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Abstract: Although this is an era of pandemics and many devastating diseases, this is also a time
when bionanotechnology flourishes, illuminating a multidisciplinary field where vaccines are quickly
becoming a balsam and a prevention against insidious plagues. In this work, we tried to gain and
also give a deeper understanding on nanovaccines and their way of acting to prevent or cure cancer,
infectious diseases, and diseases caused by parasites. Major nanoadjuvants and nanovaccines are
temptatively exemplified trying to contextualize our own work and its relative importance to the
field. The main properties for novel adjuvants seem to be the nanosize, the cationic character, and the
biocompatibility, even if it is achieved in a low dose-dependent manner.

Keywords: vesicles; liposomes; bilayer disks and fragments; cationic lipids and polymers; biocom-
patible polymers; niosomes; nanoparticles; nanogels; hydrogels; adjuvants for humoral and cellular
immune responses

1. The Importance of Nanoadjuvants for Vaccines

In this pandemics era, the exponential growth of nanobiotechnology certainly benefits
the development of nanovaccines, displaying resourceful alternatives for controlling and
hopefully eradicating infectious diseases [1–6]. The early models for vaccination using
attenuated pathogens offered the antigens and the pathogen molecular patterns (PMPs)
able to properly activate the antigen presenting cells (APCs), however, many modern
vaccines carry purified antigens so that adjuvants and stimulators become essential to
trigger activation of APCs. Against many diseases such as cancer, tuberculosis, mycosis,
malaria, and parasites infestation, vaccines have to enhance both antibody production and
cellular immunity [7].

Most commercially available vaccines promote antibody and Th2 response and are
able to fight invading microorganisms that do not enter the host cells. However, against
intracellular infections and cancers, both cellular and humoral immune responses are
essential [8]. The CD8+ T-cells respond to infection or transformation of nucleated cells
expressing major histocompatibility complex (MHC) class I and, upon differentiation into
cytotoxic T-lymphocytes (CTLs), kill target cells directly; in addition, CD8+ T-cells release
chemokines and cytokines that call more effector cells, such as the neutrophils and the
macrophages [8].

Because most antigens are negatively charged, electrostatics guarantees that cationic
nanoadjuvants properly adsorb antigens, yielding nanometric sizes for the adjuvant/antigen
assemblies that are not retained at the site of injection, avoid physiological barriers, and
are rapidly drained to the lymph nodes rich in dendritic cells [3,9–13]. Nanoadjuvants
can be obtained from a variety of lipids, polymers, or lipids, and polymers mostly as
bilayer vesicles [14,15], open bilayer disks [16–20], lipid nanoparticles [21], or hybrid
nanoparticles [4,5,22–26]. For example, the molecular geometry of dioctadecyldimethylam-
monium bromide (DODAB), a cationic and synthetic double-chained amphiphile, favors
its self-assembly in water solution as bilayers either closed (large vesicles) or open (bi-
layer fragments or disks) [15,27]. The latter, from now on called DODAB BF, displays
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nanometric sizes (<100 nm), have hydrophobic defects and fuse upon salt-induced screen-
ing of their surface potential [28]. DODAB bilayers are very versatile, adsorbing several
biomolecules: proteins [14,17,29,30], peptides [25,31,32], oligonucleotides [18,33], mononu-
cleotides [34,35], and nucleic acids [36,37], and also enhancing cellular immune responses
to antigens, though yielding poor humoral responses [14,17,18,22]. DODAB assemblies also
interact with negatively charged particles such as polystyrene sulfate latexes [22,25,38–40]
or silica [41–44]. Optimal bilayer deposition led to the description of supported DODAB
bilayers on polystyrene sulfate (PSS) nanoparticles [22,25,40] or silica for presentation
of adsorbed antigens [43,44]. The good miscibility of DODAB with the biocompatible
polymer poly (methylmethacrylate) (PMMA) [23,45] led to the synthesis of polymeric
PMMA nanoparticles by emulsion polymerization of methylmethacrylate (MMA) in the
presence of DODAB BF, which produced the hybrid, cationic, nanometric and biocom-
patible PMMA/DODAB NPs [26]. These NPs combined well with oppositely charged
ovalbumin (OVA) and induced a mixed Th1-Th2 immune response [46].

For use in humans, there are few adjuvants [47]. Commercially available vaccines
largely promote antibody and Th2 responses [48]. In the US, there are aluminum salts
(alum) added of monophosphoryl lipid A, a toll-like receptor 4 agonist [48], whereas,
in Europe, there are the virosomes, the virus-like particles (VLPs), and the oil-in-water
emulsions [49]. A good example of vaccine with VLPs as adjuvants is a prophylactic vaccine
against infections by the human papilloma virus (HPV) that is able to prevent cervical
cancer [50].

