest false positive and false negative variant calls between

the three aligners on each dataset. To verify that EMA’s

superior accuracy scales to higher coverage datasets, we
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tested it on a high-coverage NA12878 dataset (Supplementary

Figure S3). EMA attains an even more substantial improvement

on the high-coverage dataset, eliminating nearly 37% of Lariat’s

false positives and 6% of its false negatives.

When run on TruSeq SLR and CPT-seq data, we did not

observe any significant differences in genotyping accuracy



between EMA and BWA. This finding is likely due to the fact that

these platforms divide the source fragments into just 384 and

9,128 wells (‘‘barcodes’’), respectively, limiting the utility of the

barcodes in unambiguous regions of the genome, which is pri-

marily what our NIST GIAB gold standard consists of. However,

for both technologies, we did observe improvements in resolving

ambiguous regions of the genome, which we detail below.

Overall, we found that typically �20% of all reads in our

various datasets had multiple suitable alignments and were

therefore able to be targeted by EMA’s two-tiered statistical

binning optimization algorithm. These are precisely those reads

that are most challenging to align and can occur in clinically

important regions of the genome, as we next demonstrate.

EMA Improves Alignments and Analysis of Highly
Homologous Regions
Among the principal promises of barcoded read sequencing is

better structural variation detection, which invariably requires

resolving alignments in homologous regions. One such impor-

tant region is the CYP2D region in chromosome 22, which hosts

CYP2D6—a gene of great pharmacogenomic importance (Ingel-

man-Sundberg, 2004)—and the two related and highly homolo-

gous regions CYP2D7 and CYP2D8. The high homology

between CYP2D6 and CYP2D7 makes copy number estimation

and variant calling in this region particularly challenging. Indeed,

themajority of alignersmisalign reads in this region. The difficulty

is especially evident in NA12878, which, in addition to the two

copies of both CYP2D6 and CYP2D7, contains an additional

copy that is a fusion between these two genes (Twist et al.,

2016), as well as CYP2D7 mutations that introduce even higher

homology with the corresponding CYP2D6 region. Especially

problematic is exon/intron 8 ofCYP2D6, where many reads orig-

inating from CYP2D7 end up mapping erroneously (see Figure 3

for a visualization). Even the naive use of barcoded reads is not

sufficient: both homologous regions in CYP2D are typically

covered by a single cloud. For example, Lariat performs no

better than BWA in this region (Figure 3). For these reasons,

we chose to evaluate EMA in CYP2D to benchmark its accuracy

in such highly homologous regions.

As can be seen in Figure 3, EMA’s statistical binning strategy

significantly smooths out the two problematic peaks in CYP2D6

and CYP2D7. This technique enabled us to detect three novel

mutations in CYP2D7 (Figure 3), which exhibit high homology

with the corresponding region in CYP2D6. Thus, all reads origi-

nating from these loci get misaligned to CYP2D6, especially if

one only considers edit distance during the alignment (as Lariat

and BWA do). Such misalignments are evident in the ‘‘peaks’’

and ‘‘holes’’ shown in Figure 3. We additionally cross-validated

this region with the consensus sequence obtained from available

NA12878 assemblies (Jain et al., 2017; Mostovoy et al., 2016;

Pendleton et al., 2015) and confirmed the presence of novel

mutations. Notably, we found similar enhancements in other clin-

ically important and highly homologous genes: C4 and AMY1A,

as depicted in the same figure.

In addition, the copy number derived from EMA’s alignments

in this problematic region (spanning from exon 7 up to exon 9

in CYP2D6 and CYP2D7) was closer to the ‘‘expected’’ copy

number by 20% compared to the copy number derived from

Lariat’s alignments (we used Aldy [Numanagi�c et al., 2018] to
obtain this data). We further ran Aldy on our high-coverage

NA12878 v2 dataset, where it correctly detected the *3/*68+*4

allelic combination on both EMA’s and Lariat’s alignments, and

EMA’s overall copy number error over the whole region was

around 4% better than Lariat’s. Finally, statistical binning did

not adversely impact phasing performance in this region as we

were able to correctly phase CYP2D6*4A alleles in our

NA12878 sample from EMA’s alignments.

