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Abstract: Dementia is a clinical syndrome characterized by cognitive impairment, in which there
is disturbance of multiple higher cortical functions. The primary risk factor of dementia is old age,
and due to significant changes in the worldwide demographic structure, the prevalence of cognitive
impairment is increasing dramatically with aging populations in most countries. Alzheimer’s disease is
the predominant and leading cause of dementia. The aim of this study was to evaluate the modifications
of amino acids that characterize the initial stages of dementia to help our understanding of the
complex and multifactorial pathogenesis of neurodegenerative disorders. A total of 123 participants
were divided into two groups: healthy elderly subjects and patients with mild or moderate dementia.
The results of this study indicate that the serum levels of three amino acids were changed significantly
in patients with dementia, in relation to the subjects without dementia. In particular, we observed
differences in concentrations for serine, arginine and isoleucine (all of them were significantly
increased in patients with dementia, compared with the control group). Our results suggest that the
metabolisms of some amino acids seem be changed in patients with dementia. We conclude that amino
acid profiling might be helpful for the better understanding of biochemical and metabolic changes
related to the pathogenesis and progression of dementia. However, considering the multifactorial,
heterogenous and complex nature of this disease, validation with a greater study sample in further
research is required.

Keywords: neurodegenerative diseases; mild dementia; moderate dementia; amino acids; arginine;
serine; isoleucine

1. Introduction

Dementia is a clinical syndrome characterized by cognitive impairment, in which we observe the
disturbance of multiple higher cortical functions, including thinking, memory, orientation, calculation,
comprehension, language, learning capability and judgment [1]. The primary risk factor of dementia is
old age, and due to significant changes in the worldwide demographic structure, the prevalence of
cognitive impairment is increasing dramatically with aging populations in most countries. Currently,
neurodegenerative disorders are one of the greatest global challenges for medical and social care,
due to an aging society and the rapidly increasing costs of dementia [2].

Dementia occurs in cerebrovascular disease, Parkinson’s disease and in other conditions affecting
the brain, but indisputably, Alzheimer’s disease (AD) is the predominant and leading cause of
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dementia [1]. Based on the most recent available data, AD is estimated to be responsible for up to
80% of dementia cases. Therefore, the authors of this paper mainly refer to AD as a leading cause of
dementia [3].

Research to date has tended to focus on the amyloid cascade hypothesis in the development of
AD. However, increasing recent evidence suggests that this hypothesis indicating the role of amyloid-β
(Aβ) protein aggregation in AD pathogenesis does not encapsulate the heterogenous and complex
symptomology of AD [4,5]. Growing clinical evidence shows that AD-associated cognitive impairment
is the outcome of an especially complex pathogenesis. In addition to the well-defined and known
amyloid plaques and neurofibrillary tangles, the pathology of AD includes inflammation, considerable
DNA damage, substantial neuronal loss, the initiation of apoptotic pathways, chronic oxidative stress,
alteration of the energy metabolism, and extensive mitochondrial malfunction. Long-term failures to
find effective anti-Tau or anti-amyloid therapy have led to the hypothesis that specific proteins are
only confluent lesions and not the sole and ultimate causes of AD. Numerous recent papers present
evidence pointing to severe metabolic dysfunction as a leading cause of AD. Current data show
the causative relationship between obesity and AD [6,7]. Furthermore, numerous studies reported
significant improvement in the cognitive, functional, and cellular statuses of AD patients who were
treated with conventional medicines, used in treating atherosclerosis, diabetes, and other metabolic
disorders [6,8,9]. Hence, the current vision of AD pathogenesis must reach beyond the confirmed
regular information and look for alternative research approaches in order to develop novel diagnosis,
preventive, and therapeutic methods. It is very important to quest for better understanding of the
biochemical changes at different stages of the disease, which are an integral part of the complex and
multifactorial pathogenesis of dementia.