Strong Th1 response in animals has been provided by viral constructs [51,52],
DNA- [53–55], and mRNA-based vaccines [54,56,57]. These vectors promote the pro-
cess of cross-presentation in APCs, meaning that vaccine-encoded peptide fragments are
released in the cytosol and presented by MHC-I in APCs [6,58,59]. DNA- and mRNA-based
vaccines have success for veterinary use [60]. However, efficacy, safety, and tolerability re-
mains to be established for humans, despite of the use of these technologies in coronavirus
vaccination [61,62].

Bacterial toxins, particulates, plant derivatives, and pathogen-associated molecular
patterns (PMPs) are some examples of adjuvants [63,64]. Adjuvants belong to two groups:
they are immunopotentiators or they are delivery systems according to their mechanism
of action [48,65]. Delivery systems prevent antigen degradation and promote uptake of
antigens by APCs [65], whereas immunopotentiators act as agonists of pathogen recognition
receptors (PRRs) [48]. Efficient adjuvants may result from combinations of delivery systems
and immunopotentiators [66,67].

In this review, supramolecular assemblies yielding nanostructured materials able to
combine well with antigens to potentiate the immune response are overviewed. Nanoparti-
cles, vesicles, liposomes, bilayer disks, niosomes, and hydrogels are evaluated from the
perspective of efficient antigen presentation in novel nanovaccines.

2. Molecular and Supramolecular Assemblies for Vaccines and Beyond

Molecular assemblies based on non-covalent, physical intermolecular interactions
have been extensively explored in drug and vaccine delivery [16,67–71]. For example,
amphiphiles such as lipids and surfactants self-assemble in water solution to yield a variety
of useful nano- or micro-structures such as micelles, bilayer membranes, inverted phases,
vesicles, nanodisks, etc.; type of assembly can be predicted from theory and molecular
geometry [72,73]. Intermolecular interactions can be attractive and/or repulsive depending
not only on the chemical structure of molecules involved but also on composition of the in-
tervening medium [45,74,75]. Adsorption of counter-ions onto a cationic bilayer can modify
the type of bilayer assembly. NaCl added to DODAB BF promoted fusion and appearance
of large and closed bilayer vesicles in the dispersion and appearance of hydrophobic defects
in the bilayer. Monovalent salt at a moderate concentration was reported to fuse cationic
bilayer fragments [15,28,76,77], with induction of hydrophobic defects in the bilayer [78].
When the electrostatic repulsion is high, as in pure water or at low salt concentrations,
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interdigitation can take place, allowing some relaxation of the electrostatic repulsion be-
tween adjacent DODAB molecules in the bilayer. Adhesion between the cationic bilayers
may occur due to interdigitation [79]. Computer simulations along time for the DODAB
self-assembly in water dispersions [80], differential scanning calorimetry and scattering
of X-rays in the subgel phase [81] evidenced consistently the intra-bilayer tilting and the
occurrence of hydrophobic defects. Figure 1 illustrates molecular dynamics simulations for
the self-assembly of the cationic lipid DODAB.
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The importance of intermolecular interactions in determining structure and function
of supramolecular assemblies made by men or found in nature is paramount. For example,
biological supramolecular assemblies such as complexes of nucleic acids and histones
occur in the chromatin of eukaryotic cells [82,83]. Surface electrostatic potential and less
predictable hydrophobic contacts drive the DNA–protein interactions. The recognition of
specific DNA sequences by proteins depends on the formation of hydrogen bonds with
specific bases, primarily in the major groove, and on sequence-dependent deformations
of the DNA helix. From analysis of the three-dimensional structures of protein–DNA
assemblies, arginine residues attached to narrow minor grooves was often the mode
for protein–DNA recognition; narrow minor grooves increase locally the DNA negative
electrostatic potential thereby attracting positively charged regions on proteins [82].

After crystallites of nucleosomes, the core particles of chromatin, were obtained, X-ray
diffraction revealed their crystal structure at 2.8 angstroms resolution, a major achievement
in 1997 [84]. Figure 2 shows the organization in the nucleosome particle; 146 base pairs
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of DNA helix surround the histones, representing a way of compacting long DNA chains
of the chromatin in eukaryotes; linear DNA compaction thereby occurs by a factor of
30–40 [84]. The nucleosomes further associate into higher-order assemblies linked by
the linker histone H1 so that DNA bends and forms high ordered helixes shaped by the
histones [85]. The nucleosome is responsible for packaging DNA within the nucleus, largely
determining DNA accessibility.
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Figure 2. Nucleosome particle showing the histones core surrounded by DNA. Reproduced with
permission from reference [84].

