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ABSTRACT
We investigated emotion classification from brief video recordings from the GEMEP
database wherein actors portrayed 18 emotions. Vocal features consisted of acoustic
parameters related to frequency, intensity, spectral distribution, and durations.
Facial features consisted of facial action units. We first performed a series of person-
independent supervised classification experiments. Best performance (AUC = 0.88)
was obtained by merging the output from the best unimodal vocal (Elastic Net,
AUC = 0.82) and facial (Random Forest, AUC = 0.80) classifiers using a late fusion
approach and the product rule method. All 18 emotions were recognized with
above-chance recall, although recognition rates varied widely across emotions
(e.g., high for amusement, anger, and disgust; and low for shame). Multimodal
feature patterns for each emotion are described in terms of the vocal and facial
features that contributed most to classifier performance. Next, a series of exploratory
unsupervised classification experiments were performed to gain more insight into
how emotion expressions are organized. Solutions from traditional clustering
techniques were interpreted using decision trees in order to explore which features
underlie clustering. Another approach utilized various dimensionality reduction
techniques paired with inspection of data visualizations. Unsupervised methods
did not cluster stimuli in terms of emotion categories, but several explanatory
patterns were observed. Some could be interpreted in terms of valence and arousal,
but actor and gender specific aspects also contributed to clustering. Identifying
explanatory patterns holds great potential as a meta-heuristic when unsupervised
methods are used in complex classification tasks.

Subjects Computer Vision, Data Mining and Machine Learning, Multimedia, Natural Language
and Speech, Social Computing
Keywords Affective computing, Facial expression, Multimodal emotion recognition, Supervised
and unsupervised learning, Vocal expression

INTRODUCTION
When people interact, they do not only use words to convey affective information, but also
often express emotions through nonverbal channels. Main sources of nonverbal
communication include facial expressions, bodily gestures, and tone of voice. Accurate
recognition of others’ emotions is important for social interactions (e.g., for avoiding
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conflict and for providing support; Ekman, 2003; Russell, Bachorowski & Fernandez-Dols,
2003). Knowledge about how emotions are expressed nonverbally thus has applications in
many fields, ranging from psychotherapy (e.g., Hofmann, 2016) to human-computer
interaction (e.g., Jeon, 2017). Notably, research on the production and perception of
emotional expressions has also been a main source of data for theories of emotion
(e.g., Scherer, 2009). We employ machine learning methods to classify dynamic
multimodal emotion expressions based on vocal and facial features and describe the most
important features associated with a range of positive and negative emotions. We also
compare traditional supervised methods with solutions obtained with unsupervised
methods in order to gain new insights into how emotion expressions may be organized.

Meta-analyses of emotion perception studies suggest that human judges are able to
accurately infer emotions from nonverbal vocal and facial behavior, also in cross-cultural
settings (e.g., Elfenbein & Ambady, 2002; Laukka & Elfenbein, 2021). However, it has
proved more difficult to define the physical features reliably associated with specific
emotions. Juslin & Laukka (2003) proposed that nonverbal communication of emotion
through the voice is based on a number of probabilistic and partly redundant acoustic cues.
Probabilistic cues are not perfect indicators of the expressed emotion because they are not
always associated with that emotion and can also be used in the same way to express
different emotions. For example, high mean fundamental frequency (F0) can be associated
with both happiness and fear. Several partly redundant cues can, in turn, be associated with
the same emotion. For example, anger can be associated with high levels of both voice
intensity and high-frequency energy. Barrett et al. (2019) similarly noted that facial cues
(e.g., smiles) are only probabilistically associated with any one emotion (e.g., happiness),
and that similar configurations of facial movements can be associated with more than
one emotion.

The combination of probabilistic and partly redundant cues entails that there may be
several cue combinations that are associated with the same emotion, which leads to a
robust and flexible system of communication (Juslin & Laukka, 2003). For example,
Srinivasan & Martinez (2021) recently reported that several different facial configurations
were used to communicate the same emotion in naturalistic settings (e.g., they reported
17 different configurations for happiness). Machine learning methods are increasingly
used to detect patterns in this type of high-dimensional probabilistic data. Recent years
have seen much activity in the field of machine-based classification of emotions from
facial (e.g., Li & Deng, 2020) and vocal (e.g., Schuller, 2018) expressions. Classifiers often
perform on par with human judges, although performance also varies across emotions and
databases (Krumhuber et al., 2021b). The majority of classification studies have been
performed on unimodal stimuli (either vocal or facial), but combining features from
several modalities has been shown to increase classification accuracy (see D’Mello & Kory,
2015, for a meta-analysis). The number of multimodal classification studies is steadily
increasing (Poria et al., 2017), and recent studies explore a wide variety of approaches
(e.g., Bhattacharya, Gupta & Yang, 2021; Lingenfelser et al., 2018; Mai et al., 2020;
Siriwardhana et al., 2020; Tzirakis et al., 2017; Wang, Wang & Huang, 2020).
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In the current study, we first compare how unimodal and multimodal classifiers
perform in the classification of 18 different emotions from brief video recordings.
Recordings are taken from the Geneva Multimodal Emotion Portrayal (GEMEP) corpus
(Bänziger, Mortillaro & Scherer, 2012), which contains dynamic audio-video emotion
expressions portrayed by professional actors. This approach extends most previous
classification studies which have focused on a much smaller number of emotions, but is in
line with recent perception studies which suggest that human judges can perceive a
wide variety of emotions (e.g., Cordaro et al., 2018). Different actors are used for training
and testing in all classification experiments, to avoid person bias. We also contribute by
providing details of which features are important for classification of which emotions–
something only rarely done in machine classification (see Krumhuber et al., 2021b, for a
recent example).

