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All-trans retinoic acid (ATRA) gradients determine skeletal patterning

morphogenesis and can be disrupted by diverse genetic or environmental

factors during pregnancy, leading to fetal skeleton defects. Adverse

Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and

homeostasis allow for the development of new approach methods (NAMs)

for predictive toxicology with less reliance on animal testing. Here, a data-

driven model was constructed to identify chemicals associated with both ATRA

pathway bioactivity and prenatal skeletal defects. The phenotype data was

culled from ToxRefDB prenatal developmental toxicity studies and produced

a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects

were classified regionally as cranial, post-cranial axial, appendicular, and other

(unspecified) features based on ToxRefDB descriptors. To build a multivariate

statistical model, high-throughput screening bioactivity data

from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant

to the retinoid signaling system were evaluated and compared to literature-

based candidate reference chemicals in the dataset. There were 48 chemicals

identified for effects on both in vivo skeletal defects and in vitro ATRA pathway

targets for computational modeling. The list included 28 chemicals with prior

evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without

prior evidence. The combination of thoracic cage defects and DR5 (direct

repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most

frequently occurring phenotypic and target disturbance, respectively. This data

model provides valuable AOP elucidation and validates current mechanistic

understanding. These findings also shed light on potential avenues for new

mechanistic discoveries related to ATRA pathway disruption and associated

skeletal dysmorphogenesis due to environmental exposures.
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Introduction

Retinoid signaling plays an important role in the patterning,

differentiation and homeostasis of the developing skeletal system

(Janesick et al., 2015; Ghyselinck and Duester, 2019; Mezquita

and Mezquita, 2019; Knudsen et al., 2021). All-trans retinoic acid

(ATRA), the biologically active form of vitamin A, is an

endogenous mediator of skeletal patterning and differentiation

as evidenced by various animal models of retinoid depletion or

excess during pregnancy (Shannon et al., 2017: Cunningham and

Duester, 2015). Sensitive gestational stages correspond to early

specification of the body plan during gastrulation and subsequent

organogenesis. Specifically, ATRA signaling influences spatial

patterning of major body axes (e.g., anterior-posterior, dorsal-

ventral), cranio-facial development, segmentation of the

vertebral column, early limb outgrowth and skeletal

development (Draut et al., 2019; Knudsen et al., 2021). ATRA

deficiency and excess (e.g., via dietary retinol deficiency,

exposure to excess ATRA or retinoid compounds, or

functional inactivation of key nodes in retinol metabolism

and/or signaling in mouse mutant models of ATRA deficiency

or excess) have been shown to cause developmental skeletal

defects (Cunningham and Duester, 2015; Roberts, 2020; See

et al., 2008).

During mammalian development, maternal vitamin A

circulates via retinol-binding protein, crosses the placenta

(Blaner et al., 2016) and is locally synthesized into ATRA

in embryonic target tissues by a two-step oxidation pathway.

The first step is initiated by retinol dehydrogenase

(e.g., RDH10) that oxidizes retinol to retinaldehyde (RAL),

and the second by cytosolic retinaldehyde dehydrogenase

(e.g., RALDH 1, 2, 3) (Metzler and Sandell, 2016; Shannon

et al., 2017). Additionally, excessive ATRA buildup is

inhibited in part by the reverse conversion of RAL back to

retinol, a reaction catalyzed by at least one enzyme, the ATRA-

inducible dehydrogenase reductase 3 (DHRS3) via interaction

with RDH10 (Adams et al., 2014). ATRA is enzymatically

degraded by cytochrome P450 monooxygenases, resulting in

ATRA’s short half-life (~1 h) (Shimozono et al., 2013;

Isoherranen and Zhong, 2019). The relevant CYP26 family

in embryonic patterning of ATRA gradients includes three

genetically distinct isoforms (CYP26A1, CYP26B1, and

CYP26C1) differing in substrate preferences for 9-cisRA

and 13-cisRA (Isoherranen and Zhong, 2019). The regional

patterns of RDH10/RALDH2 and CYP26A1/B1/

C1 expression set up ATRA morphogenetic gradients that

restrict signaling to short-range paracrine or autocrine

kinematics (Shimozono et al., 2013; Teletin et al., 2017). In

concert with CYP26 expression patterns, ATRA spatial and

temporal gradients are developed by regional expression of

dehydrogenases.

ATRA is the best known endogenous active metabolite of

(retinol → RDH → RALDH → ATRA) vitamin A and is

considered the cognate ligand for the retinoic acid receptor

(RAR). Once inside the cell, ATRA’s signal is transduced by

specific nuclear hormone receptor complexes consisting of RAR

(RARA, RARB, RARG) and retinoid X receptor (RXRA, RXRB,

RXRG) heterodimers, which act, in general, as ligand-activated

transcription factors at a retinoic acid response element (RARE)

(Mark et al., 2006; Niederreither and Dollé, 2008; Blaner et al.,

2016). This complex binds DNA and induces changes in gene

expression (Shannon et al., 2020) during embryonic development

(Cunningham et al., 2013; Shimozono et al., 2013; Chawla et al.,

2016; Schubert and Gibert, 2020). Several isoforms of each RAR

and RXR exist, with distinct spatial temporal expression patterns.

The diverse effects of ATRA/retinoids during normal embryonic

development are mediated by the various RAR/RXR heterodimer

combinations of each of these isoforms (Chambon, 1994; Kastner

et al., 1994; Mark et al., 2009). The classical direct repeat (DR) for

RAR/RXR binding has a 5-nucleotide spaced DR (referred to as

DR5) (Balmer and Blomhoff, 2005).

In the Organisation for Economic Co-operation and

Development’s (OECD’s) 2012 Detailed Review Paper (DRP)

178 focused on Endocrine Disruptor Screening Program (EDSP),

the retinoic acid signaling pathway was ranked second (below

PPAR signaling) among seven pathways considered to be

susceptible to environmental endocrine disruption and for

which relevant endpoints could be measured in a chemical

testing battery (OECD 2012, 2014). Some of the most

prominent adverse effects of systemic retinoid exposure, such

as fetal skeletal defects, were the target for an OECD workplan to

identify chemical hazards to development based on relevant

in vitro assays (OECD, 2021).

Conserved cell signaling through ATRA-dependent gene

expression has been well documented and shown to have

developmental effects on most tissues (Yousefi and Azizzadeh,

2010). Prenatal development is particularly vulnerable to genetic,

pharmacological, or chemical disruption of the retinoid pathway

during gastrulation-organogenesis (Knudsen et al., 2021; OECD,

2021). This is especially the case for early gestation when the

fundamental body plan is established, and subsequent stages

when the regional pattern of specific body segments is decoded.

At least 12 assays in the ToxCast/Tox21 portfolio map to

molecular targets in the retinoid signaling pathway. A

preliminary analysis revealed low-/submicromolar bioactivity

on one or more target assays for over 100 structurally diverse

ToxCast/Tox21 chemicals (e.g., conazoles, organochlorine

pesticides, organotins, retinoids, and pharma compounds)
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suggesting that they can be used to generate models of the

retinoid system and provide predictive toxicological

information relevant to developmental disruption (Baker et al.,

2018).

Skeletal defects are among the most prevalent adverse fetal

outcomes associated with prenatal developmental toxicity in

EPA’s ToxRefDB database (Knudsen et al., 2009). Menegola

et al. (2021) presented an adverse outcome pathway (AOP) on

disruption of ATRA signaling pathway leading to craniofacial

defects. Consequences of environmental disruption of ATRA

signaling pathway can lead to stage- and region-specific

deficiencies for various skeletal elements (Shenefelt, 1972;

Williams and Bohnsack, 2019; Zhang et al., 2015; Qin et al.,

2014; Lee et al., 2012). For example, visceral and skeletal

anomalies have been observed in various animal models (e.g.,

rat, mouse, rabbit, chick) and specifically, retinoic acid

administration at embryonic day E9.5 led to hypoplasia of the

branchial arches, as well as auricular and eye anomalies in mice

(Glineur et al., 1999).