It is essential to advance the understanding of early disease mechanisms and to identify early
biomarkers and novel therapeutic targets. Currently available diagnostic biomarkers are limited to the
measurements of the Aβ, tau, and p-tau levels in plasma and cerebrospinal fluid (CSF) that represent
rather limited, hypothesis-driven biomarker development [4,6]. Furthermore, neuroimaging is very
expensive and available only at specialized sites. Most health care systems in the world cannot afford
using Positron Emission Tomography (PET) as a routine diagnostic tool for screenings of the very
high number of patients from the risk group (elderly subjects in an aging society). The limitations in
the routine use of CSF biomarkers include the lumbar puncture, which is invasive, time-consuming,
and complicated for many clinics [10].

Taking into account the current state of dementia diagnostics, it is important to identify a putative
biomarker. In recent years, there has been an increasing interest in such research, with the use of
various easy-to-collect biological materials such as serum (e.g., our study) or saliva. It is interesting to
note that several recent studies indicated the antioxidant properties of saliva are limited in patients with
dementia, and salivary redox biomarkers may be used for differentiating the various stages of dementia.
Despite the very interesting and promising results, there are some important limitations, such as factors
affecting the quantity and quality of saliva (e.g., drugs, periodontal diseases, oral mucosa disorders,
age, various systemic diseases, xenobiotics, dental materials, dental treatment, physical exercise,
and diet). Unfortunately, a perfect dementia biomarker or diagnostics method still does not exist, and it
is important to conduct new research and strive to improve and develop the diagnostics area [11,12].
Several recent studies have identified changes in the plasma amino acid (AA) profile in the material of
patients with AD and other advanced stages of neurodegenerative diseases [13–20], but there is still
insufficient data for this aspect that takes into account the earlier stages of dementia. Amino acids play
essential roles in the regulation and control of pivotal functions of human organisms, including the
central nervous system (CNS), where AAs act as regulators of the energy metabolism, neurotransmitters,
and neuromodulators. Neurotransmission is a key function of AAs in the CNS. Neurotransmission
amino acids are compounds that are synthesized and stored in neurons. They are released when
the nerve impulse is conducted. Alterations in plasma amino acid profiles in neurodegenerative
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diseases may be influenced by neurodegeneration, received treatment, mitochondrial disfunction,
or malabsorption in the gastroenteric tract [15,20].

Furthermore, amino acids are involved in energy production and nitrogenous waste production
and elimination as well. The human body needs amino acids in large amounts for the synthesis
of body proteins and other important nitrogen-containing compounds, such as peptide hormones,
creatine, and some neurotransmitters. Hence, amino acids are a large and important part of the
human diet. Processing these essential amino acids for energy requires the disposal of nitrogenous
waste material, a process which occurs primarily in the liver and small intestine during the urea cycle.
Disturbed amino acid and nitrogen metabolism is associated with neurological disorders and, in some
cases, dementia. When neurons cannot catabolize glucose effectively, they may become reliant upon
amino acid oxidation during energy production. If the mechanism used to metabolize amino acids
becomes dysregulated, or if neuronal amino acids become depleted, the neurons may die. This might
contribute to disease progression. In addition to these main functions, amino acids and their metabolic
derivatives are involved in cell signaling and in many different metabolic pathways [4].

The aim of this study was to evaluate the modifications of amino acids that characterize the
initial stages of dementia to help our understanding of the complex and multifactorial pathogenesis
of dementia.

2. Materials and Methods

2.1. Subjects and Serum Samples

A total of 123 participants were recruited from the Department of Geriatrics, Collegium
Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń. They were divided into
two groups: 50 healthy elderly subjects with no dementia diagnosed (23 males, 27 females;
mean age ± SD: 77.09 ± 7.08 years) and 73 patients with mild or moderate dementia (17 males,
56 females; mean age ± SD: 81.89 ± 6.38 years). Table 1 reports the clinical and demographic
characteristics of the two groups of participants.

Table 1. Demographic and clinical characteristics of the study groups.