We analyze the physical properties of vocal expressions by extracting the features
included in the Geneva Minimal Acoustic Parameter Set (GeMAPS; Eyben et al., 2016).
This parameter set is commonly used in affective computing and provides features related
to the frequency, intensity, spectral energy, and temporal characteristics of the voice.
Facial Action Units (AUs) (Ekman & Friesen, 1978)—which is one of the most
comprehensive and objective ways to describe facial expressions (Martinez et al., 2019)—
are also extracted. This selection of vocal and facial features allows for comparisons
with the previous literature on emotion expression. Finally, we compare the results from
the supervised classification experiments with results from unsupervised classification.
Unsupervised methods may reveal new information about how emotion expressions are
organized, because they are not restricted to any pre-defined emotion categories
(e.g., Azari et al., 2020).

METHODS
Data, code, and additional computational information are openly available on GitHub
(see Data Availability statement).

Emotion expressions
The emotion expressions used in this study were taken from the GEMEP database
(Bänziger, Mortillaro & Scherer, 2012) and consist of 1,260 video files in which
10 professional actors, coached by a professional director, convey 18 affective states.
They do this by uttering two different pseudolinguistic phoneme sequences, or a sustained
vowel ‘aaa’. The emotions portrayed in this dataset are: admiration, amusement, anger,
anxiety/worry, contempt, despair, disgust, interest, irritation, joy/elation, panic fear,
sensual pleasure, pride, relief, sadness, shame, surprise, and tenderness. The number of
files per emotion and actor can be seen in Fig. S1. The GEMEP dataset was chosen for its
high naturalness ratings and wide range of included emotions. It is widely used in
classification studies (e.g., Schuller et al., 2019; Valstar et al., 2012), although few previous
studies have included all 18 emotions.
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Feature extraction and pre-processing
Audio features were obtained using openSMILE 2.3.0 (Eyben et al., 2013), an open-source
toolkit that allows for the extraction of a wide variety of parameter sets. In this study,
two different versions of the GeMAPS (Geneva Minimalistic Acoustic Parameter Set)
(Eyben et al., 2016) were evaluated. While GeMAPS contains 62 non-time series
parameters with prosodic, excitation, vocal tract, and spectral descriptors, the extended
version eGeMAPS adds a small set of cepstral descriptors, reaching a total of 88 features.

Video features were obtained using OpenFace 2.2.0 (Baltrušaitis et al., 2018), an
open-source facial behavior analysis toolkit. OpenFace offers an extensive range of
parameters such as facial landmark detection, head pose estimation, and eye-gaze
estimation. However, our study focused on Facial Action Units (AUs) (Ekman & Friesen,
1978) and the toolkit provides the intensity of 17 AUs per frame (i.e., 1, 2, 4, 5, 6, 7, 9, 10,
12, 14, 15, 17, 20, 23, 25, 26, & 45). AU detection is based on pre-trained models for
the detection of facial landmarks, and uses dimensionality-reduced histograms of
oriented gradients (HOGs) from face image and facial shape features in Support Vector
Machine analyses (for details, see Baltrušaitis, Mahmoud & Robinson, 2015; Baltrušaitis
et al., 2018).

We removed instances where AU detection was deemed unreliable. The OpenFace
toolkit provides two indicators per instance that aided the data cleaning process: the
confidence and success rates. The former refers to how reliable the extracted features are
(continuous value from zero to one), whereas the latter denotes if the facial tracking is
favorable or not (binary value). Taking this into consideration, instances with a confidence
rate lower than 0.98 or an unfavorable success rate were dropped. Ninety percent of
instances received a confidence rating of 0.98 or higher (see Fig. S2 for more details).
The percentage of instances with unfavorable success rate was very low (0.58%). In total,
the number of instances decreased by 9.94% after the cleaning process and caused the
deletion of one entire file. Two steps were followed to achieve data consistency. First,
the corresponding audio track was deleted. Secondly, video instances were grouped by file
and the framewise feature intensity scores from OpenFace were used to compute the
following functionals for each AU: arithmetic mean; coefficient of variation; 20th, 50th,
and 80th percentile; percentile range (20th to 80th percentile); and the number of peaks
(using the mean value as an adaptive threshold). Lastly, data was normalized using
min-max normalization.