Similarly to DODAB supramolecular assemblies, characteristics of nucleosomes also
depend on physico-chemical properties of their environment such as ionic strength and
divalent-ion concentration, and on histone or DNA-modification and/or DNA state [86].
For assemblies in vitro, variable nucleosome inter-spacing was related to variable electro-
static attraction between DNA and histones; if the salt concentration during the assembly
process increased, the repeat distance between nucleosomes also increased [87,88]. The
compacting effect of cationic NPs on long-chained bacteriophage DNA was reconstituted
using supported cationic bilayers on polymeric nanoparticles; these nucleosome mimetic
systems were available over a range of nanosizes for the primary polymeric particles
surrounded by the supported cationic bilayer; this opened new possibilities for a variety
of DNA- or mRNA-based nanovaccines [36]. Figure 3 shows images of supramolecular
assemblies mimicking nucleosomes; they assembled from cationic nanoparticles and giant
bacteriophages DNA under conditions of charge neutralization; in the same micrograph,
some single nanoparticles and isolated DNA molecules could also be seen, although the
majority of supramolecular assemblies corresponded to electrostatically driven associations
between anionic DNA molecules and cationic PSS/DODAB NPs [36]. Another important
feature was the compaction of the long DNA chains by the cationic NPs, imparting a truly
nucleosome mimetic character for the assemblies.
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Figure 3. Scheme and AFM micrographs for PSS/DODAB/T2-DNA dispersions at charge neu-
tralization. They display nucleosome-mimetic micrometric assemblies. One should notice some
isolated PSS/DODAB nanoparticles and the long T2 DNA chain on the top right corner of the AFM
micrograph on the left. Reproduced with permission from reference [36]. Copyright 2008. American
Chemical Society.

Cancer immunity evolves in two steps: the preparatory and the effector ones [89]. The
preparatory step takes place in the LN with release and presentation of cancer antigens
for priming and activating T cells. In the next step, T cells reach the tumor mass, trying to
recognize and kill the cancer cells in the tumor. However, the tumor tissue and microenvi-
ronment can be immunosuppressive due to low immunogenicity of tumor cells, presence
of immunosuppressive cytokines, and biological barriers hampering chemotherapeutic
agents and immunotherapies to reach the tumor cells [90,91]. Therefore, nanotechnology is
needed for surmounting these key biological barriers and effectively deliver chemo- and
immune-therapeutic agents and vaccines to their sites of action; sensitive antigens easily
degradable in the physiological medium can be protected using nanotechnologies able to
increase their half-lives, minimize systemic toxicity, and promote their delivery to APCs
in the LN [91]. Nanostructures such as NPs [5,17,43,92], bilayer fragments (BF) [4,12], or
peptide supramolecular assemblies [93] become drained directly to the LNs, performing
well in the preparatory step [89]. In the effector step, activated T cells should infiltrate the
tumor, and stable, long-circulating, and targeted nanostructures could help T cells infiltra-
tion improving the outcomes of immunotherapies, which may give a low response rate due
to the T-cell poor infiltration in the tumor tissue. Despite the approval of nanomedicines for
cancer treatment, the low observed survival was possibly due to abnormal phenotypes of
the tumor microenvironment (TME); nanostructures should incorporate anticancer drugs,
drugs for improving tumor perfusion, and others to return TME to normality [94]. The
extracellular matrix (ECM) produced by cancer associated fibroblasts (CAF) supports can-
cer cells expressing α-smooth muscle actin and fibroblast activation protein (FAP), both
upregulating the expression of other functional cell surface proteins like platelet-derived
growth factor receptor β and the insulin-like growth factor receptor II; activated fibroblasts
could benefit from delivery of nanoparticles carrying drugs, especially in liver cancer to
downregulate growth factors [95]. Figure 4 reproduced from reference [94] illustrates the
tasks ahead for nanomedicines: they should also enable normalization of abnormal TME
phenotypes, such as the one restricting penetration of cells for immunotherapy (in purple)
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and the one with inflammatory character (in red); the normal TME appears centralized in
blue. The defective vasculature in cancer tissue can not only reduce oxygen supply, but
also hampers the penetration of anti-cancer cellular immunity; drugs and normalizers of
the vasculature and drugs to prevent the production of dense extracellular matrixes by
cancer associated fibroblasts would possibly normalize the TME by improving perfusion,
oxygen supply and drug delivery of cytotoxic and anti-inflammatory chemotherapeutics.
Importantly, responses to immunotherapy increased when TME normalization approaches
were applied [94].