To demonstrate the generalizability of our paradigm to other

similar barcoded sequencing technologies, we tested it on

TruSeq SLR (BioProject: PRJNA287848) and CPT-seq

(BioProject: PRJNA241346) data, where the bin distributions

follow a similar pattern as 10x’s. We alone were able to detect

the same novel CYP2D7, C4, and AMY1A variants in an

NA12878 TruSeq SLR dataset (even with shallow coverage)

and to detect the CYP2D7 variants in an NA12878 CPT-seq

dataset, as shown in the right-hand side of Figure 3.

EMA Improves Downstream Phasing
We applied the state-of-the-art phasing algorithm HapCUT2

(Edge et al., 2016), which supports 10x barcoded reads, to

phase (i.e., link variants into haplotypes) the variants called by

GATK for both EMA’s and Lariat’s alignments. We evaluated

our results with the phasing metrics defined in the HapCUT2

manuscript. As shown in Figure 2, EMA provides more accurate

phasing with respect to every metric in comparison to Lariat.

EMA Is Computationally More Efficient
Runtimes and memory usage for each aligner are provided in

Table 1 for our small and large NA12878 datasets. These times

include alignment, duplicate marking, and any other data post

processing (e.g., BAM sorting and merging). The reported mem-

ory usages are per each instance of the given mapper. We found

that EMA scales better than Lariat: specifically, we observe a

1.5x speedup on our smaller dataset and a nearly 2x speedup

on our larger one, over Lariat’s runtimes. We ran EMA on a total

of four high-coverage datasets and have observed that EMA

scales linearly in the size of the dataset.

Runtime and memory usages on two NA12878 datasets

(‘‘NA12878’’—used also in Figure 2—is about 287 GB of raw

data; ‘‘NA12878 v2’’ is about 823 GB). Numbers in parentheses

indicate the performance of the aligner alone (i.e., without sort-

ing, merging, or duplicate marking). For the small dataset,

each mapper was allocated 40 Intel Xeon E5-2650 CPUs @

2.30 GHz. For the large dataset, each was allocated 48 Intel

Xeon E5-2695 CPUs @ 2.40 GHz. Memory measurements

include only the actual aligner’s memory usage and do not

include the memory requirements of pre- and post-processing

steps as they are virtually the same for all methods. BWA-

MEM was used only as a baseline on the smaller dataset.

DISCUSSION

EMA’s unique ability to assign interpretable probabilities to align-

ments has several benefits, themost immediate of which is that it

enables us to set a meaningful confidence threshold on align-

ments. Additionally, these alignment probabilities can be incor-

porated into downstream applications such as genotyping,

phasing, and structural variation detection. We demonstrate
Cell Systems 7, 219–226, August 22, 2018 223



Figure 3. Positive Effect of EMA’s Statistical Binning in the Clinically Important Genes CYP2D6, CYP2D7, C4, and AMY1A

The green inset shows the read coverage for the region around exon/intron 8 of CYP2D6 (top row) and CYP2D7 (bottom row). Spurious coverage peaks (i.e.,

increases in observed coverage likely to be false) inCYP2D6 are shaded black. EMA is clearly able to remove the problematic peaks and correctly assign them to

CYP2D7. The insets below show the newly assigned mappings to CYP2D7: EMA’s alignments agree with the assembly consensus sequence (observe the

insertion and two neighboring SNPs detected by EMA). By contrast, both Lariat and BWA-MEM aligned virtually no reads to this region and were thus unable to

call these mutations. Analogous images are shown for C4 and AMY1A, as well as for TruSeq SLR and CPT-seq data.
this feature here by computingmapping qualities based on these

probabilities, which consequently enhance genotyping and

phasing. Nevertheless, specialized algorithms centered around

these probabilities are also conceivable.