After cleaning, data from both modalities was prepared in the following ways. For the
supervised approach, data was randomly assembled in five groups ensuring that all
stimuli were represented and that actors in the training set were not included in the
validation set. This grouping strategy resulted in different pairs of actors (one female-
female, one male-male, and three female-male pairs) which facilitated the later use of
LOGO CV (Leave-One-Group-Out Cross-Validation). For the unsupervised approach, the
normalized feature vectors from both modalities were concatenated as in an early fusion
scenario (Wöllmer et al., 2013), yielding a dataset with 207 dimensions and 1,259
observations.
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Experiments
Supervised learning
We evaluated different multimodal late and early fusion pipelines (see Atrey et al.,
2010; Dong et al., 2015), and compared them with the best audio and video unimodal
classifiers. After this, the relations between emotion categories and audiovisual cues
were investigated. The multimodal pipelines utilize machine learning algorithms such as
Linear Classifiers with Elastic Net regularization, k-NN, Decision Tree, and Random
Forest. The first three were used since they are some of the most commonly employed
methods for emotion recognition (Marechal et al., 2019), whereas Random Forest was used
because it is known as one of the best out-of-the-box classifiers (Sjardin, Massaron &
Boschetti, 2016). We will use the term ‘Elastic Net classifiers’ to refer to linear classifiers
with Elastic Net regularization.

Late fusion
This approach can be summarized into three steps. First, audio and video classifiers
were separately subjected to a modeling and selection process. Second, different techniques
were tested for fusing the outputs of the audio and video classifiers. Third, the best late
fusion pipeline was compared to the best unimodal classifiers. Note that the best unimodal
classifiers correspond to the strongest models, in terms of their validation Area Under
the Curve (AUC) (see Jeni, Cohn & De La Torre, 2013), picked in the first step. Next, a
more in-depth description of the previously stated stages is given. The first step can be
split, in turn, into two phases, repeated for each modality. First, LOGO CV was employed
for hyperparameter tuning over the dataset. Second, once the best parameters for each
classifier (Elastic Net, k-NN, Decision Tree, and Random Forest) were found, the
validation AUC was used to choose between types of machine learning classifiers.
The second step followed the same process as the previous one but evaluating different
fusion methods, such as the maximum rule, sum rule, product rule, weight criterion, rule-
based, and model-based (Elastic Net, k-NN, and Decision Tree) methods (Atrey et al.,
2010; Dong et al., 2015). The last step consisted of comparing the best late fusion pipeline
to the best unimodal classifiers in terms of their validation AUC.

Early fusion

This approach can also be divided into three steps. First, audio and video instances were
carefully concatenated. Second, different types of machine learning classifiers were
subjected to a modeling and selection process. Third, the best early fusion pipeline was
compared to the best unimodal classifiers. In more detail, the first step joins audio and
video feature instances on the “file_id” field. The second step has two phases: LOGO CV
was used for hyperparameter tuning over the dataset, and then the best parameters for
each classifier (Elastic Net, k-NN, Decision Tree, and Random Forest) were obtained.
The validation AUC was used to choose between types of machine learning classifiers. The
third and final step compared the best early fusion pipeline to the best unimodal classifiers
in terms of their validation AUC.
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Unsupervised learning
In order to find meaningful patterns in the multimodal data, two different paths were
taken. On the one hand, a more traditional method based on k-Means and Hierarchical
Clustering, with and without dimensionality reduction. On the other hand, a more
exploratory and graph-based method, which included the use of the TensorFlow
Embedding Projector (Wongsuphasawat et al., 2018), a Web application that allows for
visualizations and analyses of high-dimensional data via Principal Component Analysis
(PCA; Shlens, 2014), t-distributed Stochastic Neighbor Embedding (t-SNE; van der
Maaten & Hinton, 2008), and Uniform Manifold Approximation and Projection (UMAP;
McInnes, Healy & Melville, 2018).

Traditional approach
Two clustering validation techniques were used to estimate the number of clusters from
the k-means and hierarchical clustering analyses. The CH index (Calinski & Harabasz,
1974) is less sensitive to monotonicity, different cluster densities, subclusters, and
skewed distributions. The Silhouette score (Rousseeuw, 1987) is instead more robust when
it comes to handling noisy data, but has difficulty with the presence of subclusters (Liu
et al., 2010). The Manhattan distance was used for hierarchical clustering due to the
high dimensionality of the dataset (Aggarwal, Hinneburg & Keim, 2001), and three
different distance methods were evaluated (simple, complete, and weighted) (SciPy, 2019).
Figure S3 shows the obtained CH(k) and sscore(k) for k-means before dimensionality
reduction, and indicates that the estimated number of clusters was 2 for both the CH index
and Silhouette score techniques. For hierarchical clustering, the CH index demonstrated
that the best value was 2 for the single and complete distance methods, but 6 for the
weighted method, whereas the Silhouette score consistently demonstrated that the best
value was 2 (see Fig. S3). For both k-means and hierarchical clustering we selected the
number of clusters that maximized the score.