Biomimetics 2022, 7, x FOR PEER REVIEW 6 of 22 
 

 

ized in blue. The defective vasculature in cancer tissue can not only reduce oxygen sup-
ply, but also hampers the penetration of anti-cancer cellular immunity; drugs and nor-
malizers of the vasculature and drugs to prevent the production of dense extracellular 
matrixes by cancer associated fibroblasts would possibly normalize the TME by im-
proving perfusion, oxygen supply and drug delivery of cytotoxic and anti-inflammatory 
chemotherapeutics. Importantly, responses to immunotherapy increased when TME 
normalization approaches were applied [94]. 

 
Figure 4. Possible tumor microenvironment phenotypes (TME) in cancer as compared to the nor-
malized one. Combined medicines in nanoformulations, such as normalizers of TME and an-
ti-cancer drugs, can advantageously penetrate the tumor mass as compared to microformulations. 
Abbreviations are DC for dendritic cell; ICD for immunogenic cell death; NK for natural killer; 
TAA for tumor-associated antigen. Reprinted with permission from [94]. 

Figure 4. Possible tumor microenvironment phenotypes (TME) in cancer as compared to the normal-
ized one. Combined medicines in nanoformulations, such as normalizers of TME and anti-cancer
drugs, can advantageously penetrate the tumor mass as compared to microformulations. Abbre-
viations are DC for dendritic cell; ICD for immunogenic cell death; NK for natural killer; TAA for
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Having recognized the importance of formulating drugs and vaccines in nanostruc-
tures, here we present several instances of nano-vaccines delivery based on surfactants,
lipids, polymers, biopolymers, proteins, etc. Self-assembled vehicles discussed are vesicles,
liposomes, niosomes, bilayer fragments or disks, nanoparticles, and hydrogels.

3. Vesicles, Liposomes, Lipid Nanoparticles, Disks, and Niosomes

In this section, meaningful examples of vaccine delivery using self-assembled nanos-
tructures are discussed and major research areas in need of vaccines are pointed out.

A HIV vaccine yielding long-lasting anti-HIV antibodies is not yet available. The
immunodeficiency typical of HIV has its basis on the scarce numbers of trimmer spike
proteins on the virus; this efficiently prevents IgG bivalent binding, meaning low elicitation
of neutralizing antibodies; there are only 14 HIV spikes per virus [96]. Interesting combina-
tions between antigen NPs and liposomes enhanced specific humoral responses against
HIV. In a possible vaccine strategy, liposomes were employed to increase the density of
exposed BG505 MD39, which is a gp140 envelope trimmer; covalently linked trimmers
with good orientation were exposed by the liposomes at high densities; in this case, the
nanoparticles attached to the liposomes were the trimmers; immunization with avid MD39-
specific IgG antibodies in serum was thereby achieved [97]. Figure 5a illustrates the low
density of trimmeric protein spikes on HIV and their implications in vaccine formulation,
whereas Figure 5b shows the design of the liposomal formulation proposed to improve
HIV antigen presentation at high densities [96,97]. Figure 5a evidenced the contrast be-
tween high-density and low density epitope display for papilloma virus (PV) and HIV,
respectively, as reproduced from [96], whereas Figure 5b shows a liposomal formulation
for displaying the gp140 trimer MD39; one should notice that the bar on the micrograph
corresponds to 100 nm [97]. Liposomes in the electron microscopy micrograph eventually
occur as concentric and closed multi-bilayers with a large variability in size, however there
was a very regular distribution of the trimeric lipoprotein on the bilayers measured as the
spacing between trimers on the bottom right portion of Figure 5b.