Moreover, EMA is able to effectively discern between multiple

alignments of a read in a single cloud through its read density

optimization algorithm. This capability addresses one of the

weaknesses of barcoded read sequencing as compared to

long-read sequencing; namely, that only a relatively small subset

of the original source fragment is observed—and, more specif-
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ically, that the order of reads within the fragment is not

known—making it difficult to produce accurate alignments if

the fragment spans homologous elements. By exploiting the

insight that read densities within a fragment follow a particular

distribution, EMA more effectively aligns the reads produced

by such fragments, which can overlap regions of phenotypic or

pharmacogenomic importance, such as CYP2D, C4, or AMY1,

as we demonstrated. In summary, EMA’s first tier (latent variable

model) helps resolve the case of distant homologs, and its sec-

ond tier, the case of proximal homologs.



Table 1. Runtime and Memory Usages on Two NA12878 Datasets

Tool

NA12878 NA12878 v2

Time (hh:mm) Mem./core (GB) Time (hh:mm) Mem./core (GB)

EMA 14:58 (10:40) 5.4 28:30 (17:45) 8.7

Lariat 21:49 (12:45) 7.0 54:53 (26:01) 8.2

BWA-MEM 14:49 (9:52) 5.5

‘‘NA12878’’—used also in Figure 2—is about 287 GB of raw data; ‘‘NA12878 v2’’ is about 823 GB. Numbers in parenthesis indicate the performance of

the aligner alone (i.e., without sorting, merging, or duplicatemarking). For the small dataset, eachmapper was allocated 40 Intel Xeon E5-2650 CPUs@

2.30GHz. For the large dataset, each was allocated 48 Intel Xeon E5-2695 CPUs @ 2.40GHz. Memory measurements include only the actual aligner’s

memory usage and do not include the memory requirements of pre- and post-processing steps, as they are virtually the same for all methods.

BWA-MEM was used only as a baseline on the smaller dataset.
As we usher in the next wave of the NGS technologies, bar-

coded read sequencing will undoubtedly play a central role,

and fast and accurate methods for aligning barcoded reads,

such as EMA, will ultimately prove invaluable in downstream

analyses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

NA12878 WGS (10x) 10x Genomics https://support.10xgenomics.com/genome-exome/

datasets/2.1.0/NA12878_WGS_210

NA12878 WGS v2 (10x) 10x Genomics https://support.10xgenomics.com/genome-exome/

datasets/2.2.1/NA12878_WGS_v2

NA12878 WGS (Illumina TruSeq

Synthetic Long-Read)

Bishara et al. (2015) BioProject: PRJNA287848

NA12878 WGS (CPT-seq) Amini et al. (2014) BioProject: PRJNA241346

Software and Algorithms

Long Ranger 10x Genomics https://support.10xgenomics.com/genome-exome/

software/downloads/latest

BWA Li and Durbin (2009) https://github.com/lh3/bwa

GATK Broad Institute https://software.broadinstitute.org/gatk/

HapCUT2 Edge et al. (2016) https://github.com/vibansal/HapCUT2

Picard Broad Institute https://broadinstitute.github.io/picard/

Samtools Li et al. (2009) https://github.com/samtools/samtools

RTG Tools Cleary et al. (2014) https://github.com/RealTimeGenomics/rtg-tools

EMA This paper https://github.com/arshajii/ema

Other

NIST GIAB Zook et al. (2016) http://jimb.stanford.edu/giab/

NA24149, NA24143 and

NA24385 WGS (10x)

Broad Institute http://ema.csail.mit.edu
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bonnie

Berger (bab@mit.edu).