Once the clustering without dimensionality reduction was done, the dataset was
inspected in search of weak and redundant features to mitigate the curse of dimensionality
(Jain, Duin & Mao, 2000). To that end, three feature reduction techniques were assessed.
First, the PCA revealed that the use of the three strongest singular values would only
have explained a modest amount (41%) of the total variance expressed in the data. Second,
the standard deviation plot showed that neither were there fields with zero variation, nor
was an exaggerated drop of the variance present in the dataset. Third, the correlation
matrix demonstrated that there were some highly correlated features. Taking everything
into consideration, the dimensionality of the multimodal dataset was diminished by
dropping those fields that had a correlation value greater than 0.9, decreasing the number
of dimensions from 207 to 161 (22%). The use of this correlation threshold has been
applied in many studies (Katz, 2011). When the CH index and the Silhouette score
were used once again to determine the number of clusters, results were unchanged
from before dimensionality reduction (see Fig. S4). Finally, k-means and hierarchical
clustering were applied according to the obtained number of clusters. Additionally, to
facilitate the interpretation of the clustering results, the problem was addressed in a
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supervised manner, where the membership of the instances to the clusters corresponded to
the target classes. To that end, a simple decision tree was trained, and the first decision
nodes were analyzed.

Exploratory approach
The exploratory approach consisted of preparing the input data and exploring the
dataset. This meant converting the non-reduced multimodal dataset into a TSV file and
creating a metadata file, which enclosed information such as portrayed emotion, valence
(positive or negative), actor’s ID, and actor’s sex. Once both files were loaded into the
TensorFlow web application (Wongsuphasawat et al., 2018), data was ready for
exploration. The system offers three different primary methods of dimensionality
reduction (PCA, t-SNE, and UMAP) and can create two- and three-dimensional plots. For
each of these techniques, parameters were tuned until meaningful patterns were found by
ocular inspection—zooming in and out on the projections and coloring data points
according to metadata.

RESULTS
Supervised learning

Unimodality
Table 1 lists the best audio classifiers after hyperparameter tuning. Elastic Net with the
eGeMAPS parameter set outperformed the rest of the models with an average validation
AUC of 0.8196. Most of the classifiers did not suffer from overfitting since their training
AUCs were generally close to their correspondent validation ones. However, this was
not always the case. Random Forest was prone to reach very high training AUCs and lower
validation ones. This might be because the dataset was too small for an ensemble learning
method. Regarding which audio parameter set performed best, there was no clear
indication since none of them consistently presented better results. Therefore, both
parameter sets were considered during the early fusion approach. Figure S5 presents
how the best unimodal audio classifier coped with the validation set in the form of a
confusion matrix. The model performed better than chance for all emotions except
irritation (chance level performance in an 18-alternative classification task is 1/18 = 0.056).

Table 1 Summary of unimodal audio classification experiments.

Classifier AUC (train) AUC (validation)

Elastic Net (eGeMAPS) 0.9136 ± 0.0018 0.8196 ± 0.0192

Elastic Net (GeMAPS) 0.9034 ± 0.0028 0.8086 ± 0.0223

k-NN (eGeMAPS) 0.8244 ± 0.0056 0.7764 ± 0.0199

k-NN (GeMAPS) 0.8164 ± 0.0056 0.7761 ± 0.0187

Decision Tree (eGeMAPS) 0.7742 ± 0.0068 0.7019 ± 0.0229

Decision Tree (GeMAPS) 0.7695 ± 0.0073 0.7029 ± 0.0331

Random Forest (eGeMAPS) 0.9983 ± 0.0003 0.7979 ± 0.0208

Random Forest (GeMAPS) 0.9967 ± 0.0004 0.7991 ± 0.0189

Note:
Best method is marked in bold.
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Additionally, the matrix revealed expected confusion patterns such as confusions between
joy and amusement, and between shame and sadness.

Table 2 details the best video classifiers after hyperparameter tuning. Even though
Random Forest did a better job than the rest of the classifiers, reaching an average validation
AUC of 0.7981, it tended to overfit once again. Regarding its intraclass performance, the
classifier struggled to recognize some of the emotions, especially shame, which was most of
the times mislabeled as sadness. On the other hand, the model stood out in the prediction of
amusement samples. The full confusion matrix is available in Fig. S6.

Multimodality
Late fusion
Once the best audio and video unimodal classifiers were identified, their outputs were
merged by using different fusion techniques. Table 3 reveals that product rule
outperformed the rest of the methods by achieving an average validation AUC of 0.8767.
The confusion matrix of the best late fusion pipeline (Fig. 1) shows that the multimodal
classifier performed better than chance for all emotion classes, achieving its highest
performance for amusement. Furthermore, it also reveals expected confusion patterns such
as confusion between panic fear and anger, and between contempt and sadness—emotions
that belong to the same valence family.

Early fusion
In this approach, two different input parameter sets were evaluated: an extended set
including the eGeMAPS features and AU intensity values and functionals, and a minimal

Table 2 Summary of unimodal video classification experiments.

Classifier AUC (training) AUC (validation)

Elastic Net 0.8685 ± 0.0047 0.7946 ± 0.0254

k-NN 0.8216 ± 0.0074 0.7780 ± 0.0309

Decision Tree 0.7449 ± 0.0070 0.6989 ± 0.0255

Random Forest 0.9992 ± 0.0001 0.7981 ± 0.0238

Note:
Best method is marked in bold.

Table 3 Summary of multimodal classification experiments using the late fusion approach.