The spike protein of SARS-CoV-2 is the first point of virus contact with the cell to
be invaded; for invasion, this viral protein binds to a host receptor. In order to prevent
virus entrance in the host cell, it is possible to raise neutralizing antibodies able to attach
to the receptor-binding domain of the viral spike protein; it is even possible to make
a selection of the best antibodies, such as those recently found and named S2H97 and
S2E12 [98]. The S2H97 antibody was able to neutralize several viruses belonging to the
coronavirus family as well as coronavirus mutants; in vivo, hamsters treated with this
antibody, and then infected with the virus two days after treatment, showed a serum
decrease in viral RNA concentrations of more than ten thousand times as compared to
the untreated hamsters [98]. S2H97 displayed a large breadth and resistance to escape,
possibly encompassing neutralization of future mutants due to its broad capability to treat
infections by several viruses belonging to the coronavirus family; patients recovered from
coronavirus infection did not have antibodies able to compete with S2H97 for neutralizing
the virus, meaning low probability of occurring mutants with changes in the epitope where
S2H97 binds [98,99]. The S2E12 neutralizing ability was not as broad as the one of the
S2H97, but its potency was also considerable; virus mutants escaping neutralization by
S2E12 were not able to bind to the receptor of the host cell and therefore could not replicate,
making their outbreaks unlikely [98]. S2E12 displayed a modest breadth against the virus
of the coronavirus family and could not be ruled out, eventually becoming applicable
to neutralize infections by coronavirus mutants or other members of the coronavirus
family [98]. Importantly, in sub-Saharan Africa, the cross-reactivity in serum against the
coronavirus was recently determined and associated to reduced figures of infections and
deaths [100].
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Figure 5. (a) Compared densities of spike proteins in papilloma virus (PV) and HIV able to elicit
neutralizing antibodies (in blue). Reproduced from [96]. (b) Increasing the density of HIV antigens
on liposomes. The HIV antigens were the MD39 trimmer covalently linked to the liposomes. On
the cryo-electron microscopy micrograph, liposomes display the trimmers in a regular manner (bar
corresponds to 100 nm); on the table, trimmer densities and spacing in between them depends on
coupling strategy and trimmer concentration used for coupling [97].
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Despite the challenging requirement of messenger–RNA protection in vivo due to
possible degradation by lytic enzymes, mRNA vaccines have been successfully formulated
with nanoparticles made of lipids (LNPs); using several administration routes, these
vaccines yielded high antigen production from images in vivo [101]. For example, LNPs
safely and efficiently carried BNT162b2 mRNA Covid-19 vaccine developed and funded
by Pfizer [62]. Although several formulations are available, these LNPs made of an amino
lipid, phospholipid, cholesterol, and a poly (ethylene glycol)-lipid conjugate have been
considered the most advanced ones [102]. LNPs were nanostructures with 70 to 100 nm
in diameter and similar to those used for formulating small interference RNA [103]. The
principles for designing an optimal mRNA lipid nanoparticle vaccine and major types of
LNPs were recently reviewed [104,105]. Recently, the need for an additional improvement
in m-RNA vaccines was pointed out: the optimization of the vaccines’ stability at low
temperature [106].

Instead of using complicated compositions and expensive lipids, an unexplored though
promising strategy is formulating the antigen with bilayer disks made of DODAB; they
are positively charged, chemically stable, display colloidal stability in water due to the
electrostatic repulsion, and readily adsorb oppositely charged nucleic acids or protein anti-
gens [16,17,19,79,107,108]. Furthermore, DODAB as immunoadjuvant elicits a potent cellular
immune response so often required against several pathogens and cancer, despite DODAB
dose-dependent toxicity [3,4,12,46]. Figure 6 shows some LNP disks made from cationic lipid
DODAB [20] (Figure 6a), anionic lipid dihexadecylphosphate DHP [109] (Figure 6b), or from
a neutral composition of several lipids including PEGylated-lipids [110] (Figure 6c).
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Figure 6. Schemes for cross sections of lipid bilayer fragments or disks and their respective micro-
graphs. On (a), dioctadecyldimethylammonium bromide bilayer fragments or disks seen edge on
1 or face on 2 from cryo-transmission electron microscopy; bar is 100 nm. Adapted with permission
from [20]. Copyright 1995 American Chemical Society. On (b), sodium dihexadecylphosphate bilayer
fragments or disks seen after negative staining by transmission electron microscopy: scale bar is
100 nm. Adapted with permission from [109]. Copyright 1991 American Chemical Society. On
(c), composition of phospholipid, cholesterol, and ceramide conjugated to poly (ethylene glycol)
(35:40:25 mol%) seen edge on (arrow) or face on (arrow head) by cryo-TEM; scale bar is 100 nm.
Reprinted from [110] with permission from Elsevier, Copyright 2011.
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Niosomes are non-ionic surfactant vesicles consisting of one or more than one closed
bilayer delimiting inner water compartment(s) [111,112]. First described by Uchegbu and
Florence as similar to liposomes, they could be obtained when surfactants were added to
water [113] and their utility for antigen presentation and vaccines delivered by the oral
route revealed their potential as mucosal adjuvants able to carry not only protein antigens,
but also genetic material [114,115]. Compared to phospholipids/cholesterol liposomes,
niosomes were chemically more stable and only slightly more leaky than the liposomes
tested for determining permeability of the fluorescent compound calcein; permeability
of niosomes towards KCl was also higher than the one displayed by the liposomes, thus
niosomes were more leaky self-assembled bilayers [111].