With tens of thousands of chemicals currently in commerce

or in the environment, New Approach Methods (NAMs)

including high-throughput screening/high content screening

assays and computational/in silico models aim to identify

biological pathways and chemically induced biological activity

in human cells. With an emphasis on protecting susceptible

populations and lifestages such as embryonic development,

NAMs can develop predictive models of in vivo biological

response that would ignite a shift from traditional animal

endpoint-based testing to human pathway-based risk

assessment and hazard identification, (Collins et al., 2008; US

EPA, 2021). The Lautenberg Chemical Safety for the 21st

Century Act (15 USC 2601 Public Law 114-182) emphasizes

the need for reduction and replacement of the use of vertebrate

animals in toxicity testing paradigms (2016). To this end, the

ToxCast and Tox21 projects are building high-throughput

screening and high content screening in vitro datasets, while

the Toxicity Reference Database (ToxRefDB; Watford et al.,

2019) is a rich database of in vivo data for anchoring

predictive models. ToxCast and Tox21 assays cover a wide

array of molecular/cellular signaling pathways (Huang et al.,

2016; Thomas et al., 2019), and human stem cell line-based

biomarker assays are predictive for developmental toxicity

(Zurlinden et al., 2020). ToxRefDB provides prenatal

developmental toxicity studies in pregnant animals (e.g., rats,

mice, rabbits, and other mammals) (Knudsen et al., 2009; Sipes

et al., 2011). Linking the data from all three sources supports

statistical models predicting potential for adverse effects (e.g.,

developmental), as well as identifies potential molecular targets

and cellular pathways for incorporation into virtual tissue models

simulating cellular dynamics (Knudsen and Kleinstreuer, 2011;

Kleinstreuer et al., 2014; Leung et al., 2016; Hutson et al., 2017).

Models developed using human-relevant mechanistic

information build confidence in silico models’ scientific

reliability and relevance for regulatory decisions. A detailed

predictive computational (in silico) signature model is

therefore necessary to understand both normal embryonic

skeletal development and how environmental factors may lead

to a variety of skeletal developmental defects. Herein, we

integrate multiple databases to develop in silico models that

identify chemicals associated with ATRA signaling pathway

disruption and fetal skeletal defects.

We used the ToxCast/Tox21 in vitro data with ToxRefDB in

vivo studies in pregnant vertebrates to build a novel predictive

model to identify potential developmental toxicity of chemical

compounds associated with ATRA signaling pathway

disruptions (RARA/B/G, RXRA/B, DR5,

CYP26 Surrogates—onwards labelled CYP surrogate

biomarker) and a range of skeletal defects (e.g., axial,

appendicular, and cranial defects). Here, we hypothesize that a

predictive model of chemical compounds associated with

embryonic skeletal developmental toxicity and ATRA

signaling pathway disruption will reliably provide scientifically

based principles for regulatory decisions regarding chemical use

related to pregnant vertebrates. This study uses NAMs data to: 1)

compile data available in vitro ToxCast and Tox21 High-

Throughput Screening assays on ATRA signaling and

metabolism for n = 374 chemicals; 2) cull information from

ToxRefDB and select animal studies on prenatal developmental

toxicity for n = 370 ToxCast chemicals with skeletal defects

identified; 3) identify the relationships of these chemicals and

their association with skeletal defects using literature mining

(Baker et al., 2018); 4) systematically organize the in vitro and in

vivo findings to provide insight into potential molecular initiating

events (MIEs) on the ATRA pathway that may lead to testable

AOPs. While providing foundational weight-of-evidence, a lack

of three-dimensional, dynamic biological systems limits the

applicability of AOPs to systemic problems, ushering in the

need for more encompassing NAMs.

Methods

Phenotypic data compilation

Using Python v.3.3, the Toxicity Reference Database

(Watford et al., 2019; ToxRefDB v.2, https://github.com/

USEPA/CompTox-ToxRefDB, accessed November 2020) was

mined for chemicals associated with developmental skeletal

defects across 2,946 prenatal developmental toxicity studies.

Python was used to categorize endpoint targets anatomically

by available ToxRefDB skeletal defect annotations of Limb, Bone,

Paw/Digits, and Mouth/Jaw. This resulted in the retrieval of

57,198 annotated features linked to skeletal defects (Figure 1).

The distribution of skeletal defects by species included 31,661 in

rats, 1,232 in mice, 16,375 in rabbits, and 368 in chinchillas. This

was a composite from 363 ToxRefDB chemicals. ToxRefDB
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includes bone elements entered as individual targets (e.g., ribs,

vertebrae, scapula, sternum, ulna, etc.) for 206 fetal bones. The

database also includes the elementary description of the type of

defect for each bone (e.g., absent, bent, incomplete ossification,

misshapen, etc.) (Knudsen et al., 2009). Based on individual

targets, data was parsed into developmental skeletal phenotypes

by one of three major anatomical regions—appendicular, axial,

or cranial. Anatomical development of skeletal regions has been

well described for appendicular and axial skeletal regions; here,

axial defects are separated into cranial and post-cranial (trunk)

regions. Appendicular defects (representative of 126 bones) were

classified into stylopod, zeugopod, or autopod - segments of the

fore- and hindlimb skeleton. Effects on the cranial skeleton

(28 bones) were classified as neurocranial, orofacial, or

viscerocranial regions, and the axial defects (representative of

52 bones) were classified into thoracic cage (ribs, sternum),

vertebral, or cauda regions (Knudsen et al., 2021). Lastly, a

category named “other” was allocated for 7,562 unspecified

developmental skeletal defects. Unspecified developmental

skeletal defects are representative of data entries with

elementary description of the type of skeletal defect (e.g.

absent, misshapen, unossified, etc.), but that do not indicate

the individual target bone (Watford et al., 2019). The inclusion of

unspecified data may limit the precision of the model but

FIGURE 1
Multi-Database Pipeline for Selecting Chemicals Associated with Fetal Skeletal Defects in vivo and Bioactivity of ATRA Pathway Nodes in vitro.
Chemicals associated with 57,198 composite skeletal defects were extracted from in vivo ToxRefDB and ToxCast Databases; defects were
categorized into ten skeletal regions (blue boxes). Chemicals that induced in vitro bioactivity in ATRA pathways in 1 or more of 10 relevant ToxCast/
Tox21 assays (red box). In vitro and in vivo data was compared, distinguishing 48 chemicals associated with both skeletal defects and bioactivity
for relevant ATRA pathway nodes (purple box and Venn diagram). These chemicals potentially elucidate the role of retinoid signaling in skeletal
development for AOPs and predictive toxicology applications.
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provides a more complete dataset. Zurlinden et al. (2020)

highlighted 42 ToxCast chemicals that are extensively used by

researchers in developmental toxicology non-animal models. A

few of these well-annotated developmental toxicants were found

in ToxCast but not included in ToxRefDB. We searched PubMed

using the Abstract Sifter semi-automated literature mining tool

(Baker et al., 2017) to derive information from scientific

publications related to these 42 chemicals, and identified

skeletal defects associated with 7 of these substances.

Combined, ToxRefDB and ToxCast chemicals linked to

developmental defects in 10 skeletal regions as provided in

Figure 1.