Classifier AUC (training) AUC (validation)

Maximum Rule 0.9960 ± 0.0003 0.8360 ± 0.0116

Sum Rule 0.9972 ± 0.0002 0.8618 ± 0.0127

Product Rule 0.9972 ± 0.0002 0.8767 ± 0.0135

Weight Criterion 0.9981 ± 0.0002 0.8623 ± 0.0129

Rule-based 0.9653 ± 0.0015 0.8470 ± 0.0176

Elastic Net 0.9994 ± 0.0000 0.8696 ± 0.0168

k-NN 0.9825 ± 0.0007 0.8585 ± 0.0160

Decision Tree 0.8042 ± 0.0096 0.7079 ± 0.0267

Note:
Best method is marked in bold.
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set including the standard GeMAPS features and AU intensity and functionals. These
parameter sets were created by concatenating audio and video features and were then used
to train distinct classifiers. Table 4 lists the best early fusion multimodal classifiers after
hyperparameter tuning. Elastic Net with the extended parameter set performed best,
scoring an average validation AUC of 0.8662. As shown in Fig. 2, its intraclass performance
was once again better than random guessing for all emotions, and there were also expected
confusion patterns such as confusions between joy and amusement and between anger
and panic fear.

Analyses of feature importance
An in-depth analysis of classifier behavior was conducted by plotting and analyzing the
feature importance for each emotion and classifier. Since the input variables were scaled
before fitting the model, logistic regression coefficients can be used as feature importance
scores for Elastic Nets. A feature is affecting the prediction when its coefficient is
significantly different from zero. The probability of an event (emotion) increases and
decreases when the coefficient is greater or lower than zero, respectively. The behavior of

Figure 1 Confusion matrix showing the proportion of responses in the validation set for the best late
fusion multimodal classifier (product rule). Recall rates are shown in the diagonal cells (marked in
bold). adm = admiration, amu = amusement, ang = anger, anx = anxiety/worry, con = contempt, des =
despair, dis = disgust, fea = panic fear, int = interest, irr = irritation, joy = joy/elation, ple = sensual
pleasure, pri = pride, rel = relief, sad = sadness, sha = shame, sur = surprise, ten = tenderness.

Full-size DOI: 10.7717/peerj-cs.804/fig-1
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models based on Random Forest was analyzed using the TreeInterpreter package
(Saabas, 2015), which decomposes each prediction into bias and feature contribution
components. These contributions were grouped by the predicted emotion and then

Table 4 Summary of multimodal classification experiments using the early fusion approach.

Classifier AUC (train) AUC (validation)

Elastic Net (ext.) 0.9634 ± 0.0024 0.8662 ± 0.0150

Elastic Net (min.) 0.9401 ± 0.0029 0.8600 ± 0.0174

k-NN (ext.) 0.8764 ± 0.0057 0.8334 ± 0.0255

k-NN (min.) 0.8476 ± 0.0077 0.8285 ± 0.0259

Decision Tree (ext.) 0.7772 ± 0.0093 0.7320 ± 0.0280

Decision Tree (min.) 0.7936 ± 0.0130 0.7321 ± 0.0376

Random Forest (ext.) 0.9998 ± 0.0000 0.8550 ± 0.0222

Random Forest (min.) 1.0000 ± 0.0000 0.8555 ± 0.0225

Note:
ext, extended feature set (eGeMAPS + AUs); min, minimal feature set (GeMAPS + AUs).
Best method is marked in bold.

Figure 2 Confusion matrix showing the proportion of responses in the validation set for the best
early fusion multimodal classifier (Elastic Net with extended feature set). Recall rates are shown in
the diagonal cells (marked in bold). adm = admiration, amu = amusement, ang = anger, anx =
anxiety/worry, con = contempt, des = despair, dis = disgust, fea = panic fear, int = interest, irr = irritation,
joy = joy/elation, ple = sensual pleasure, pri = pride, rel = relief, sad = sadness, sha = shame, sur =
surprise, ten = tenderness. Full-size DOI: 10.7717/peerj-cs.804/fig-2
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averaged. The interpretation of feature contribution values coincides with the one
explained for Elastic Nets. The contributions of the most important audio features are
summarized in Fig. 3, and the full list of importance scores for all audio features and
emotions is available in Fig. S7. A summary of the most important video features
(Facial Action Units, AUs) is shown in Fig. 4 (with full list shown in Fig. S8). These figures
are based on the best performing audio and video classifiers and give a detailed look into
which features were important for classification of which emotions. They also represent
the best performing multimodal classifier, which was based on late fusion of the best
unimodal classifiers using the product rule technique.

In general, different emotions were associated with different patterns of important
features. Important audio features for anger, for example, included spectral balance and
amplitude related features that are associated with a “harsh” voice quality (e.g., spectral
slope from 0–500 Hz, Hammarberg index, harmonics to noise ratio). Whereas for fear,
important audio features included the length of unvoiced segments, amplitude of the
first formant frequency, and the mean slope of falling amplitude signal parts. We refer to
Eyben et al. (2016) for definitions and calculations of audio features. Important video
features included AU12 (lip corner puller) for joy, AU4 (brow lowerer) and AU7 (lid
tightener) for disgust, and AU6 (cheek raiser) and AU10 (upper lip raiser) for amusement.
For the sake of completeness, the Supplemental Materials also include a summary (Fig. S9)
and full description (Fig. S10) of the importance of features for the best early fusion
multimodal classification model.