Control Group (n = 50) Case Group (n = 73) p-Value

Mean age ± SD, years 77.09 ± 7.08 81.89 ± 6.38
Gender, n (%) P = 0.014

Male 23 (46) 17 (23.3)
Female 27 (54) 56 (76.7)

Mean BMI ± SD 28.01 ± 5.37 25.79 ± 6.34
Drugs, n (%) P = 0.664
Painkillers 16 (32) 22 (30.1)
Duretics 15 (30) 13 (17.8)

Anti-coagulants 13 (26) 18 (24.7)
Anticancer medications 0 (0) 1 (1.4)

Mineral supplements 1 (2) 1 (1.4)
Thyroid medications 5 (10) 10 (13.7)

Folic acid 2 (4) 6 (8.2)
Vitamin D3 5 (10) 13 (17.8)

Smoking, n (%) P = 0.862
Non-smoker 39 (78) 55 (75.3)

Former smoker 4 (8) 6 (8.2)
Occasional smoker 0 (0) 0 (0)

Active smoker 0 (0) 2 (2.7)
Passive smoker 0 (0) 0 (0)

Medical history, n (%) P = 0.284
Hypertension 35 (70) 52 (71)

Diabetes 7 (14) 26 (35)
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Table 1. Cont.

Control Group (n = 50) Case Group (n = 73) p-Value

Kidney disease 2 (4) 0 (0)
Liver disease 0 (0) 1 (1.4)

Thyroid disease 7 (14) 13 (17.8)
Cancer 4 (8) 10 (13.7)

Investigators classified patients into two groups in accordance with the current clinical standard:
a group of elderly patients without dementia and a group of elderly patients with dementia (from
mild dementia to moderate dementia). Participants of the study were chosen from older adults,
who were referred to a comprehensive geriatric assessment by a general practitioner, mainly because
of persistent symptoms of memory loss reported over a six-month span. Patients were included in
the study prior to a clinical diagnosis of the cause of dementia. They were admitted to the geriatric
clinic for a comprehensive geriatric assessment to evaluate their cognitive status. Patients with causes
of reversible dementia were excluded. Patients had laboratory tests ordered to rule out reversible
causes of dementia (e.g., B12 deficiency or hypothyroidism). The International Statistical Classification
of Diseases and Related Health Problems (ICD-10) criteria were adopted for the clinical diagnosis of
dementia. Furthermore, diagnosis of dementia was based on a review of the patient’s medical history
and symptoms via a physical examination and a brain scan, such as a CT or MRI scan. A mini-mental
state examination (MMSE) and a clock-drawing test (CDR) were used to diagnose the severity of
dementia. The mean score on the MMSE for healthy elderly subjects with no dementia diagnosed was
27 points. For patients with mild dementia, it was 21 points, and for patients with moderate dementia,
it was 16 points.

The assignment to the groups was documented in a survey that was previously reviewed and
approved by the ethics committee. This study was conducted with all approved international guidelines
for human research and was in accordance with the Declaration of Helsinki. The ethics committee
of Nicolaus Copernicus University in Toruń and Collegium Medicum in Bydgoszcz approved this
study (consent number: KB 173/2018). Written, informed consent was required from the participants.
An informed consent form, an investigator survey form, and a patient survey form were also reviewed
and approved by the ethics committee.

Antecubital whole-blood samples were drawn from a peripheral vein in the morning hours
(always between 6 and 7 a.m.). Overnight fasting and 15 min of rest before the blood test were
obligatory. The needle was inserted into the vein, and the blood was withdrawn to vacuum tubes
(the test’s 5 mL tube contained a clot activator and serum gel separator, and it had no anticoagulant).
Blood collected in the tube was kept for 30 min. Serum from the blood after clotting was separated out
and, after appropriate preparation and centrifuging, was frozen at −80 ◦C until analysis was performed.

2.2. Chemicals and Materials

A system consisting of an AccQ Fluor reagent kit (Waters, En Yvelines Cedex, France, amino acid
standards (Waters), internal standard α-aminobutyric acid (Sigma Aldrich, Saint Louis, MO, USA),
acetonitrile and methanol (Sigma Aldrich), and deionized water purified with Direct–QUV (Millipore,
Molsheim, France) was used for all aqueous solutions.