Bioactivity data compilation

In the U.S. Environmental Protection Agency’s ToxCast

high-throughput screening program over 4,000 chemicals

have been tested for bioactivity for over 1,400 molecular

targets/features accessed through InVitroDB v.3.1 at

https://epa.figshare.com/articles/dataset/Previously_

Published_ToxCast_Data/6062551 in November 2020

(Judson et al., 2016; Richard et al., 2016). The breadth of

ToxCast assays include biochemical assays, human cells,

mouse embryonic stem cells and zebrafish development

platforms (Thomas et al., 2019; Parish et al., 2020; Marty

et al., 2022). In the Tox21 project, about 8,500 chemicals were

screened, including the over 4,000 ToxCast chemicals. Our

project mined a combined 10 assays (Table 1) from ToxCast

and Tox21 (Chen et al., 2016) for chemicals that demonstrated

bioactivity for relevant ATRA nodes (RARs, DR5, RXRs, and

CYP surrogate biomarker). CYP1A1 and CYP2C8 were

selected as CYP surrogate biomarker, due to the absence of

CYP26 assays in ToxCast and Tox 21 (Baker et al., 2022).

Importantly, both CYP surrogate biomarker’ assays are

biochemical. The binding region of CYP26 is similar to

CYP2C8. When CYP2C8 inhibitors were tested against

CYP26A1, there was a statistically significant correlation

between CYP26A2 and CYP2C8 IC50s (Foti et al., 2016a;

Foti et al., 2016b). The enzyme CYP1A1 is also recorded as

metabolizing retinoic acid (Lampen et al., 2000). NovaScreen

human unspecified cytochrome P450, family 1, subfamily A,

polypeptide 1 assay (NVS_ADME_hCYP1A1) and

NovaScreen human unspecified cytochrome P450, family 2,

subfamily C, polypeptide 8 assay (NVS_ADME_hCYP2C8)

assay data was combined as CYP surrogate biomarker, using

the lowest AC50 if redundant. NovaScreen human unspecified

retinoic acid receptor, alpha assay (NVS_NR_hRARa_

Agonist) data was combined with Attagene human

HepG2 retinoic acid receptor, alpha assay (ATG_RARa_

TRANS_up) information (no overlap in data occurrences)

to compose RARA bioactivity figures utilized (Table 1). While

these assays have different dynamic range, both test for

increases in RARA bioactivity, and the range of

concentrations for which activity were selected were limited

by a threshold (<10 µM) chosen for both environmental

relevance and specificity to avoid generalized cell stress

responses (Judson et al., 2016). Along the ATRA signaling

pathway, in both databases, relevant assays were measured for

interactions between chemicals and receptors and enzymes as

molecular targets or assessed downstream effects on reporter

gene activity. Chemicals were selected from these assays based

upon their potency, half-maximal activity concentrations

(AC50s), and efficacy in one or more related assays. These

chemicals were then compared to the list of ToxRefDB/

ToxCast chemicals associated with skeletal phenotypic

defects.

Data analysis and visualization

In addition to the multi-database comparison to identify

chemicals associated with skeletal defects as well as ATRA

signaling pathway disturbances, ToxCast and ToxRefDB

chemicals associated with developmental skeletal defects were

prioritized for potency and regional effects through the

Toxicological Priority Index (ToxPi™) (ToxPi; Marvel et al.,

2018). ToxPi is a software that objectively conducts chemical

prioritization via integration across multiple information

domains and sources of evidence The “ToxPi visualization”

portrays the relative magnitudes of environmental hazards

(e.g. exposure of environmental chemicals). Data is

transformed into transparent, visual rankings (Reif et al.,

2010). A ToxPi for chemicals associated with ATRA pathway

disturbances was formulated for further comparison between the

two (in vivo vs. in vitro) endpoints (Figure 3). Separately, for each

chemical, a ToxPi was created that was broken into 10 slices, each

slice representative of the 10 potential regional skeletal defects

(Figure 2). Separately, Slices are proportionate to the number of

each effect caused by a particular compound, which the overall

potential ToxPi value equaling one. The width of each slice

signifies the number of data points per defect. The larger the

radius of the slice from the origin, the greater the chemical’s

potency, with length representing the overall degree of hazard

(National Academy of Sciences, 2014). This approach allows for a

multidimensional analysis of the relative potency (in vivo

experiments), chemical properties (bioavailability), and

perturbation score (pathways). A dimensionless index score,

ToxPi, is calculated based on the combination of all the data

sources, and then compounds are ranked to prioritize which

chemicals should be tested for future toxicological testing,

compare toxicity, and identify similarities in predicted

compound activity.

For k-means clustering, ToxPi employs a Java port of the R

function for means. The k-means clustering module uses

agglomerative clustering to organize ToxPi profiles into
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clusters (collection of data points) based upon similarity and

discover underlying patterns. In ToxPi, k-means clustering uses

the centroid to parse the chemicals rather than default sorting by

overall priority score (rank). In short, k-means clustering

identifies k number of centroids, assigns each data point to

the nearest cluster, simultaneously keeping the centroids as

small as possible. The major sources of organization were

then visualized on a coordinate field by Principal Components

Analysis (PCA) (Marvel et al., 2018). This function uses the

“Hartigan-Wong” algorithm to execute the clustering. For all

k-means clustering procedures, the algorithm was run (nStart) at

the default of 15 starting cluster locations, as consistency of

results was visible through such a procedure. Effective k-means

clustering results in smaller within group sum of squares, which

can be achieved by sound selection of the seed of the random

number generator, and specified replication (Marvel et al., 2018,

Manual v. 2.3). The k-means algorithm grouped similar ToxPi

data points together based on distance from centroids, the center

of these clusters. These groupings identified underlying patterns.

For k-means clustering chemicals involving ATRA signaling

pathway activated genes, 4 centroids were designated based

upon biological reasoning that the number of clusters needed

is one less than the total number of the relevant molecular targets

involved in the assays. This allows for the statistical subtraction of

one degree of freedom; similarly, 4 clusters were employed for

k-means analysis of chemicals associated with ATRA pathway

target (Figure 3). For the skeletal defects ToxPi, data points were

assigned to one of 5 clusters (Figure 2). Homogeneous subgroups

within the data are identified such that data points in each cluster

are as similar as possible according to a similarity measure of

skeletal region defects or ATRA signaling pathway node

disturbance for the respective k-means cluster.

The Hierarchical Clustering module provides options for

organizing ToxPi profiles into clusters based upon similarity,

rather than the default sorting by overall priority score (rank).

The cluster dendrograms are drawn using an agglomerative

hierarchical clustering technique. With ToxPi profiles for

individual chemicals, data points are treated as individual clusters.

Then with additional iterations, similar clusters merge, until there is

one cluster formed of similar data point (Reif et al., 2010; Grimm

et al., 2016; Marvel et al., 2018). TheWard.D2 hierarchical clustering

tool was utilized to minimize variance and visualized with the ToxPi

2.3 software. The chemicals identified as associated with skeletal

defects and ATRA pathway disturbances were selected and displayed

in a heatmap using the chemical AC50 per each of the 8 targets

(pheatmap function in R).

Results

Initial workflow

ToxRefDB in vivo and ToxCast/Tox21 in vitro data was

compared, identifying 48 chemicals (Table 2) that were

associated with both skeletal defects and bioactivity (<10 µM) for

relevant ATRA pathway nodes (Figure 1), purple box and Venn

diagram). These chemicals have the potential to elucidate the role of

retinoid signaling in skeletal development for hypothesizing and

testing AOPs and supporting predictive toxicology applications. The

48 chemicals can also be found in the accompanying Abstract Sifter

tool organized by target on the AbstractSifter_Retinoid sheet

(Supplementary Material S1), in a simple list on the Notes sheet

showing the chemical-specific association with nine skeletal defects

phenotypes, and on the Landscape sheet, shown with sample

toxicity-related queries and resulting article counts. The Abstract

Sifter’s Landscape sheet results show that, of the 48 chemicals, retinol

and ATRA are associated with the highest number of articles

(293 and 247, respectively) describing skeletal defects-specific

toxicity (S1). Forty-one of the 48 chemicals on the Landscape

sheet have some connections to citations about skeletal defects-

specific phenotypes. Seven chemicals (bromuconazole, buprofezin,

fenpyroximate (Z,E), linuron, N-phenyl-1,4-benzenediamine,

tebufenpyrad and tributyltetradecylphosphonium chloride) do not

have literature associating them with skeletal defects.