Unsupervised learning
Traditional approach
After determining the optimal number of clusters, these parameters were used as input to
k-means and hierarchical clustering. Both clustering techniques were evaluated over the
multimodal dataset, with and without dimensionality reduction. Results from the
clustering analyses yielded a two-dimensional solution and are shown in Fig. 5.

In order to interpret the clusters in terms of underlying features, the problem was
analyzed in a supervised manner using Decision Trees. As shown in Fig. 6, the most
relevant feature that distinguished between clusters was AU6 (cheek raiser). According to
the first decision node, those instances which had an 80th percentile value greater than
0.328 were classified as cluster one. In the next decision node, AU12 (lip corner puller) also
contributed, whereas vocal features became more prominent in the third node. These
findings were in good agreement with the emotion categories included in cluster one
(see Fig. 5), which mainly comprised emotions that are positive (and are characterized by
the use of AU6, e.g., amusement and joy; see Fig. S8). The pattern was consistent across
both clustering techniques without dimensionality reduction, but changed when the
reduced dataset was used for hierarchical clustering (see Fig. 5, bottom right).

Exploratory approach
After preparing the features and metadata files of the non-reduced multimodal dataset
(as described in the “Methods” section), the data was explored in search of meaningful
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Figure 3 Summary of the most important features (eGeMAPS) for classification of each emotion for
the best performing audio classifier (Elastic Net). See Fig. S7 for a complete list that includes all
features. Functionals: M = arithmetic mean, CV = coefficient of variation, P20 = 20th percentile, P80 =
80th percentile, P range = range of 20th to 80th percentile, M/SD rising slope = mean/standard deviation
of the slope of rising signal parts, M/SD falling slope = mean/standard deviation of signal parts with
falling slope. Features: voiced/unvoiced = feature was based on voiced/unvoiced regions only; F0 =
logarithmic fundamental frequency (F0) on a semitone frequency scale; jitter = deviations in individual
consecutive F0 period lengths; F1/F2/F3 frequency/bandwidth = centre frequency/bandwidth of the first,
second, and third formants; loudness = estimate of perceived signal intensity from an auditory spectrum;
harmonics to noise ratio = relation of energy in harmonic components to energy in noise-like compo-
nents; shimmer = difference of the peak amplitudes of consecutive F0 periods; equivalent sound level =
logarithmic average sound pressure level; alpha ratio = ratio of the summed energy from 50–1,000 Hz and
1–5 kHz; Hammarberg index = ratio of the strongest energy peak in the 0–2 kHz region to the strongest
peak in the 2–5 kHz region; spectral slope 0–500/500–1,500 = linear regression slope of the logarithmic
power spectrum within the two given bands; spectral flux = difference of the spectra of two consecutive
frames; F1/F2/F3 amplitude = first, second, and third formant relative energy; MFCC 1–4 = Mel-Fre-
quency Cepstral Coefficients 1–4; loudness peaks per second = number of loudness peaks per second;
voiced segments per second = number of continuous voiced regions per second; voiced segment length =
length of continuous voiced regions. Full-size DOI: 10.7717/peerj-cs.804/fig-3
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patterns. To this end, three different dimensionality reduction techniques were employed
via the TensorFlow Embedding Projector (Wongsuphasawat et al., 2018). The tunable
parameters were manually adjusted until any interesting patterns were found. The reader
can interactively visualize the data and inspect the results (https://projector.tensorflow.org/
?config=https://raw.githubusercontent.com/marferca/multimodal-emotion-recognition/
main/4.unsupervised_learning/exploratory_approach/tf_embedding_projector/projector_
config.json). Main findings are presented below.

Principal component analysis
Although the projection of data into a two-dimensional space reduced the amount of
explained variance to 35%, some interesting patterns were detected. It is apparent from

Figure 4 Summary of the most important features (Facial Action Units and functionals) for classification of each emotion for the best
performing video classifier (random forest). See Fig. S8 for a complete list that includes all features. Functionals: M = arithmetic mean, CV =
coefficient of variation, P20 = 20th percentile, P50 = 50th percentile, P80 = 80th percentile, P range = range of 20th to 80th percentile, N peaks =
number of peaks. Full-size DOI: 10.7717/peerj-cs.804/fig-4
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Fig. 7 that the dataset could be split into two clusters. The left and middle side mainly
contained high-arousal emotions, such as portrayals of amusement, anger, joy, panic fear,
pride, and despair. The right side instead included low-arousal emotions, such as sadness,
irritation, interest, anxiety, and contempt. In addition, representations of the same
emotion tended to be close to each other.

t-SNE
The t-SNE dimensionality reduction technique was run until convergence (6,081
iterations) with a perplexity value of 25 and a learning rate of 10. The data points were then

Figure 5 k-Means for k = 2 (top left) and hierarchical clustering for k = 2 and complete distance method (top right) before dimensionality
reduction, with percentage of files per emotion and cluster. The bottom two graphs show k-Means for k = 2 (bottom left) and hierarchical
clustering for k = 2 and weighted distance method (bottom right) after dimensionality reduction. adm = admiration, amu = amusement, ang = anger,
anx = anxiety/worry, con = contempt, des = despair, dis = disgust, fea = panic fear, int = interest, irr = irritation, joy = joy/elation, ple = sensual
pleasure, pri = pride, rel = relief, sad = sadness, sha = shame, sur = surprise, ten = tenderness. Full-size DOI: 10.7717/peerj-cs.804/fig-5