METHOD DETAILS

General barcoded read sequencing begins with splitting the source DNA into long fragments (10–200kb) where each such fragment is

assigned some barcode (e.g. a short 16bp DNA sequence in 10x sequencing). These fragments are sheared and each sheared piece

has the assigned barcode ligated to it (or, alternatively, resides in an identifiable well), whereupon standard short-read sequencing is

applied to the sheared pieces. As a result, barcoded reads have the same low error rates as typical Illumina whole-genome

sequencing reads. An idealization of this process is illustrated in Figure 1A.

Standard Data Preprocessing
The first stage in the alignment process is to preprocess the data and to identify the barcodes. Currently, EMA uses an in-house

10x barcode preprocessor, which extracts and corrects the barcodes from the raw data. Data from many other barcoded read

technologies (e.g. TruSeq SLR) can be preprocessed in a more straightforward manner, as the barcodes are given as well identifiers

for each read, meaning the preprocessing stage consists of a simple demultiplexing step.

For 10x data preprocessing we largely follow the same practices used by 10x Genomics’ WGS software suite, Long Ranger.

The purpose of this preprocessing is to:

d extract the barcode from the read sequence,

d error-correct the barcode based on quality scores and a list of known barcode sequences,

d and group reads by barcode into ‘‘barcode buckets’’ to enable parallelism during alignment.
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In summary, in the barcode extraction stage, we remove the 16bp barcode from the first mate of each read pair, and trim an addi-

tional 7bp to account for potential ligation artifacts resulting from the barcode ligation process during sequencing (the second mate

shares the same barcode as the first mate). Subsequently, we compare each barcode to a list B of known barcodes to produce a

count for each barcode in B, and compute a prior probability for each based on these counts (specifically, this prior is proportional

to the fraction of times we see the given barcode in our data). Note that this list is provided by 10x Genomics, and is designed so that

no two barcodes are Hamming-neighbors of one another. Now for each barcode b not appearing in B, we examine each of its

Hamming-1 neighbors b
0
and, if b

0
appears in B, compute the probability that b

0
was the true barcode based on its prior and the qual-

ity score of the changed base. Similarly, for each b appearing in B, we consider each Hamming-2 neighbor b
0
and compute the prob-

ability that b
0
was the true barcode in an analogous way. The reason we examine the Hamming-2 neighbors of barcodes that are

already in our whitelist is because it is possible, albeit unlikely, that two sequencing errors in the barcode changed it from a barcode

on the list to another also on the list (in practice we found this Hamming-2 correction step to be largely unnecessary as described

below, but it is performed in Lariat’s data preprocessing nonetheless). Lastly, we employ a probability cutoff on the barcodes,

and thereby omit the barcodes of reads that do not meet this cutoff. Any read not carrying a barcode after this stage is aligned

with a standard WGS mapper such as CORA or BWA.

While in standard read alignment parallelism can be achieved at the read-level, for barcoded read alignment we can only achieve

parallelism at the barcode-level. Therefore, the last preprocessing step is to group reads by barcode into some number of buckets.

Each such bucket contains some range of barcodes fromB, which are all grouped together within the bucket. This enables us to align

the reads from each bucket in parallel, and to merge the outputs in a post-processing step.

We note that the Hamming-2 search takes a substantial fraction of the total time, but is often unnecessary: on a large 980GB 10x

dataset, only 276 out of almost 1.5 billion reads are affected by the Hamming-2 correction (amounting to <0:0001% overall effect).

Thus, it is safe to skip the Hamming-2 correction step. Nevertheless, we applied Hamming-2 correction on all our datasets for the

sake of consistency with Lariat. Finally, EMA offers a parallelized barcode correction implementation, which significantly speeds

up the overall pipeline.