Aiming at an oral vaccination against tetanus, the stability of niosomes carrying the
tetanus toxoid was improved by adding O-palmitoyl pullulan to the composition; the
polysaccharide moiety imparted stability to the formulation in a liquid that had a pH of
about 1.5 and was similar to the gastric juice. These loaded niosomes, delivered orally,
yielded a higher humoral response than the controls and high mucosal IgA titers, showing
their suitability for oral vaccine delivery [112].

4. Nanoparticles

In a major, highly recommended review article, Irvine and coworkers considered that
biotechnology combined with the nanomaterials science could bring about safer and more
efficient vaccine formulations with major roles for the nanoparticles (NPs) [116]. In a fast
moving field encompassing cancer nanotechnology [50,89,90,95,117], vaccinology against
pathogenic viruses [61,62,96–100,106,118], and microbes such as bacteria [19,108,112,119,120],
fungi [119], and parasites [22,120–124], elegant nanomaterials that are difficult to scale up
for commercialization cannot become useful in clinics [116,125].

Synthetic nanoparticles for cancer vaccines have to fulfill several tasks: tumor antigens
and stimulators have to be delivered to APCs in LN so that inside the APC, antigen
escape from the lysosomes to the cytosol defines antigen cross-presentation via major
histocompatibility complex I (MHC-I), promoting the cellular immunity represented by
the cytotoxic T lymphocytes (CTL) [117]. Figure 7, taken from references [8,126], illustrates
the sequence of events for T-cell activation, namely, Ag delivery to DC in the LN, Ag
intracellular traffic in DCs to their cytosol, and cross-presentation by MHC-I; secretion
of stimulatory molecules and cytokines; type-I interferons stimulate the differentiation of
naïve CD4 + T cells into Th1 subtype, whereas IL-4 leads to Th2 subtype. Against cancer
and intracellular infections such as in malaria [121] and tuberculosis [126–129], cellular
immune responses are essential.

The problem of delivering Ag to DCs involves its transport to DC-rich areas such
as the LN, its binding to DCs and its internalization by DCs for Ag processing and
presentation [130]. Clearance of NPs smaller than 5 nm from the blood is very fast so
that they bypass the LN. The effect of particle size on the delivery route for NPs to LN
was described: NPs larger than 200 nm mean diameter largely depended on dendritic
cells transportation and entered the LNs after 18 h; NPs with diameters smaller than
200 nm entered LN within 2–3 h and were drained by the lymphatic vessels directly
to the LN, independently of DC-transportation [9]. As the second route is much faster,
nanovaccines have been developed using NPs with diameters smaller than 200 nm and
larger than 5 nm.

Synthetic nanoparticles that mimic viruses are not only safe and efficient, but also
advantageous from the point of view of strengthening the immune response [131]; virus-
mimetics can benefit vaccine design and was recently reviewed [132]. Viruses are regular
biological nanoparticles, all of the same size, often displaying several copies of antigenic
spike proteins in a regular manner surrounding its nanoparticle structure, these properties
common to several viruses should be copied in virus-mimetic vaccinology.
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DNA synthesis for encoding several antigens of bacteria allowed the expression of all
the antigens for attachment to a lipid core peptide adjuvant and self-assembly based on the
lipid core; 40 nm diameter NPs spontaneously formed upon addition of the lipoproteins to
the buffer, thereby antibodies against all antigens could be produced in mice without any
further need of adjuvants [133].

The antimicrobial peptides that occur in nature [134] motivated a whole new area
of peptidomimetics that is heavily based on chemical synthesis and library screening for
selecting optimal antimicrobial activity [135]; for example, the LptD is a β-barrel protein in
bacteria essential for bacteria outer membrane synthesis; the peptidomimetic assemblies
mimicking LptD at nanomolar concentrations blocked outer membrane synthesis of P.
aeruginosa [136].