TABLE 1 | The 10 ToxCast and Tox21 assays that tested over 8,079 chemicals for bioactivity for relevant ATRA.

Assay Gene examined Assay description

ATG_DR5_CIS_up DR5 Cis-reporter assay related to RARE activation

ATG_RARa_TRANS_up RARA Reporter for RARA transactivation

ATG_RARb_TRANS_up RARB Reporter for RARB transactivation

ATG_RARg_TRANS_up RARG Reporter for RARG transactivation

ATG_RXRa_TRANS_up RXRA Reporter for RXRA transactivation

ATG_RXRb_TRANS_up RXRB Reporter for RXRB transactivation

NVS_ADME_hCYP1A1 CYP1A1 Biochemical reporter, loss of activity related to human CYP1A1

NVS_ADME_hCYP2C8 CYP2C8 Biochemical reporter, loss of activity related to human CYP2C8

NVS_NR_hRARa_ Agonist RARA Biochemical, loss of activity related to RARA agonist liganding

TOX21_RAR_LUC_ Agonist RARA Reporter for RARA transactivation related to retinol signaling pathway (RSP)
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FIGURE 2
ToxPi Rank Order (A) and Hierarchical Clustering (B) results for 48 chemicals associated with adverse skeletal outcomes (ASOs). ASOs include
autopod, stylopod, zeugopod, cauda, thoracic cage, vertebra, orofacial, neurocranium, viscerocranium, and other. Most potent chemicals
associated with the greatest amount of target disruption have the largest ToxPis and highest ToxPi rank (48). Skeletal defects were categorized into
three skeletal phenotypes and specified regions and an unspecified region as delineated in the ToxPi key (A). Appendicular regions are shades of

(Continued )
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ToxPi, K-means clustering, and
hierarchical clustering

K-means clustering of skeletal defects provided insight into

the most sensitive phenotypic changes following chemical

exposure. Analysis of the skeletal defects K-means clustering

plot (Figure 4A) indicates that Principal Component 1 (PC1), the

x-axis, identifies variability in the 48 model chemicals, denoting

the heterogeneity of the skeletal response. Summarily, the left

side of Figure 4A PC1 demonstrates less specificity with

8 phenotypic regions (affected by, e.g., retinol, aspirin)

represented, while the right side has more specificity as

indicated by the individual thoracic cage slice (affected by,

e.g., triflumizole). PC2, y-axis, provides the specificity of the

regional phenotype based on chemical. Through PC2, a trend in

axial phenotypic changes (thoracic cage, cauda, and then

vertebral) occur first, followed by an increase in cranial

defects (progressively neurocranium, viscerocranium, and then

orofacial regions). Thoracic cage alterations occur without other

phenotypic changes preceding its own. Again, looking at the

systemic implications of these diagrams, thoracic cage formation

is tied to homeobox patterning, hence, alterations in patterning

may be leading to an effect on the cauda of the embryo. Among

appendicular phenotypes specificity is ordered as stylopod,

zeugopod, and then autopod. Interpreting the k-means plot

for systemic developmental changes there is a visible

progression to appendicular responses. The limb defects

increase in frequency following cranial and postcranial axial

phenotypic changes, indicating that the limb is more

responsive when preceded by other phenotypic regions’

alterations. In examining the sensitivity of phenotypic regions,

through the fipronil example it is evident that while limb defects

have less specificity than cranial responses, appendicular

phenotypes are more sensitive than cranial phenotypes when

exposed to chemicals inducing any adverse appendicular

outcomes. Notably, the retinoids of ATRA and retinol are

activating through the biological system throughout the

embryo with broad effects in a manner consistent with their

status as positive controls.

Hierarchical clustering of skeletal defects highlighted the

prevalence and type of phenotypic changes. In the hierarchical

clustering of skeletal phenotypes (Figure 2B), the potency (lower

concentrations of chemical compound results in AC50s more

potent than other chemicals at the same relative concentration)

of retinol and ATRA are greatest in association with skeletal

defects in every zone of interest. These findings reinforce the

validity of the chemical compound selection process applied,

since ATRA and retinol, two known positive controls on the

ATRA pathway, were objectively identified via the workflow in

Figure 1. The progression of skeletal defects in the hierarchical

clustering is consistent with the parallel skeletal region k-means

clustering. All clusters contain one or more axial phenotypes; this

suggests that axial phenotypes are the most frequent fetal

outcomes and possess the greatest specificity of the skeletal

defects associated with the 48 chemicals. Clusters a, b, and c

are predominantly thoracic cage defects, with eventual

viscerocranial and unspecified defects occuring. The

consistency of the unspecified defects fit the patterning

associated with axial defects, suggesting they may be axial

features. Cluster d starts with the consistent occurrence of

defects of the zeugopod phenotype, all axial zones, and

neurocranial and viscerocranial regions. This hierarchical

cluster demonstrated the specific progression of skeletal

defects as the sensitive thoracic cage, progression to

appendicular (stylopod and zeugopod) and increasing

occurrences of cauda and viscerocranium defects.

K-means clustering of targets on the ATRA signaling

pathway identified target disruption related to the

48 chemicals of interest (Figure 4B). In PC1 moving right to

left on the x-axis, the first quintile included those chemicals that

activated RAR, RXR, and/or DR5 readouts only. The next

quintile adds chemicals that also activated the retinol

signaling pathway (RSP) assay (Tox21) node. Furthermore,

PC1 and PC2 clearly delineate CYP surrogate biomarker,

FIGURE 2
red, axial regions are shades of green, cranial regions are blues, and unspecified skeletal areas are purple. Skeletal Defects Hierarchical
Clustering for 48 Chemicals: ‘Clusters a-e’ represent varying skeletal phenotype alterations associated with up to 48 chemicals of interest. Clusters
with chemical ToxPis associated with similar skeletal defect composition. ‘Cluster a was primarily thoracic cage defects with occurrences of
neurocranium and appendicular defects. A ToxPi rank of 1 is least potent, while a score of 48 is a highly potent associated with significant
skeletal defects. Rank order of ‘Cluster a’ chemicals is 1. Fenpyroximate (Z,E), 2. Chlorothalonil, 3. Forchlorfenuron, 4. Imazalil, 5. Lindane, 6.
Myclobutanil, 7. S-Bioallethrin, 8. Tebufenpyrad, 9. Tetraconazole, 10. Triflumizole, 11. Raloxifene hydrochloride, 12. Propiconazole, 13.
Difenoconazole, 14. Flusilazole, 15. Fluoxastrobin, 16. Clodinafop-propargyl, and 17. Fipronil. ‘Cluster b’ was dominated by unspecified and thoracic
cage defects, with 2 occurrences of viscerocranial defects. Rank order of ‘Cluster b’ chemicals is 18. Triphenyltin hydroxide,
19.Tributyltetradecylphosphonium chloride, 20. Phorate, 21. N-Phenyl-1,4 benzenediamine, 22. SSR126768, 23. Triticonazole, and 24. N,N-
Dimethylformamide. ‘Cluster c’ is dominated by axial defect with occurrences of viscerocranial and unspecified defects. Rank order of ‘Cluster c’
chemicals is 25. Endrin, 26. Endosulfan, 27. Buprofezin, 28. Oxadiazon, 29. Bentazone, 30. Etoxazole, 31. Allethrin, 32. Pyraclostrobin, 33. Thiazopyr,
34. Iprodione, 35. Diniconazole, 36. Pyridaben, and 37. Linuron. ‘Cluster d’ possesses zeugopod phenotype, the full axial zone, and neurocranial and
viscerocranial regions defects. Rank order of ‘Cluster d’ chemicals is 38. Oryzalin, 39. Aspirin, 40. Triadimefon, 41. Pyrimethamine, 42. Cyfluthrin, 43.
Bromuconazole, 44. Propargite, 45. Deltamethrin, 46. Bronopol. The most potent chemicals of Retinol (47) and ATRA (48) were strongly associated
with multiple appendicular, axial, and cranial phenotypic defects.
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FIGURE 3
ToxPi Rank Order (A) and Hierarchical Clustering (B) results for 48 Chemicals associated with disruption of targets on the ATRA signaling
pathway. The ToxPi for ATRA signaling pathway disruption target types of RARs are shades of blue, while DR5 is red, RXRs are shades of green, CYP
surrogate biomarker are yellow, Tox21 is a dark teal. Targets of interest include RARA/B/C, RXR A/B, DR5, Retinol Signaling Pathway (Tox21), CYP
surrogate biomarker. Most potent chemicals associated with the greatest amount of ATRA signaling target disruption have the largest ToxPis