2.3. Instrumentation

A Shimadzu high-performance liquid chromatography (HPLC) system, combined with a
Diode-Array Detection (DAD) detector and an RF-20A XS fluorescence detector (Shimadzu, Kyoto,
Japan) were used.
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2.4. Chromatographic Method

Chromatographic analysis, which was aimed at measuring the amino acid concentrations in the
samples, was carried out using high-performance liquid chromatography (HPLC) with fluorescence
detection, using an AccQ Tag column (Waters). The final parameters of the chromatographic system
consisted of a 150 mm × 3.9 mm chromatographic column by AccQ Tag (Waters), a fluorescence
detection excitation/emission of 250/395, mobile phase A conducted with an AccQ Tag Eluent A (Buffer),
mobile phase B conducted with acetonitrile, mobile phase C conducted with water and a gradient
elution, a flow of 1 mL/min, an injection volume of 5 µL, and an analysis time of 35 min.

2.5. Data Modelling

In prior analysis, the data were cantered and standardized. To check the presence of outliers
or extreme values, we visualized the AA distributions as density plots and quantile–quantile plots.
The normal distribution of the AA data was checked using the Shapiro–Wilk test. To check whether the
distribution of each AA differed between investigated groups, we performed either a Kruskal–Wallis
test (for non-normal distribution) or a t-test (for normally distributed data). To check the presence
of linear correlations between the amino acids, a Pearson correlation coefficient was calculated for
each amino acid against each other. The relationship between the categorical variables and the disease
status was checked using the Fisher test.

2.5.1. Random Forest Algorithm

The random forest (RF) model was used to evaluate the impact of amino acids on classification
between groups. The RF algorithm is a machine learning-based algorithm constructed from decision
trees trained using bootstrap aggregation, where each new tree is fit from a bootstrap sample of the
training observations. The out-of-bag (OOB) error is the average error for each, calculated using
predictions from the trees that not contained in their respective bootstrap samples. The model was built
for 22 variables, which we hypothesized would have an impact on classification between both groups.

2.5.2. Missing Values and Unbalance in the Data Structure

As the data (50 controls and 73 cases) had missing values and were unbalanced, we first imputed
the missing values. The imputation technique was specified via the impute function, relative to a
feature class. Next, we split the data into training and test sets (7:3) with further application of the
random over-sampling examples (ROSE) algorithm to balance it [21].

2.5.3. Model Development and Variable Importance

The RF model was fitted using the training data, with the setting for the optimal number of trees
and variables giving the lowest error rate on the training set. After training the RF model, we assessed
the variable importance to address the question of which variables were the most important in building
the model and had a significant impact on the outcome. The variable importance was calculated based
on the Gini index by calculating each feature’s importance as the sum over the number of splits across
all tress that included the feature, proportional to the number of samples it split.

2.5.4. Model Performance

The model performance was checked on the validation set using such metrics as accuracy,
sensitivity, specificity, and area under the curve (AUC). The variables based on the Gini index were
further included in the logistic regression model. The inference on their impact was based on the
calculation of the odds ratio (OR), a 95% confidence interval and the p-value.

All analyses were conducted in R (7. R Core Team, 2014), and figures were produced using the
package ggplot2.
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3. Results

Comparison: Elderly subjects with no dementia as the control group (n = 50) versus elderly
patients with dementia (n = 73).

In Figure 1, we present a visualization of the raw data for each AA (asparagine (ASP), serine (SER),
glutamine (GLU), glycine (GLY), histidine (HIS), arginine (ARG), threonine (THR), alanine (ALA),
proline (PRO), tyrosine (TYR), valine (VAL), methionine (MET), lysine (LYS), isoleucine (ILE),
leucine (LEU), and phenylalanine (PHE)) for the two groups. To maintain the same scale for each AA
and for data analysis purposes, we centered and standardized the raw values. In Figure 2, we present
a visualization of the centered and standardized data for each AA for the two groups. From a visual
inspection, we might observe a slight difference in the ARG mean between both groups. Not all amino
acid concentrations were normally distributed. Under such a scenario, we calculated the average and
SD for each distribution, but only for those AAs with normal distributions (Figure 3, Table 2).
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with Mild Cognitive Impairment (MCI) (depicted as 0) and with mild or moderate dementia (depicted
as 1).