Latent Variable Model for Aligning Barcoded Reads to Clouds
Here we employ a latent variable model for determining the optimal assignment of reads to their possible clouds. A ‘‘cloud’’ is defined

to be a group of nearby alignments of reads with a common barcode, thereby representing a possible source fragment (Bishara et al.,

2015). We consider all the reads for an individual barcode simultaneously, all-mapping and grouping them to produce a set of clouds

for that barcode (Figure 1B). The clouds are deduced from the all-mappings by grouping any two alignments that are on the same

chromosome and within 50kb of one another into the same cloud, which is the same approach employed by Lariat (for TruSeq SLR or

CPT-seq data, we use 15kb as a cutoff; this is a tuneable parameter that can be adjusted depending on the underlying technology).

While this heuristic works well in the majority of cases, it can evidently run into issues if, for example, a single read aligns multiple

times to the same cloud. We address such cases below, but assume in the subsequent analysis that clouds consist of at most

one alignment of a given read.

As notation, we will denote by c the set of alignments contained in a given cloud. We restrict our analysis to a single set of clouds

C= fc1; c2;.; cng that corresponds to a connected component in the disjoint-set over clouds induced by alignments, as shown in

Figure 1B (i.e. two clouds ci and cj will be connected if there is a read that has an alignment to both ci and cj). Conceptually, the clouds

in C can be thought of as alternate possibilities for the same latent source fragment. By definition, for any given read aligning to some

cloud in C, we will have to consider only the clouds in Cwhen determining the best alignment for that read, so we focus on each such

set of clouds separately. Note that we make the same implicit assumption made by Lariat: namely that distinct fragments sharing a

common barcode (i.e. fragments in the same droplet/well) do not overlap on the genome. In reality, there is nothing preventing this

from happening, but we can see that it occurs rarely since fragments are effectively sampled uniformly from the entire genome. If we

partition the 3Gb genome into 100kb bins (as a reasonable upper bound on mean fragment length) and assume a droplet/well con-

tains about 10 fragments (also a reasonable bound), we can observe that only about 1�Q10
i = 1ð1� ði � 1=3Gb=100kbÞÞz0:15% will

contain overlapping fragments, where (as an approximation) we assume fragments overlap if they are contained in the same bin. By

comparison, about 5%–6% of all 10x reads are usually left without a barcode after standard barcode correction, so the additional

0.15% is rather marginal. A second possible undesirable scenario would be if two fragments with the same barcode originated

from distinct but homologous regions. In this case, we would find two connected clouds in the disjoint-set that we would wrongly

consider to be alternate possibilities of a single fragment. Nevertheless, we expect our optimization algorithm to handle this situation

gracefully, assigning some probability to each read of mapping to either homolog (arguably, this is more of a problem with the pre-

viously employed read cloud methods wherein reads are only ever assigned to a single cloud).

For C = fc1;.; cng, let Ci denote the event that cloud ci represents the true source fragment. Since the clouds c1;.; cn are

different possibilities for the same source fragment, we have PrðCiXCjÞ= 0 ðisjÞ andPn
i = 11ðCiÞ= 1 (where 1ð,Þ˛f0; 1g is an indi-

cator for the specified event). We assume uniform priors on the clouds so that PrðCiÞ= ð1=nÞ (while it is possible to devise a prior that

takes into account features such as cloud length, we observed a large variance between clouds in our datasets that renders this

unhelpful). Now, a cloud ci can be conceptualized as an entity that generates some number of reads Ki, parameterized by some

weight qci , so that we can say Ki � Cloudðqci Þ for some unknown ‘‘cloud’’ distribution over generated reads. We make the key

assumption that, in expectation, PrðCijqci ÞfKifqci for all ci˛C. In other words, if a cloud is expected to have generated a large num-

ber of reads, then the probability that the cloud represents a true source fragment is high. Let q= ðqc1 ;.; qcn Þ be the vector of cloud
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weights. We assume the cloud weights are normalized so that PrðCi=qci Þ = qci , and that they are drawn from a uniform Dirichlet dis-

tribution so that q � Dirð1Þ. Consider now the probability gr;ci that a read r truly originates from cloud ci (denoted as an event by Gr;ci )

given the cloud parameters q (i.e.Gr;ci=q � Berðgr;ci Þ, where BerðpÞ is the Bernoulli distribution with parameter p). By Bayes’ rule, we

can say:

gr;ci
=Pr

�
Gr;ci

�
q
�
=

1

ZC
Pr
�
q
�
Gr;ci

�
Pr
�
Gr;ci

�
;

where ZCs (and variants thereof) are normalization constants that are the same for each c˛C. SinceGr;ci occurs if and only ifCi occurs,

we have

gr;ci
=

1

ZC
Prðq=CiÞPr

�
Gr;ci

�
:

Applying Bayes’ rule again to Prðq=CiÞ and using the fact that both PrðqÞ and PrðCiÞ are uniform, we obtain

gr;ci
=

1

ZC

PrðqÞPrðCi=qÞ
PrðCiÞ Pr

�
Gr;ci

�
=

1

Z
0
C
PrðCi=qÞPr

�
Gr;ci

�
=
qci
Z

0
C
Pr
�
Gr;ci

�
;

where Z
0
C = ½PrðCiÞ=PrðqÞ�ZC. Note that PrðGr;ci Þ is a prior on the probability that r truly originates from ci, which is not dependent on

the barcode but rather only on edit distance, mate alignment, and mapping quality as in standard short-read alignment. Henceforth,

we refer to PrðGr;ci Þ as g
ð0Þ
r;ci , so that Gr;ci � Berðgð0Þ

r;ci Þ.
Now we can form a prior qð0Þ = ðqð0Þc1 ;.;q

ð0Þ
cn Þ, which is intuitively the initial vector of cloud weights. If we are given a set of alignment

probabilities and a ‘‘current’’ q estimate qðtÞ = ðqðtÞc1 ;.; q
ðtÞ
cn Þ (initially t = 0), we can iteratively compute a better estimate qðt +1Þ using the

fact that qcifKi in expectation:

qðt + 1Þ
ci

=
1

jℛjEðKiÞ= 1

jℛjE
 X

r˛ℛ
1
�
Gr;ci

��
qðtÞ
!

=
1

jℛj
X
r˛ℛ

Pr
�
Gr;ci

��qðtÞ�

=
1

jℛj
X
r˛ℛ

gðtÞ
r;ci

;

where ℛ is the set of reads mapping to any cloud in C, and the 1=jℛj factor ensures that
P

c˛Cqc = 1. This latent variable model

formulation naturally leads to an expectation-maximization algorithm—one of the widely used ways of maximizing likelihood in

such models—for determining the cloud weights and, thereby, the final alignment probabilities g+
r;ci

. An implementation of this algo-

rithm is given in Algorithm 1 (in practice we use T = 5 EM iterations).

Algorithm 1

Barcoded read alignment via expectation �maximization

Require:ℛ; C
Ensure : g+

r;c for each r˛ℛ; c˛C
gð0Þ
r;c)Prðr˛cÞ;c r˛ℛ; c˛C

qð0Þc )
1

jCj; c c˛C

for t˛f0; 1;.;T � 1g do
E step : gðt + 1Þ

r;c )Pr
�
r˛cijqðtÞc

�
c r˛ℛ; c˛C

M step : qðt + 1Þ
c )

1

jℛj
X
r˛ℛ

gðtÞ
r;c c r˛ℛ

end for

g+
r;c)gðTÞ

r;c c r˛R; c˛C

Each of the described variables and their interactions with one another is summarized in Supplementary Figure S1. Once we

determine the final alignment probabilities through this method (as in Figure 1D), we use them to compute mapping qualities

(‘‘MAPQs’’), which are a standard per-alignment metric reported by all aligners and are frequently used by downstream analysis

pipelines. Specifically, we take the MAPQ to be the minimum of the alignment probability, the barcode-oblivious alignment score
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and the MAPQ reported by BWA-MEM’s API (which is used in EMA’s current implementation to find candidate alignments). Impor-

tantly, we also report the actual alignment probabilities determined by EMA via a special standard-compliant SAM tag, so that they

are available to downstream applications.