(Continued )
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RARA, and DR5 as the most disrupted targets along the ATRA

signaling pathway (Figure 4B). DR5 is the most sensitive target,

with disruption occuring in all k-means quadrants to some

degree (Figure 4B). PC2 provides potency ranking with

chemicals having the least potency, but greatest specificity at

the top of the y-axis; the greatest potency and broad range of

abnormalities occurs moving down the y-axis (e.g., retinol,

ATRA, etc.). Figure 3B’s hierarchical clustering demonstrates

that CYP surrogate biomarker and DR5 are the most specific

targets to be activated on the ATRA signaling pathway. The

potency of chemicals associated with CYP surrogate biomarker

appear to be most potent due to the greater degree of activation of

FIGURE 3
and highest ToxPi rank (48). A ToxPi rank of 1 is least potent, while a score of 48 is a highly potent associated ATRA bioactivity. Hierarchical
Clustering for 48 Chemicals In Vitro Activity on ATRA Signaling Pathway Targets: ‘Clusters a-e’ represent varying targets disrupted on the ATRA
signaling pathway by up to 48 chemicals of interest. Clusters of chemical ToxPis associated with similar target disruption composition. ‘Cluster a’ is
dominated by DR5 and RARA disruption. Rank order of ‘Cluster a’ chemicals 1. Tributyltetradecyl-phosphonium chloride, 2. Buprofezin, 3.
S-Bioallethrin, 4. Etoxazole, 5. Fluoxastrobin, 6. Tetraconazole, 7. Lindane, 8. Fipronil, 9. Bentazone, 10. Bromuconazole, 11. Propargite, 12.
Endosulfan, 13. Allethrin, 14. Thiazopyr, 15. Pyridaben, 16. Cyfluthrin, 17. Tebufenpyrad, 18. Deltamethrin, 19. SSR126768, 20. Fenpyroximate (Z,E), and
21. Oxadiazon. ‘Cluster b’ possesses RXRA, RXRV, DR5, RARB/G activity. Rank order of ‘Cluster b’ chemicals 22. Pyrimethamine, 23. Aspirin, 24. N,N-
Dimethylformamide, 25.Triphenyltin hydroxide, 26. N-Phenyl-1,4-benzenediamine, and 27. Endrin. ‘Cluster c’ has instances of disruption from every
category of target (RARA, RXR, DR5, and RSP). Rank order of ‘Cluster c’ chemical is 28. Retinol. ‘Cluster d’ has a consistent significant CYP surrogate
biomarker’ disruption, coupled with RARA and DR5 disruption. Rank order of ‘Cluster d’ chemicals 29. Chlorothalonil, 30. All-Trans Retinoic Acid, 31.
Triflumizole, 32. Pyraclostrobin, 33. Imazalil, 34. Iprodione, 35. Flusilazole, 36. Oryzalin, 37. Propiconazole, 38. Myclobutanil, and 39. Triadimefon.
‘Cluster e’ primarily provides ToxPis with CYP26 disruption, with a few cases of DR5 activation and a singular case of RXRG disruption. Rank order of
‘Cluster e’ chemicals 40. Linuron, 41. Clodinafop-propargyl, 42. Raloxifene hydrochloride, 43. Diniconazole, 44. Phorate, 45. Forchlorfenuron, 46.
Bronopol, 47. Triticonazole, and 48. Difenoconazole.

TABLE 2 | 48 chemicals associated with skeletal defects and ATRA Signaling Pathway Disruption (ToxRefDB and ToxCast/Tox21).

48 chemicals analyzed

DTXSID Name DTXSID Name

DTXSID8035180 Allethrin DTXSID2024163 Linuron

DTXSID7021239 All-Trans Retinoic Acid DTXSID8024315 Myclobutanil

DTXSID5020108 Aspirin DTXSID6020515 N,N-Dimethylformamide

DTXSID0023901 Bentazone DTXSID7025895 N-Phenyl-1,4-benzenediamine

DTXSID9032531 Bromuconazole DTXSID8024238 Oryzalin

DTXSID8024652 Bronopol DTXSID3024239 Oxadiazon

DTXSID8034401 Buprofezin DTXSID4032459 Phorate

DTXSID0020319 Chlorothalonil DTXSID4024276 Propargite

DTXSID6032354 Clodinafop-propargyl DTXSID8024280 Propiconazole

DTXSID5035957 Cyfluthrin DTXSID7032638 Pyraclostrobin

DTXSID8020381 Deltamethrin DTXSID5032573 Pyridaben

DTXSID4032372 Difenoconazole DTXSID9021217 Pyrimethamine

DTXSID2040363 Diniconazole DTXSID1034181 Raloxifene hydrochloride

DTXSID1020560 Endosulfan DTXSID3023556 Retinol

DTXSID6020561 Endrin DTXSID2039336 S-Bioallethrin

DTXSID8034586 Etoxazole DTXSID0047379 SSR126768

DTXSID2032550 Fenpyroximate (Z,E) DTXSID0034223 Tebufenpyrad

DTXSID4034609 Fipronil DTXSID8034956 Tetraconazole

DTXSID2034625 Fluoxastrobin DTXSID1032488 Thiazopyr

DTXSID3024235 Flusilazole DTXSID3023897 Triadimefon

DTXSID1034634 Forchlorfenuron DTXSID9034997 Tributyltetradecylphosphonium chloride

DTXSID8024151 Imazalil DTXSID2032500 Triflumizole

DTXSID3024154 Iprodione DTXSID1021409 Triphenyltin hydroxide

DTXSID2020686 Lindane DTXSID0032655 Triticonazole
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FIGURE 4
K-means clustering of Skeletal Defects (A) and ATRA Bioactivity (B) for 48 chemicals. In image A, skeletal defects examined include autopod,
stylopod, zeugopod, cauda, thoracic cage, vertebra, orofacial, neurocranium, viscerocranium, and other. Principal Component 1 (PC1), the x-axis,
identifies variability in the 48 model chemicals, indicating heterogeneity in the skeletal response. Moving from left to right, a broader range of
phenotypic changes are found, and then the array of skeletal responses diminishes with horizontal progression. The left side PC1 demonstrates
less specificity, while the right side hasmore specificity (i.e., single thoracic cage slice). This is demonstrable by the leftmost cluster group 2 having the

(Continued )
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CYP surrogate biomarker when compared to even DR5. The

overall severity of CYP surrogate biomarker’ disruption,

common occurrence of DR5 and RARA in the hierarchical

clustering are consistent with the k-means clustering. Of

particular interest in both the hierarchical and k-means

clusterings there are chemical classification patterns.