The design of supramolecular synthetic vaccines has also been using robust chemical
synthesis to mimic antigen epitopes [137]. Synthetic nanoparticles similar to viruses
or synthetic virus-like particles (SVLPs) prepared using supramolecular chemistry can
display B- and T-cell epitopes and ligands for pattern recognition receptors; this would
achieve the optimal surface properties for efficient dendritic cell-mediated delivery of
B-cell and T-cell epitopes, and also agonists for pattern recognition receptors, into lymph
nodes. In addition, the multiple presentation of the epitope mimetics on the surface of the
nanoparticle was highly immunogenic, triggering strong epitope-specific humoral immune
responses that target the pathogen causing the infection. Figure 8 shows some hybrid
lipid–peptide covalent constructions achieved by chemical conjugation with applications
against pathogenic bacteria or in vaccine design. Chemical conjugation strategies for the
development of protein-based nanovaccines have been reviewed [126].

Nanotechnologies impact the vaccine field. Through decoration of immunogens as
multiple copies on nanoparticles, improved humoral immunity can be achieved, however
scaling-up production of these nanovaccines is still a major draw-back for their use in clinics.
Trying to circumvent this issue, an interesting approach was the delivery of synthetic DNA
by electroporation to obtain in vivo the synthesis of the multivalent nanoparticles; the
self-assembly of multiple HIV antigens to yield a nanoparticle took place in vivo, inducing
higher antibody titers than the monomers and also eliciting cellular immunity in contrast
to the recombinant protein nanovaccine; similar results were obtained using hemagglutinin
DNA nanovaccine, where the nanovaccine with multiple copies of the epitopes of interest
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was produced in vivo yielding protection against influenza in mice [138]. Recently, a
similar approach using DNA-launched vaccines was applied for suppression of melanoma
tumors: multiple copies of Gp100 and Trp2 epitopes in nanoparticles assembled in vivo
induced stronger immune response and CD8+ T cells immunity than the corresponding
DNA monomeric copies, or vaccines with CpG as an additional stimulator [139].
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Another interesting, and much needed, area of research regards the development of
vaccines against malaria, a significant neglected disease in many regions of the planet.
This research area has also been using synthetic nanoparticles to build vaccines able to
moderately protect against murine malaria in the blood [120]. Against malaria, adjuvants
have to induce both antibodies and helper T cells; non-inflammatory polystyrene nanopar-
ticles (PS NPs) as adjuvants and a protein conserved across several Plasmodium species
named MSP4/5 as antigen, Th1 and Th2 immune responses was obtained; there was 50–
80% protection against blood-stage malaria linked to interferon–gamma production [120].
Currently, no efficient vaccine against malaria in clinics is available; efforts to develop
malaria vaccines have been reviewed [121–123]. Both discovery of better immunostimula-
tory formulations and adjuvants are needed. In addition, Toll-like receptors ligands that
can increase immunity have also been considered important to be added as stimulators
both in malaria [122,123] and cancer vaccines [140].

In our group we have been developing biomimetic nanoparticles for drug and vaccine
delivery over the last 30 years [15,38,68,141–145]. Some review articles discussed the major
role of novel cationic nanostructures based on polymers, lipids, and/or surfactants on
efficient delivery of antigens to the immune system [3,4,12,69,146]. More recently, cationic
nanoparticles based on biocompatible polymer PMMA [5,23,24,26,46,147] have also been
developed besides the lipid nanodisks [16–18] and the supported bilayers [22,43,44]. In
order to compare the immune responses elicited by the different cationic nanostructures
first described in our laboratory while carrying ovalbumin (OVA), we recently made a
scheme relating the nanostructure with the obtained immune response [46]. Figure 9
schematically shows a cross section of a DODAB bilayer fragment (DODAB BF) carrying
OVA and inducing Th-1 response in mice [18], NPs of PDDA/OVA eliciting a Th-2 response
(the hydrophilic PDDA cationic polymer combined with oppositely charged OVA yielding
NPs) [92], NPs of PMMA/DODAB/PDDA/OVA eliciting a Th-1/Th-2 dual immune
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response [5], and NPs of PMMA/DODAB/OVA also yielding a dual Th-1/Th2 immune
response [46]. The comparison between DODAB BF/OVA (Th-I inducer) and PDDA/OVA
(Th-2 inducer) suggested that the interaction between DODAB BF and OVA inside the
APC was weak and OVA readily desorbed from DODAB BF, reached the cytosol and was
presented by MHC-I, whereas the interaction between PDDA and OVA in the APC was
much stronger so that OVA could not so easily reach the APC cytosol remaining inside the
endosome and being processed for presentation by MHC-II for enhancement of humoral
immunity. OVA endosomal escape for Th-1 improved response was also obtained for two
other cationic and biocompatible nanoparticles especially designed and synthesized from
methylmethacrylate in the presence of DODAB or DODAB and PDDA to impart the cationic
character to them; these NPs were mostly constituted of the biocompatible polymer PMMA
and were named PMMA/DODAB/PDDA [5,147,148] and PMMA/DODAB NPs [23,26,46].
They could embed DODAB well mixed and distributed in the PMMA polymeric matrix [45]
and displayed a core-shell structure when PDDA was also added to their synthesis: PMMA
and DODAB in the core and PDDA as shell of PMMA/DODAB/PDDA NPs [5,24,147].
Importantly, macrophages and fibroblasts viability remained unaffected by DODAB and
PDDA at the concentrations used in the NPs for testing their adjuvanticity in vivo [5,24,148].
Combined with OVA, NPs/OVA enhanced Th-1 and Th-2 responses [5,46]. Figure 9
displays some schematic cross-sections of four cationic adjuvants tested by our group along
some decades; the type of response they induced is also quoted.
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5. Hydrogels