Table 2. The mean (±SD) for each metabolite signal distribution.

Compound Name Mean (± SD)

ALA 0.27 (± 0.30)

GLY 0.75 (± 0.35)

HIS 1.24 (± 0.23)

LEU −0.56 (± 0.22)

MET 0.71 (± 0.22)

PRO 1.74 (± 0.30)

TYR −0.04 (± 0.27)
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To investigate whether AA distributions were homogeneous and whether the AA concentration
data originated from two or more different overlapping distributions (e.g., groups), we provided the
distribution of each AA in the control (n = 50) and case (n = 73) groups (Figure 4). As shown in Figure 4,
separation between the two groups might be expected for ARG. At α = 0.05, the distribution between
both groups significantly differed for SER (p = 0.042), ARG (p = 0.0003), and ILE (p = 0.035).
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Additionally, we checked the distribution of AA concentrations between sexes (Figure 5). As shown
in Figure 5, the distribution between sexes seemed to be almost identical.

The authors analyzed the influence of age on amino acid concentrations to check whether there
was any trend (e.g., higher or lower concentration with age). Neither a positive nor a negative trend
with age was observed in the data.

We further investigated the relationship between alcohol consumption, smoking status,
concomitant diseases, drugs intake, and diet and the occurrence of cognitive impairment (using
the Fisher exact test). No relationship between alcohol intake, smoking status, and drug intake and
cognitive impairment was found. Only the relationship with diabetes (p = 0.009) was found to be
significant at α = 0.05.

However, we found a significant difference between the presence of mild-to-moderate dementia
and the frequency of meat consumption (3 or 4 times per week, p = 0.007), tea drinking (5 or 6 times per
week, p = 0.0008), fish consumption (2–3 times per month, p = 0.044), and sweets intake (5–6 times per
week, p = 0.044). The visual representation of the above-mentioned significant differences is presented
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in Figure 6. However, these results should be interpreted with caution as the investigated group was
small, and a large disproportion between the compared groups was present.Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 
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The random forest model was built for 22 variables, which we hypothesized had an impact
on the splitting between both groups. The OOB error rate was the lowest with 150 trees (Figure 7).
The optimal number of variables was set at three.
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The missing values were imputed using the medians or modes, depending on the variable type.
The available data were highly unbalanced (referring to classification problems where we had unequal
instances for different classes). As a consequence, an unbalanced dataset would bias the prediction
model towards the more common class. We artificially balanced the samples according to a smoothed
bootstrap approach and allowed for aiding both the phases of estimation and accuracy evaluation of a
binary classifier in the presence of a rare class [21].

In order to select the most relevant variables contributing to patient classification, after developing
the RF model, we assessed the contribution of each variable to the classification between both groups.
The RF algorithm selected the top four variables (Figure 8).Brain Sci. 2020, 10, x FOR PEER REVIEW 11 of 16 
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The accuracy, sensitivity, specificity, and AUC of the RF model is presented in Table 3.
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Table 3. Performance of the random forest model, assessed by different metrics.

Random Forest Model

Accuracy 0.72 (0.47–0.84)

Sensitivity 0.64 (0.38–0.83)

Specificity 0.78 (0.51–0.85)

AUC 0.74 (0.57–0.88)

Based on 16 amino acid concentrations, the greatest separation between both groups (healthy
elderly subjects with no dementia diagnosed and patients with mild or moderate dementia) was
served by arginine, serine, and isoleucine. Significantly increased concentrations of serine, isoleucine,
and arginine were present in patients with dementia compared with the elderly subjects without
dementia. In the RF model, serine appeared to be the most important, and in the logistic regression
model, this variable appeared to be significant.

Based on the p-values, only the SER concentration and drinking tea 5–6 times per week appeared
to be significant at α = 0.05. An OR > 1 denotes a risk of mild-to-moderate dementia, while an
OR < 1 represents a protective effect. A one-unit increase in the SER concentration led to a 1.51-fold
increase in the odds of the presence of mild-to-moderate dementia. Tea drinking was negatively
correlated with having mild-to-moderate dementia. There was a 74 percent reduction in the odds
of having mild-to-moderate dementia for those with a tea drinking frequency of 5–6 times per week
compared with patients with no CI or MCI (Table 4).