Organochlorine pesticides (e.g., endosulfan, endrin, lindane,

pyridaben, etc) consistently activate DR5. Furthermore, azole

fungicides (e.g., triazoles, imidazoles, pyrazoles) have broad

association with activation of CYP surrogate biomarker,

RARA, and DR5. Organotins biocides preferentially activated

RXRs (e.g., triphenyltin, tributyltin hydroxide). Sulfurons (e.g.,

linuron, forchlorfenuron) consistently activate CYP surrogate

biomarker. Chemicals with unspecified or broad categorizations

(e.g., SAR 150640, asprin, iprione, etc.) regularly activated DR5,

followed by CYP surrogate biomarker, then RARA, and activated

the other molecular targets of interest with lower specificity.

Literature & Datamining as basis for MIEs
and putative AOPs (pAOPs)

To further support the formation of pAOPs, publicly

available databases that describe in vitro assay results of a

chemical’s activity against one of the ATRA pathway targets

of interest were mined (Baker et al., 2022). Databases mined

included Protein Data Bank (PDB) (Berman et al., 2003),

ChEMBL (Gaulton et al., 2017), and ToxCast/Tox21 (Judson

et al., 2016; Richard et al., 2016). Chemicals with inactivity in the

ToxCast and Tox21 assays were excluded from the developed

ATRA pathway candidate chemicals (Baker et al., 2022) selected

from assays and literature. There were 1188 candidate chemicals

(Baker et al., 2022) with activity in one or more ToxCast or

Tox21 assays of interest. Furthermore, a multi-rule filter was set

to limit chemicals with the following qualifying features: DR5 <
20 μM, CYP <10 μM, RAR <10 μM, RXR <10 μM, RSP

(Tox21) < 10 μM, and prevalent RDH10 literature. This

resulted in the shrinkage of data for retinoid disruption

(potential MIEs) and adverse skeletal outcome (ASO) to

117 chemicals of particular interest for pAOP elucidation.

Supplementary Figure S2 provides k-means clustering ATRA

Signaling Pathway for 117 chemicals. Figure 5 is the heatmap

dendrogram of 48 chemicals associated with ATRA pathway

disruption and skeletal defects in ToxRefDB and ToxCast/Tox21,

while S2 is a dendrogram of 117 chemicals with ATRA pathway

disruption with potential AOP elucidation. For pAOPs, MIEs

were derived from the measured target activity increases (agonist

assays) and decreases (antagonist assays) in the Tox21 and

ToxCast associated with the chemicals of interest. Adverse

skeletal outcomes (ASOs) were based on the phenotypic

defects recorded in ToxRefDB. The literature review

conducted provided quantitative and qualitative data to

inform key event (KE) placement in pAOPs. Table 3 displays

3 pAOPs for ASOs.

Discussion

Forty-eight chemicals were found to represent a subset of the

chemical landscape having in vitro (ATRA pathway targets) and

in vivo (phenotypic skeletal defects) outcomes defined from

ToxCast, Tox21, and ToxRefDB. K-means clustering,

hierarchical clustering, and the heatmap results demonstrate

the same conclusions about the 48 chemicals associated to

both skeletal defects and target disruption on the ATRA

signaling pathway. Thoracic cage was the most sensitive and

frequently occurring skeletal defect in this model, followed by

other axial defects (vertebra and cauda), and cranial defects.

Simultaneously, DR5 has the greatest occurrence of target

activity; chemicals disrupting DR5 were consistently associated

with thoracic cage defects. Thereafter, CYP surrogate biomarker

and RARA are the most sensitive targets to disruption on the

ATRA signaling pathway. The most sensitive skeletal defects and

disrupted targets outcomes are often associated with the same

chemicals. The most potent chemicals are similar for both

skeletal defects and target disruption (e.g., ATRA, retinol,

flusilazole, N,N-dimethylformamide), increasing the likelihood

that when disruption of a target on the ATRA signaling pathway

results in an adverse outcome (AO) occurring with an

associated ASO.

It should be noted that the workflow used in developing this

model (Figure 1) was performed in series (supervised →
unsupervised learning). Supervised learning culled specific

defects (skeletal) and assay targets (ATRA system) from the

datasets to localize the overlapping domain. From there, we used

unsupervised methodology to classify statistical correlations.

FIGURE 4
most in vivo ToxPi regional phenotype slices at upwards of 8 slices (e.g., retinol, aspirin, etc.), while the farthest right cluster group 3 has solely
1 slice of specified regional phenotypic change (e.g., triflumizole). PC2, y-axis, demonstrates phenotypic separation as deficiencies transition from
autopod to zeugopod and upward phenotypic changes are then found in the axial cauda, and thereafter moving downward there is an increase in
neurocranial responses. Moving further left and upward along PC2 viscerocranial defects increase. Through PC2, a trend in axial phenotypic
changes occur first, followed by an increase in cranial defects. In image B, k-means clustering ATRA Signaling Pathway for 48 chemicals: Disrupted
activity in the following targets are of interest: RARA/B/C, RXR A/B, DR5, RSP (Tox21), CYP surrogate biomarker. PC1 and PC2 consistently
demonstrate that DR5 is the most sensitive target, with interruption occuring in all k-means quadrants to some degree. Overall CYP surrogate
biomarker, RARA, and DR5 are most disrupted along the ATRA signaling pathway in the 10 assays examined.
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This led to inferences using only input vectors without referring

to known, or labelled, outcomes for predictive toxicology

(Ciallella et al., 2022); however, it neglects non-skeletal targets

as well as chemicals that did not perturb in vitro bioactivity

profiles of the ATRA assays available for this analysis, or non-

ATRA pathways, which are important for health-protective

inferences for DART testing (Rajagopal et al., 2022). The

k-means clustering (Figure 4) findings for the 48 chemicals

were highly relevant, and consistent with corresponding

heatmap findings (Figure 5). However, for the 117 chemicals,

the k-means clustering diagram is biased by the weight of the

increased occurrence of Tox21 results, and lack of parallel

ToxCast data (S2). This is evident with the straight-lined

clustering of Tox21 data; while k-means clustering may not

provide sufficient data about the relationships between target

disruption on the ATRA signaling pathway, the 117 chemical

heatmap (S2) findings are consistent with the 48 chemical

heatmap (Figure 5). In both heatmaps Figure 5 and S2, DR5,

CYP surrogate biomarker and RARA are highly perturbed by the

chemicals of interest, however there is a notable increase in the

RSP activity, likely due to the influx of Tox21 data, that was not

complimented by equitable ToxCast data. The Tox21 RSP assay

is especially related to RARA, and thus remains consistent with

other data. These findings allude to the reality that an increase in

data though increased Tox21 data may strengthen the

conclusions of our findings. However, an increase in

Tox21 assay types and number of chemicals in

experimentation will lead to more data, require a

complimentary increase in ToxCast data to achieve balanced

and correctly scaled ToxPi results.

Twenty-eight of the 48 chemicals found both in ToxRefDB

and Tox21 and/or ToxCast were candidate reference chemicals

(Baker et al., 2022), but had not previously been noted. This

finding provides reason for further exploration of the impact of

the other 20 chemicals on the ATRA signaling pathway and

skeletal defects. All 20 compounds were found to be associated

with skeletal defects in literature (S1), but not ATRA signaling

pathway disruption. For example, prenatal aspirin exposure in

rats induces skeletal anomalies including fused ribs, incomplete

ossification of the cervical arch, absent body of thoracic or

lumbar vertebra, deformation of lumbar arch, and

cartilaginous changes in vertebrae, paw and ribs (Dodo et al.,

2009). There are 69 chemicals from the 117 chemicals that are

lacking ToxRefDB data. This study focused on in vivo skeletal

defects data from ToxRefDB; extending in vivo data to include

data from other in vivo databases may show greater consistency

between the 48 chemicals and 117 chemicals, the in vivo and

in vitro data.