Figure 6 Fragment of the decision tree used to interpret the clustering. The model was trained on the output of k-Means (k = 2; before
dimensionality reduction). Full-size DOI: 10.7717/peerj-cs.804/fig-6
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colored by emotion, valence, actor, and actor’s sex. The algorithm grouped the data into
three main clusters (Fig. 8), in which emotions characterized by positive valence were
grouped together, whereas the rest split into two clusters with high prevalence of panic fear
and anger, and of sadness, respectively. Figure 8 also reveals that emotions portrayed by

Figure 7 PCA 2D visualization of the multimodal dataset colored by emotion. Note that 18 non-unique colors were used.
Full-size DOI: 10.7717/peerj-cs.804/fig-7
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Figure 8 t-SNE 2D visualization of the multimodal dataset colored by emotion (A), valence (B), actor (C), and sex (D).
Full-size DOI: 10.7717/peerj-cs.804/fig-8
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the same actor tended to be close to each other. Something similar also happened when
coloring by sex: female samples tended to group together, as did male samples.

UMAP
The UMAP algorithm was run for 500 epochs (not a tunable parameter) and 36 neighbors.
As shown in Fig. 9, the left side mainly contained high-arousal emotions and positive
emotions (e.g., amusement, joy, and despair), whereas the right side contained low-arousal
emotions and negative emotions (e.g., sadness, irritation, anxiety, contempt, and interest).
Similarly to t-SNE, expressions portrayed by the same actor were close to each other
(e.g., actor number 3, pink dots, is a case in point). Finally, Fig. 9 also reveals how the
actor’s sex played a part in the clustering results since most of the female and male samples
were on the upper and the lower part of the output, respectively.

DISCUSSION
We investigated classification of 18 emotions—portrayed by 10 actors through vocal
and facial expressions—using person-independent supervised and unsupervised methods.
Our study makes three main contributions to the literature. First, results from the
supervised experiments showed that multimodal classifiers performed better than
unimodal classifiers and were able to classify all emotions, although recognition rates
varied widely across emotions. This indicates that the combinations of vocal and facial
features that were used for classification varied systematically as a function of emotion, and
that the signal was reliable enough to allow for above chance classification of all 18
emotions. Second, we utilized our machine learning approach to present new data on
multimodal feature patterns for each emotion, in terms of the features that contributed
most to classifier performance. Third, we explored how wholly unsupervised classifiers
would organize the emotion expressions, based on the same features that were used for
supervised classification. Several meaningful explanatory patterns were observed and
interpreted in terms of valence, arousal, and various actor- and sex-specific aspects.
The comparison of supervised and unsupervised approaches allowed us to explore how
different methodological choices may provide different perspectives on how emotion
expressions are organized.

Overall, the multimodal classifiers performed approximately 5–6% better than the
unimodal vocal and facial classifiers in our supervised experiments. The magnitude of this
improvement is in accordance with previous studies (see D’Mello & Kory, 2015, for a
review). We observed the best performance (AUC = 0.88) for multimodal classifiers that
merged the output from the best unimodal vocal (elastic net, AUC = 0.82) and facial
(random forest, AUC = 0.80) classifiers using a late fusion approach and the product
rule method. A direct comparison with previous classification studies on the GEMEP
expression set is difficult because studies have used different classification approaches
(e.g., person-independent or person-dependent), algorithms, numbers of emotion
categories, and selections of stimuli. Our unimodal vocal and facial classifiers seemed to
achieve slightly lower accuracy compared to previous efforts (e.g., Schuller et al., 2019;
Valstar et al., 2012), although it must be noted that earlier studies have classified fewer
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Figure 9 UMAP 2D visualization of the multimodal dataset colored by emotion (A), valence (B), actor (C), and sex (D).
Full-size DOI: 10.7717/peerj-cs.804/fig-9
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emotion categories. We also used relatively small feature sets, with the aim of mainly
including features that are possible to interpret in terms of human perception. For
example, we focused on AUs because they provide a comprehensive and widely used way
to describe facial expressions (Martinez et al., 2019), that can be used to produce easily
interpretable feature patterns for each emotion. However, inclusion of additional features
such as head pose and gaze direction would likely increase classification performance.
Recent studies have also abandoned the use of pre-defined features altogether and instead
use deep learning of physical properties with good results (e.g., Li & Deng, 2020), although
such methods often result in features that are difficult to interpret.