Table 4. Logistic regression estimates with the odds ratio (OR), 95% lower confidence intervals (LCIs),
and 95% upper confidence intervals (UCIs) on the whole data set of 123 patients.

Variable Estimate OR [Exp(Estimate)] p-Value

SER 1.51 4.53 (1.48–13.87) 0.008

GLY 0.38 1.46 (0.58–3.69) 0.417

LYS 0.17 1.19 (0.61–2.33) 0.6

Tea drinking 5–6 times/week −1.33 0.26 (0.12–0.53) 0.0002

To further study the nature of amino acids, we checked correlations between the amino acids
against each other. Since the distribution for each AA resembled a normal distribution and AA originate
from similar pathways, we may expect a linear dependence between them. Thus, we used a Pearson
correlation, which measures the linear dependence between variables.

In Figure 9, we present a correlation matrix demonstrating the degree of linear relationship
between the AAs. Only positive relationships between amino acids were observed, which was
expected, taking into account that AA origins might be driven by a similar mechanism. As observed in
this figure, they carried essentially the same information.
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4. Discussion

Metabolomic approaches represent a promising, potent, and comprehensive tool for the
identification of a wide range of biochemical changes that are associated with neurodegenerative
diseases and their treatments. Recent scientific evidence associates metabolic dysfunctions with
neurodegenerative development and the severity thereof. However, despite significant technological
and research progress, there is as of yet no unequivocal evidence pointing to accurate biomarkers
of the disease in human models. Several researchers support the assumption that AD is a systemic
disorder characterized by mitochondrial dysfunction, glucose metabolism, and altered amino acid
metabolism [6,22]. The results of this study indicate that the serum levels of three amino acids
changed significantly in patients with the initial stages of dementia, in relation to elderly subjects
without dementia.

In particular, we observed differences in concentrations for SER (significantly increased in
patients with dementia compared with the control group), ARG (significantly increased in patients
with dementia compared with the control group), and ILE (significantly increased in patients with
dementia compared with the control group), which were supported by visual inspection. In the RF
model, serine appeared to be the most important. Based on the p-values, a one-unit increase in SER
concentration led to a 1.51-fold increase in the odds of the presence of dementia.

It is interesting to note that D-serine, formed from L-serine by serine racemase, is the physiologic
main co-agonist at the N-methyl-D-aspartate receptors (NMDARs) subtype in the frontal brain
areas. An association between the incorrect activation of the glutamate receptors of the NMDARs,
synapse dysfunction, and neurotoxicity in AD was reported [23–32]. Researchers confirmed the
serine implication in NMDAR-mediated neurotoxicity [23–33]. Previously, in vitro studies showed an
increased release of D-serine from neuronal and glial cells and NMDAR activation under injury in AD
model systems [23,34,35].

Madeira et al. measured the serine levels in post-mortem samples from subjects without dementia
and AD patients, and they reported that D-serine levels were significantly higher in the CSF of AD
patients than in the control group. They showed that increased levels of brain and CSF D-serine
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are associated with AD. Furthermore, they indicated the significant correlation between increased
D-serine in CSF and poorer cognitive performance. They suggested that D-serine could be a novel AD
biomarker [23]. The present findings seem to be consistent with other research, which found increased
D-serine levels in the CSF of AD patients compared with the control group [36].