Hydrogels made of synthetic and natural materials can also contain vaccines with
the ability to modulate the immune response [149,150]. They impart a desirable sustained
releasing property for the antigen/adjuvant able to enhance the humoral response [151].

Some interesting examples of hydrogels are those formed on the basis of the hy-
drophobic effect from polymerization of hydrophobic and hydrophilic monomers such as
stearyl methacrylamide and acrylamide, respectively, in aqueous sodium dodecylsulphate
dispersion; adding NaCl led to micelles growth; in another example, interactions that
kept the hydrogel network were the hydrogen bridges between poly (vinyl alcohol) and
the amino moiety of melamine; interestingly, in both hydrogels, deformations underwent
self-healing, taking place by freezing and thawing the hydrogel under strain [151]. In a
third example, a dodecyl-modified hydroxypropylmethylcellulose hydrogel interacted
with poly (ethylene glycol)–b-poly(lactic acid) nanoparticles carrying OVA and poly(I:C) so
that noncovalent interactions determined the cross-linking inside the polymeric hydrogel
matrix; after injection of this hydrogel vaccine subcutaneously in mice, APC infiltrating the
hydrogel became active and migrated to the LN; the result was sustained enhancement of
OVA-specific humoral immune response; noncovalent interactions between the polymer
and NPs were multiple physical cross-links within the hydrogel structure [150]. Figure 10
adapted from reference [150] illustrates the concept behind the sustained release behavior
of vaccines formulated in hydrogels.
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In an insightful work, considering that inflammation promotes cancer growth and sup-
presses immune responses against the cancer cells, peptides modified with anti-inflammatory
moieties were used to obtain hydrogel carriers in the design of cancer vaccines; the in-
corporation of OVA in the hydrogel by vortexing hydrogel and OVA increased IgG and
IgG2a production besides stimulating the secretion of IFN-γ and IL-6 cytokines in accor-
dance with an enhanced dual immune responses of the humoral and cellular types [152].
In this respect, indomethacin is a nonsteroidal anti-inflammatory drug of hydrophobic
nature, but bears a carboxylate in its chemical structure that could be well formulated with
DODAB in aqueous dispersion to yield nanoparticles surrounded by an outermost layer of
carboxymethyl cellulose, an hydrophilic biopolymer prone to be used in hydrogels [153].

Hydrogels can also respond to changes in temperature. Some of them are liquid at
room temperature and change their state to gel at body temperature; they could be applied
locally in tumors for cancer due to their sustained in situ delivery of therapeutic drugs, a
very useful property for such thermo-responsive gels [154].
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Additionally applicable as therapy for cancer, some interesting nanogels shaped
as nanoparticles were obtained from polymerization induced by ultra-violet light of [2-
(methacryloyloxy)-ethyl] trimethylammonium chloride and dextran methacrylate in an
oil-in-water emulsion; after loading these nanogels with appropriate peptides with or
without cysteine moieties, there was an electrostatically driven adsorption or covalent
binding of the peptides or cys-peptides to the nanogels, respectively; because the peptides
had been synthesized with epitopes that induced maturation of dendritic cells, enhanced
responses in terms of cellular immunity and cytokines secretion were also obtained; this
was more so when the stimulator of Toll-like receptor poly(I:C) was also added to the
formulation [155]. Figure 11 illustrates the cationic nanogels with applications for cancer
nanovaccines in action [155].
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6. Conclusions

This review is an overview on promising old and new biomimetic adjuvants for
nanovaccines considering the requirements of nanometric size and biocompatibility. Nano
systems such as bilayers fragments, disks or lipid nanoparticles, vesicles, liposomes, nio-
somes, nanoparticles, or hydrogels have been revealing their potential as adjuvants for
decades, and indeed enhance immunity against important diseases affecting mankind.
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