Bänziger & Scherer (2010) provided data on human classification for the same stimulus
set as used in the current study. Direct comparison of recognition rates is again difficult
because the human judgments were collected using different methodology (e.g., judges
were allowed to choose more than one alternative in a forced-choice task), but overall our
classifiers had somewhat lower recognition rates than the human judges. However, an
inspection of recognition patterns showed many similarities between human judges
and classifiers. For example, the human judges in Bänziger & Scherer (2010), like our
classifiers, received higher accuracy for multimodal vs. unimodal expressions. Looking at
individual emotions, human judges showed highest accuracy for amusement, anger, and
panic fear. Our classifiers also performed best for amusement and anger, and also
performed relatively well for panic fear. Shame received the lowest recognition rates
from both human judges and our classifiers. Even confusion patterns showed many
similarities between human judges and classifiers. For example, joy and amusement,
tenderness and pleasure, relief and pleasure, and despair and panic fear were among the
most frequent confusions for both humans and classifiers. Similar recognition patterns for
human judges and classifiers tentatively suggest that the included features may also be
relevant for human perception of emotion.

Traditional emotion recognition studies using machine learning often aim to achieve
the highest possible classification performance, and do not pay attention to feature
importance. We propose that a more detailed inspection of feature importance presents a
promising method for investigating emotion-related patterns of probabilistic and partly
redundant vocal and facial features. Such patterns may be difficult to discover using
traditional descriptive statistics and linear analyses. We present detailed multimodal
feature patterns for each of the 18 included emotions, several of which have rarely been
included in previous emotion expression studies (e.g., Figs. 3 and 4). Future studies are
needed to investigate how well the obtained patterns may generalize to other data sets and
other classification methods.

We also performed a number of unsupervised classification experiments, guided by the
idea that they may provide additional information about how emotion expressions are
organized (e.g., Azari et al., 2020). Previous studies on the organization of emotion
expressions have focused on human perception (e.g., Cowen et al., 2019), whereas our
study instead investigated the organization of emotion expressions based on their physical
vocal and facial properties. Results from these experiments did not replicate a structure
with 18 emotion categories. This was expected because such a solution would require that
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almost all of the variance in the included features would be explained by emotion
expressions. However, all methods lead to meaningful structures that could often be
interpreted in relation to emotion categories. Traditional methods based on k-means and
hierarchical clustering proposed a two-factor solution which was interpreted using
decision trees. This approach revealed that AU6 (cheek raiser) was the most relevant
feature at the first decision node. This guided our interpretation of the two clusters as
largely representing positive and negative valence, although expressions of negative
emotions that shared key features with positive emotions did also end up in the ‘positive’
cluster. The exploratory dimension reduction methods gave further insights. PCA
results could largely be interpreted in terms of high vs. low arousal expressions, although
Fig. 7 also revealed that portrayals of the same emotion tended to be close together.
Results from the t-SNE and UMAP analyses could also be interpreted in terms of arousal,
valence, and emotion—but they also revealed that person and gender specific aspects
contributed to clustering. For example, portrayals from the same actor tended to be close
to each other, as did portrayals by male and female actors, respectively (see Figs. 8 and 9).
One conclusion that can be drawn is that both emotional and non-emotional variability
is likely to play a role in unsupervised classification of emotions (see Li & Deng, 2020),
especially in person-independent approaches where within-person normalization of
features is often not a feasible solution. Future research could focus on ways to minimize
the impact of feature variability that is not directly related to the expression of emotions.

Our stimuli consisted of actor portrayals recorded in a studio, so future research is
required to investigate which of the results will generalize to naturalistic conditions.
Studies using spontaneous expressions are important because recent research suggests
that there may be small but systematic differences between how emotions are conveyed in
actor portrayals vs. spontaneous expressions (e.g., Juslin, Laukka & Bänziger, 2018;
Krumhuber et al., 2021a). Another limitation of our study was that we did not fully take
advantage of the dynamic nature of the stimuli, and only used such temporal dynamics
information that was directly encoded in the features. Future studies could instead
track the dynamic changes of features over time and use analysis methods that take
advantage of this information (e.g., long short-term memory recurrent neural networks;
see Wöllmer et al., 2013; Zhao et al., 2019). While the GEMEP data set is relatively
small, openly available huge data sets could in the future enable modeling of emotion
expressions via transformers and attention-based mechanisms (e.g., Siriwardhana et al.,
2020; Vaswani et al., 2017). Even for moderately sized data sets, such modeling could
be useful, as we have recently shown in another context (Gogoulou et al., 2021).

With an increase in the number of human-robot interactions with an emotional
component (Shum, He & Li, 2018)—e.g., recognizing an angry customer in dialog with a
chatbot—the future will hold more opportunities for data-driven reasoning. Besides
software robots, there is also an increase in the number of filmed interactions between
humans and physical robots and corresponding studies of human-robot cooperation
(Crandall et al., 2018). Studies into unlabeled data from such sources can be done using
self-supervised learning. Such studies may assist in understanding the importance of
correctly interpreting emotions, and will likely also become more common and potentially
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have important societal implications. This further motivates deep dives into the
methodology, of the kind that we have attempted here.

CONCLUSIONS
We propose that research on emotion expression could benefit from augmenting
supervised methods with unsupervised clustering. The combination of methods leads to
more insight into how data is organized, and we especially note that the investigation of
explanatory patterns could be a valuable meta-heuristic that can be applied to several
classification areas. We believe that advances in the basic science of understanding how
emotions are expressed requires continued efforts regarding both the development of more
representative stimulus materials and of more representative vocal and facial features.
Machine learning methods could play a vital role in the study of how emotions are
expressed nonverbally through the voice and the face.
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