Chemical classification and structure may be associated with

target disruption on the ATRA signaling pathway and skeletal

defects based on our findings and those from the literature. Our

analysis demonstrated that organochlorine pesticides (e.g.,

endosulfan, endrin, lindane, pyridaben, etc.) consistently activate

DR5. Fungicides of the “-azoles” (e.g., triazoles, imidazoles,

pyrazoles) family have broad association with activation of CYP

surrogate biomarker, RARA, and DR5 (Figure 4). Organotin

FIGURE 5
Heatmap dendrogram of 48 chemicals associated with ATRA
pathway disruption and skeletal defects in ToxRefDB and ToxCast/
Tox21 with potential AOP elucidation. Reflected are disruption
activity of 8 targets of interest (RARA/B/G, RXRA/B, RSP
(Tox21), DR5, and CYP surrogate biomarker). Scale of 0–5, with
lightest color indicating less target disruption activity and darker
red indicating higher target disruption activity compared to other
chemicals for the respective targets. The dominance of activity at
DR5, CYP surrogate biomarker, and RARA is consistent with
k-means and hierarchical clustering diagrams; however, the
heatmap attributes a greater amount of sensitivity of DR5 to
chemicals of interest through the consistently darker red shading.
CYP26 and RARA follow DR5 as the most disrupted of the ATRA
signaling pathway targets.
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biocides preferentially activate RXRs (e.g., triphenyltin

hydroxidetributyltin, tributyltetradecylphosphonium chloride).

Phenylureas (e.g., linuron, forchlorfenuron) activate CYP

surrogate biomarker. Compounds without common chemical

classifications (e.g., SAR 150640, asprin, iprione, etc.) regularly

activated DR5, followed by CYP surrogate biomarker, then

RARA, and occasionally activated the other molecular targets of

interest. The similar ToxPi outcomes between chemicals of the same

class and comparable structures (analogue) provide evidence that

these chemicals may be able to predict bioactivity information and

skeletal defect outcomes for other similar compounds (Marvel et al.,

2018). This “read-across”method would provide valuable predictive

toxicological and hazard index information about chemicals without

previous experimentation and at a faster rate than lab work.

We developed a computational model for predictive

toxicology of 48 chemicals associated with chemical disruption

of the ATRA signaling pathway with concurrent fetal skeletal

defects. We found literature relationships between 48 chemicals

and skeletal defects in various animal models (S1) consistent with

our computational models. For example, mouse and several other

animal models showed reductive limb defects resembling those

seen in vitamin A deficiency (VAD); truncation and deletion of

the long bones (ulna, radius, and humerus in the forelimb) and

digital deletions and fusion (Kochhar, 1973, 1985). Retinoic acid

administration to mothers produced severe, multiple skeletal

defects and more specific malformations involving the axial

skeleton, the fore- and hindlimbs, and cleft palate in embryos

(Kistler, 1981). Embryonic exposure to pyrethroids causes

craniofacial malformations, body axis curvature in zebrafish

embryo model (DeMicco et al., 2010). Chlorothalonil (2,4,5,6-

tetrachloro-1,3-benzenedicarbonitrile) is a broad-spectrum, non-

systemic, organochlorine fungicide and exposure to this

organochlorine fungicide causes skeletal malformations

including absence of xiphoid process, malformation of the

supraoccipital, absence of caudal vertebrae, incomplete

ossification and malformation of xiphoid process in rats (Silva

et al., 2020). Furthermore, five organochlorine pesticides,

specifically, chlordane, endrin, and endosulfan, activate human

RAR-mediated gene transcription via a retinoic acid response

element (RARE such as DR5) and these organochlorine

pesticides cause skeletal defects in several animal models

(Ottolenghi et al., 1974; Lemaire et al., 2005; Kamata et al.,

2008; Inoue et al., 2010). Moreover, organotin biocides

preferentially activate RXRs and induced skeletal defects in

animal models. For example, pregnant mice and rats exposed

to triphenyltin hydroxidetributyltin and

tributyltetradecylphosphonium chloride showed skeletal

malformations including skeleton variations (e.g., poorly

ossified skull bones) and malformations (misshapened axis

and skull bones) an increased incidence of fusion of ribs,

irregular ossification of sternebrae, and bipartite vertebral

centers and cleft palate in mice and rat embryos (Sarpa et al.,

2007).

Other classified chemicals from the 48 compounds such as

phenylureas (e.g., linuron) activate CYP surrogate biomarker and

induce skeletal abnormalities including abnormal axial rotation,

TABLE 3 | pAOPs for skeletal dysmorphogenesis linked to disruption of retinoid signaling. MIE, Molecular Initiating Event; KE, Key Events upstream to
downstream; AO, Adverse Outcome. MIEs included loss of CYP26 enzymatic activity/expression and overactivation of RARs. KEs are critical
imbalances to local ATRA concentration and FGF8 presence and signaling, modification of axial patterning genes, and cell death and differentiation.
AOs are phenotypes resulting from stage and positional alterations in the fetal skeleton (Knudsen et al., 2021). MIEs were largely derived from
quantitative data, while KEs were developed through the literature, and AOs were gleaned from a combination of literature and datamining.
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and abnormal branchial arch development in rat embryo

(McNutt and Harris, 1994), with linuron exposure to zebrafish

models inducing spinal curvature and tail specific skeletal defects

(Maharaj et al., 2020). Furthermore, CYP26A1(−/−) knockout

mouse embryos having limited ATRA degradation had posterior

elongation of axial patterning and displayed severe truncation of

posterior structures (Rhinn and Dollé, 2012).

Several experimental studies have shown that retinoic acid

inhibits chondrogenesis and that this inhibition is most likely

RARA/B/G-mediated (Eckhardt and Schmitt, 1994; Schroeder

et al., 1994). Additionally, studies have shown that an RARA-

specific agonist is significantly more potent in inducing skeletal

malformations more frequently than RARB- or RARG-specific

agonists (Elmazar et al., 1996). RARG is abundantly expressed

during chondrocyte maturation, whereas RARAs appears to be

expressed in most other tissues of the embryonic limb

development. Therefore, under conditions of excessive

retinoid where expression of RARB (Mendelsohn et al., 1991;

Jiang et al., 1994), RARA, and DR5 may be elevated within the

limb mesenchyme region, and can lead to a delay or inhibition of

chondrocytes and chondroblast differentiation, resulting in

abnormal skeletogenesis. Furthermore, pregnant mice treated

with commercially available RARA/B/G-ligands and ATRA in

chronological sequences exhibited external, visceral and skeletal

malformations by E18 of gestation. In these studies, teratogenic

RAR-ligand potency rankings of RARA > RARB > RARG—these

are consistent with RAR-ligands’ potency ranking found in our

study. This study concluded that these retinoids also produced a

different spectrum of developmental defects, specifically, the

A-ligand and G-ligand induced the mandible, limb

malformations, bone ossification deficiencies and defects of

the sternebrae and vertebral body—with relative consistency

among our compounds associated with these target

disruptions and congruent skeletal defects (Elmazar et al., 1996).

The identification of RAREs (e.g., DR5) by RAR-binding

assay in animal studies, in vitro cell line transfection assays, and

ligand-binding transgenes reporter assay in mouse have been

used to identify ATRA targeted genes that may be required for

embryonic development (Cunningham and Duester, 2015).