As mentioned in the literature review, increased serine levels in the CSF and brain tissue
samples from patients with advanced neurodegenerative diseases were previously reported. However,
in reviewing the literature, no data was found for serine measured in non-invasive material from
patients with early stages of neurodegenerative diseases. In this study, we showed the increase level of
serine in the initial stage of dementia (mild and moderate dementia) with a relatively easy method
involving a non-invasive material sampling technique. We acknowledge that this is an introductory
pilot study and, thus, a larger study on greater samples is warranted to extend the validity of our results.
Isoleucine is one of the essential branched-chain amino acids (BCAAs). Larsson et al. noticed that the
uptake of BCAAs into the brain occurs at the blood–brain barrier via a competitive transport carrier
that they share with tryptophan. Tryptophan is the precursor of serotonin and other large, neutral
amino acids. A long-term increase in the levels of branched-chain amino acids could lead to reduced
levels of brain tryptophan, as well as the decreased synthesis of neuronal serotonin and serotonergic
signaling. Finally, this may increase the risk of the development of neurodegenerative diseases such
as AD [37,38]. In 2017, Larsson and a coworker demonstrated that a genetic predisposition to higher
levels of isoleucine in plasma is positively associated with the occurrence of AD. They suggest that
lifelong increased levels of isoleucine may raise the risk of AD [37]. The results of our study seem to be
consistent with previous research and suggest that isoleucine increases in patients with dementia.

Finally, we observed the significant increase in concentration of arginine in patients with dementia
(from mild to moderate) compared with the healthy control group. This finding is in agreement with
Corso et al. and their findings, which showed the trend toward increased arginine concentration in
dementia caused by AD [15]. Furthermore, our results are consistent with those of Olazaran, who found
the trend of arginine growth along the continuum from the control group (healthy subjects) to mild
cognitive impairment and to AD [39].

Fonteh et al. showed that an increase in the concentration of arginine in urine and plasma,
accompanied by a decreased in the arginine concentration in CSF, is evidence of a change in nitrogen
detoxification in AD [18]. Furthermore, a number of recent studies have found the implications
of alterations in arginine metabolism in the pathogenesis of neurodegenerative disorders. In 2014,
Liu et al. reported that arginine metabolism definitely changed in diverse regions of the brain in AD
and emphasized that further research should be done to understand its role in the pathogenesis of
the disease. It is important to note that arginine is a precursor for nitric oxide and polyamines. Both
are essential modulators of neuronal physiology and are thought to be involved in the pathogenesis
of neurodegenerative diseases such as dementia [40]. Nitric oxide is produced from L-arginine, and
it has numerous physiological functions such as learning, memory, noradrenaline and dopamine
release, and regulation of the cerebrovascular system. It also takes part in some pathologies, such as
schizophrenia, stroke, cerebral ischemia, and Huntington’s disease [41].

In 2015, Graham et al. published a paper in which they described the analysis of human
plasma and how it indicated differentially affected polyamine and L-arginine metabolisms in mild
cognitive impairment subjects converting to AD. Researchers found that the L-arginine metabolism
and polyamine metabolism were interlinked, sharing common metabolite intermediates. They are
connected via the urea cycle through the enzyme arginase, which converts L-arginine to urea and
L-ornithine. Researchers indicated that enzyme arginase appeared to control the proliferation and
apoptosis of neural cells. Their results demonstrated that, in MCI and in AD, there was a significant
increase in L-arginine which was coupled with a decrease in L-ornithine. It has been suggested that
this disturbance in the arginase pathway may potentially reflect alterations in neurogenesis [42–44].
These results and their interpretations, based on the literature, suggest that the metabolisms of some
amino acids seem to be changed in patients with dementia. However, at this point, we highlight that
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the main limitation of this study relates to small and unbalanced sample sizes. Therefore, the obtained
results should be confirmed with a larger sample size and should be interpreted with caution to
fully confirm their validity. Furthermore, amino acid modifications could be a consequence and
not a cause of AD, and they also should be considered as limitations. Factors affecting plasma
amino acid concentrations should also be considered. Therefore, our findings need further validation,
especially regarding potential alterations in energy metabolism in patients with dementia. It seems
valuable for future studies to include different biological materials (tissue and fluid samples) from
one patient for a more comprehensive analysis. Long-term studies to measure changes in amino acid
concentrations versus dementia progression (from mild to advanced stages) would also allow for a
more thorough analysis.

5. Conclusions

We conclude that amino acid profiling might be helpful in better understanding biochemical
and metabolic changes related to the pathogenesis and progression of dementia. In the present
study, we discovered significant changes in serine, isoleucine, and arginine concentrations in patients
with dementia compared with elderly subjects without dementia. These changes may each play a
different role in the disease, and this highlights the multifactorial, heterogenous, and complex nature
of this disease.