Read Density Optimization to Handle Multi-Mappings in a Single Cloud
While the 50kb-heuristic described above is typically effective at determining the clouds, it does not take into account the fact that a

single read may align multiple times to the same cloud (which can occur if a cloud spans two or more homologous regions). In such

cases, rather than simply picking the alignment with lowest edit distance within the cloud, as is the current practice, we propose a

novel alternative approach that takes into account not only edit distance but also read density. We take advantage of the insight that

there is typically only a single read pair per 1kb bin in each cloud; the exact distribution of read counts per 1kb bin is shown in

Supplementary Figure S2. Now consider the case where one of our source fragments spans two highly similar (homologous) regions,

and thereby produces a cloud with multi-mappings, as depicted in Figure 1C. If we pick alignments solely by edit distance, we may

observe an improbable increase in read density (as shown in the figure). Consequently, we select alignments for the reads so as to

minimize a combination of edit distance and abnormal density deviations.

Specifically, consider any cloud with multi-mappings consisting of a set of reads R = fr1;.;rng, and denote by Ar the set of align-

ments for read r˛R in the cloud. Additionally, let ar˛Ar denote the currently ‘‘selected’’ alignment for r. We will initially partition the

cloud, spanning the region from its leftmost to its rightmost alignment, into the set of bins B= fb1;.;bng of equal width w, where

each bin bi covers the alignments whose starting positions are located in the interval ½i,w;ði + 1Þ,wÞ, as shown in Figure 1C. In prac-

tice, we set w to 1kb. Denote by Cbi
the random variable representing the number of reads in bin bi, where Cbi

is drawn from the bin

density distribution CloudBinðiÞ. Lastly, let gar denote the prior probability that alignment ar is the true alignment of read r based on

edit distance and mate alignments alone. Our goal is to maximize the objective:"Y
r˛R

gar

#
,

"Y
bi˛B

Pr

 
Cbi =

X
r˛R

1ðar˛biÞ
!a#

;

where a is a parameter that dictates the relative importance of the density probabilities compared to the alignment probabilities (we

use a= 0:05 in practice). We determine the distribution CloudBinðiÞ of each Cbi
beforehand by examining uniquely-mapping clouds

that we are confident represent the true source fragment. Taking the logarithm, this objective becomes:

J
�
ar1 ;.; arn

�
=
X
r˛R

loggar +a
X
bi˛B

logPr

 
Cbi =

X
r˛R

1ðar˛biÞ
!
:

WeoptimizeJ throughsimulatedannealingby repeatedlyproposing randomchanges toar andaccepting themprobabilistically based

on the change in our objective (the corresponding algorithm is described in Algorithm 2, in whichK is the number of simulated annealing

iterations, and tð,Þ defines the annealing schedule, which can be taken to be an exponentially decreasing function).

Algorithm 2

Read density optimization via simulated annealing

Require : R;Ar cr˛R

Ensure : a+r c r˛R

ar)randomðArÞ c r˛R

z)J
�
ar1 ;.; arn

�
for k˛f1;.;Kgdo
r
0
)randomðfr˛R : jAr j>1gÞ

a
0
r)randomðAryfargÞ

z
0
)J

�
ar1 ;.; ar0 ;.; arn

�
if z

0
>z or exp

�
� z� z

0

tðkÞ
�
>randomð½0; 1ÞÞthen

ar)a
0
r

z)z
0

end if end for

a+r )ar c r˛R
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We apply the preceding latent variable optimization algorithm to deduce optimal alignments between clouds and, if necessary, use

this statistical binning algorithm to find the best alignments within a given cloud.

DATA AND SOFTWARE AVAILABILITY

EMA’s full source, links to all datasets used and detailed guidelines for reproducing our results are available online at http://ema.csail.

mit.edu and https://github.com/arshajii/ema.
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