There were several studies that report the insufficiency or

excess of ATRA due to specific RAREs (e.g., DR5) may lead

to developmental defects in embryo (Houle et al., 2003; Kumar

et al., 2016). DR5’s ability to influence a wide variety of skeletal

defects is represented in our study as well as throughout the

literature. For example, DR5, functioning as a RARE enhancer,

can overactivate the Homeobox protein Hox-a1 (Hoxa1) gene,

and disrupt hindbrain development (Langston and Gudas, 1992;

Dupé et al., 1997; Houle et al., 2003; Pouilhe et al., 2007).

Whereas, RARE that function as a silencer to repress

Fibroblast growth factor-8 (Fgf8) expression in caudal region

causes axial defects in embryo (Kumar et al., 2016).

Hypoactivation of Transglutaminase 2 (Tgm2) by DR5 leads

to abnormal interdigital limb development (Nagy et al., 1996;

Dupé et al., 1999).

Chemical disruption in the ATRA signaling pathway can be

linked to either elevated or diminished retinoid concentrations in

target tissues, resulting either in up- or downregulation of RAR-

mediated signaling, respectively. Under these circumstances, the

model presented in the current manuscript covers a condition of

only elevated ATRA concentration and upregulated RAR-

signaling resulting from environmental exposure. In contrast,

chemicals that disrupt retinol transport or ATRA bioactivation

would be expected to invoke developmental phenotypes similar

to Vitamin A deficiency (Knudsen et al., 2021). For example, a

human biomonitoring study provided evidence associating

reduction in circulating retinol levels with the adipose

accumulation of persistent organic pollutants (POPs),

including some polychlorinated biphenyl (PCB) congeners

and dichlofol (Galbán-Velázquez et al., 2021). One

mechanistic scenario suggested by those authors was chemical

CYP oxidation and induction of an oxidative stress

microenvironment that, in turn, lowers retinol levels by

interfering with retinol binding protein-4 (RBP4) as a

surrogate marker for serum retinol that forms a circulating

carrier complex with transthyretin (TTR). The absence of

HTS assays for retinol transport and metabolism is a

limitation of the current model as it may apply to conditions

associated with diminished retinoid concentrations and

downregulated retinoid signaling.

Not all relevant biomarkers of retinol delivery were covered in

this project. Retinoid delivery to the fetus is frequently mediated by

RBP4, however, this is not the only pathway; postprandial retinoids

delivered via chylomicrons is also an important pathway by which

retinoids are delivered to fetuses (Steinhoff et al., 2021). This

additional pathway illuminates the fact that there are multiple

pathways of retinol delivery to the fetus, providing the occasion

for others to study additional deliverymethods throughmodels such

as found in this project.

Various CYPs with potential effects on ATRA metabolism

could be altered in their expression by activation of AhR, CAR,

and PXR pathways that, like RARs also heterodimerize with

RXRs (McSorley and Daly, 2000; Esteban et al., 2021). The

present study focused on biochemical (cell-free) CYP assays in

ToxCast that, unfortunately, do not include CYP26 (this

deficiency is currently being updated in the Tox21 portfolio).

Retinoids are inherent component of human and animal diets,

with aquatic animals most exposed in early life stages (Kubickova

et al., 2021). A broad range of retinoids are used to influence skin

structure development cosmetically, as well as for use as

dermatological, hematological, and infectious disease treatments

(Zasada and Budzisz, 2019; Cosio et al., 2021). Environmental

residues from chemicals such as the antifungal azoles may occur

by applications on skin or environmentally through wastewater or

discarded pharmaceuticals (Daughton and Ruhoy, 2009).
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Socio-economic factors have been found to influence

maternal and fetal exposure to many chemical compounds

(Renzo et al., 2015; Sprinkle and Payne-Sturges, 2021). A

limitation of this study is high-throughput screening data

compiled is at times derived from a limited set of not-diverse

cell lines, resulting in a lack of understanding about the

implications of our findings on populations that may be most

affected by exposure to these chemical compounds. Greater

diversity in original tissue and molecular samples would allow

for greater direct applicability of study findings to more people,

and further illuminate the extent of the impact of environmental

factors on developmental toxicity in populations facing

environmental injustice.

Heatmaps, k-means clusters, and hierarchical clusters

provided clear quantitative associations between chemicals and

skeletal defects and target disruption that inform AOP formation.

Our pAOPs provide linear, organized, and biologically-relevant

perspectives about MIEs determined by quantitative data that lead

to literature derived KEs, and concludes with qualitative and

quantitative literature and data derived ASOs (Table 3).

However, AOPs are deterministic, resulting in less dynamic and

vigorous conclusions. AOPs fail to reflect the biological complexity

of the realm in whichMIE, KE, and AO activities occur. As NAMs

become more refined with increased data availability and defining

fit-for-purpose criteria, their results will have greater dependability

and applicability (Parish et al., 2020). Furthermore, ToxCast and

Tox21 data’s gene score transformations aims to exclude non-

specific activity due to cell stress and cytotoxicity, however, these

factors may lead to skeletal developmental defects (Baker et al.,

2020). At the same time, cell stress and cytotoxicity exclusion may

have resulted in false positives due to global effects such as target

bioactivity levels, which were still collected due to data collection

methods. We propose the use of Agent Based Modeling (ABM), a

dynamic in silicomethod that will test the effects of these chemicals

on skeletal appendicular development. If the data, analytical tools,

and AOPs developed here are consistent with ABM findings, they

will provide substantial support for the conclusions reached.

ABMs allow for high quality sensitivity analysis, further

quantification of predictions, and generation of sound

hypotheses formulation (Baker et al., 2020; Knudsen et al.,

2020). Computational models also allow for a larger-scale

evaluation of high-throughput screening/high content screening

data and the ability to derive results that cannot be obtained

experimentally (Knudsen et al., 2021).
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SUPPLEMENTARY FIGURE S2
ToxPi results for 117 chemicals with pAOPs associated with disruption
of elements of RA signaling pathway. Genes of interest include RARA/
B/C, RXR A/B, DR5, Tox21 Pathway, CYP surrogate biomarker. Most
potent chemicals associated with the greatest amount of gene
disruption have the largest ToxPis and highest ToxPi rank (48).
K-means Clustering ATRA Signaling Pathway for 117 chemicals.

Disrupted activity in the following targets is of interest: RARA/B/C, RXR
A/B, DR5, RSP (Tox21), biomarker. The straight-lined clusters (blue and
green clusters) are likely due to activity in RSP (Tox21), but lack of
experimentation and complimentary assays with ToxCast. PC2 has
greatest potency decreasing from top to bottom. In vitro ToxPis have
RSP (Tox21) as most sensitive (larger slices) on the top, with
decreasing sensitivity (smaller slices) on the bottom of the PC2. In the
PCA plot there is an obvious effect on ToxPi composition, though
there is more data needed for a fuller picture. The straight-lined
clusters are likely due to activity in Tox21, but lack of experimentation
with ToxCast. PCA2 is greatest potency from top to bottom. In vitro
ToxPis have RSP (Tox21) as most sensitive (larger slices) on the top
and to and decreasing sensitivity (smaller slices) on the bottom of the
PCA2. In the PCA plot there is an obvious effect. However, the
hierarchical clustering plot is not informative with these
117 chemicals. Heatmap dendrogram of 117 chemicals associated with
ATRA pathway disruption and skeletal defects in ToxRefDB and
ToxCast/Tox21 with potential AOP elucidation. Reflected are
disruption activity of 8 targets of interest (RARA/B/G, RXRA/B, RSP
(Tox21), DR5, and CYP surrogate biomarker) in association with
117 chemicals of interest. Scale of 0-5, with lightest color indicating
less target disruption activity and darker red indicating higher target
disruption activity compared to other chemicals for the respective
targets. The heatmaps attributes a greater amount of sensitivity of
DR5 to chemicals of interest through the consistently darker red
shading. In order, DR5, CYP26, and then RARA are the most disrupted
of the ATRA signaling pathway targets in the heatmap.
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