While this information is very useful, it is not sufficient by itself for good understanding of
the pathological changes associated with dementia. Considering the multifactorial, heterogenous,
and complex nature of this disease, validation with a greater study sample in further research is required.

Author Contributions: Conceptualization, E.S., P.K. and M.K.; methodology, P.K. and E.S.; software and validation,
P.K.; formal analysis, E.D.-W. and E.S.; investigation, E.S., P.K., K.M.-G., K.K.-K. and M.G.; resources, E.S, P.K. and
M.K.; data curation, E.S.; writing—original draft preparation, E.S. and P.K.; writing—review M.K. and E.D.-W.;
writing—editing, E.S.; visualization, E.D.-W.; supervision, E.S. and M.K.; project administration, E.S. and M.K.;
funding acquisition, E.S. and M.K. This work is part of a PhD dissertation thesis by E.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Collaborating Centre for Mental Health (UK). Dementia: A NICE-SCIE Guideline on Supporting
People With Dementia and Their Carers in Health and Social Care. Leicester (UK): British Psychological
Society; 2007. (NICE Clinical Guidelines, No. 42.) 4, DEMENTIA. Available online: https://www.ncbi.nlm.
nih.gov/books/NBK55480/ (accessed on 27 November 2020).

2. Winblad, B.; Amouyel, P.; Andrieu, S. Defeating Alzheimer’s disease and other dementias: A priority for
European science and society. Lancet Neurol. 2016, 15, 455–532. [CrossRef]

3. Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2020, 16, 391.
[CrossRef]

4. Griffin, J.W.D.; Bradshaw, P.C. Amino Acid Catabolism in Alzheimer’s Disease Brain: Friend or Foe?
Hindawi Oxidative Med. Cell. Longev. 2017. [CrossRef]

5. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 2015, 18, 794–799. [CrossRef]
[PubMed]

6. Polis, B.; Samson, A.O. Role of the metabolism of branched-chain amino acids in the development of
Alzheimer’s disease and other metabolic disorders. Neural. Regen. Res. 2020, 15, 1460–1470. [CrossRef]
[PubMed]

7. Alford, S.; Patel, D.; Perakakis, N.; Mantzoros, C.S. Obesity as a risk factor for Alzheimer’s disease:
Weighing the evidence. Obes. Rev. 2018, 19, 269–280. [CrossRef] [PubMed]

8. Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.;
Tsai, E.; Plymate, S.R.; et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive
impairment: A pilot clinical trial. Arch. Neurol. 2012, 69, 29–38. [CrossRef]

https://www.ncbi.nlm.nih.gov/books/NBK55480/
https://www.ncbi.nlm.nih.gov/books/NBK55480/
http://dx.doi.org/10.1016/S1474-4422(16)00062-4
http://dx.doi.org/10.1002/alz.12068
http://dx.doi.org/10.1155/2017/5472792
http://dx.doi.org/10.1038/nn.4017
http://www.ncbi.nlm.nih.gov/pubmed/26007212
http://dx.doi.org/10.4103/1673-5374.274328
http://www.ncbi.nlm.nih.gov/pubmed/31997805
http://dx.doi.org/10.1111/obr.12629
http://www.ncbi.nlm.nih.gov/pubmed/29024348
http://dx.doi.org/10.1001/archneurol.2011.233


Brain Sci. 2020, 10, 914 15 of 16

9. Asadbegi, M.; Yaghmaei, P.; Salehi, I.; Ebrahim-Habibi, A.; Komaki, A. Neuroprotective effects of metformin
against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Res. Bull. 2016,
121, 178–185. [CrossRef]

10. Blennow, K. A Review of Fluid Biomarkers for Alzheimer’s Disease: Moving from CSF to Blood. Neurol. Ther.
2017, 6 (Suppl. 1), 15–24. [CrossRef]

11. Maciejczyk, M.; Zalewska, A.; Gerreth, K. Salivary Redox Biomarkers in Selected Neurodegenerative Diseases.
J. Clin. Med. 2020, 9, 497. [CrossRef]
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