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Abstract

Motivation: An unsolved fundamental problem in biology is to predict phenotypes from a new genotype under
environmental perturbations. The emergence of multiple omics data provides new opportunities but imposes
great challenges in the predictive modeling of genotype-phenotype associations. Firstly, the high-dimensionality of
genomics data and the lack of coherent labeled data often make the existing supervised learning techniques less suc-
cessful. Secondly, it is challenging to integrate heterogeneous omics data from different resources. Finally,
few works have explicitly modeled the information transmission from DNA to phenotype, which involves multiple
intermediate molecular types. Higher-level features (e.g. gene expression) usually have stronger discriminative and
interpretable power than lower-level features (e.g. somatic mutation).

Results: We propose a novel Cross-LEvel Information Transmission (CLEIT) network framework to address the above
issues. CLEIT aims to represent the asymmetrical multi-level organization of the biological system by integrating
multiple incoherent omics data and to improve the prediction power of low-level features. CLEIT first learns the latent
representation of the high-level domain then uses it as ground-truth embedding to improve the representation learn-
ing of the low-level domain in the form of contrastive loss. Besides, CLEIT can leverage the unlabeled heterogeneous
omics data to improve the generalizability of the predictive model. We demonstrate the effectiveness and significant
performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations via the assistance of
gene expressions when compared with state-of-the-art methods. CLEIT provides a general framework to model in-
formation transmissions and integrate multi-modal data in a multi-level system.

Availabilityand implementation: The source code is freely available at https://github.com/XieResearchGroup/CLEIT.

Contact: lxie@iscb.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in next-generation sequencing have generated abundant
and diverse omics data. They provide us with unparalleled opportu-
nities to reveal the secrets of biology. An unsolved problem in biol-
ogy is how to predict observable traits (phenotypes) given a new
genetic constitution (genotype) under environmental perturbations.
The predictive modeling of genotype-phenotype associations will an-
swer not only fundamental questions in biology but also address ur-
gent needs in biomedicine. A typical application is anti-cancer
personalized medicine. Given a new cancer patient’s genetic infor-
mation, what is the best existing drug to treat this patient?

Predicting phenotype from a new genotype is challenging due to the
asymmetrical multi-level hierarchical organization of the biological
system. Cell-, tissue- and organism-level phenotypes do not arise dir-
ectly from DNAs but hierarchically through multiple intermediate
molecular or cellular phenotypes characterized by protein interac-
tions, gene expressions, etc. (Blois, 1984), as illustrated in Figure 1.
In other words, in the information transmission process from DNA
to RNA to protein to a biological pathway to the observed pheno-
type of interest, higher-level features (e.g. gene expression) usually
have stronger discriminative and interpretable power than lower
level features (e.g. somatic mutation) in a supervised learning task
for predicting the phenotype, which is independent on the machine
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learning model applied. This premise is supported by multiple stud-
ies such as anti-cancer drug sensitivity prediction (Costello et al.,
2014), cancer drug combination (Menden et al., 2019), microbiome
(Lloyd-Price et al., 2019) and empirical studies (Chiu et al., 2019).
Therefore, a multi-scale modeling approach is needed to simulate
the asymmetrical hierarchical information transmission process for
linking the genotype to the phenotype (Hart and Xie, 2016). It will,
in turn, improve the interpretability of model predictions and
facilitate clinical decisions. The interpretability of machine learning
model is critical for the biomedical application. In principle, the
multi-scale modeling of genotype-phenotype associations will facili-
tate opening the black box of machine learning (Yang et al., 2019).
For example, the embedding from the transcriptomics profile, direct-
ly or indirectly, can be used to elucidate biological pathways respon-
sible for the synergy of drug combinations (Liu and Xie, 2021). In
addition to the above fundamental challenge, the predictive model-
ing of genotype-phenotype associations faces several technical diffi-
culties that hinder the application of existing machine learning
methods. Firstly, omics data are often in an extremely high dimen-
sion. Secondly, the coherently labeled data are scarce compared with
unlabeled data. Finally, it is not a trivial task to integrate heteroge-
neous omics data from different resources and modalities.

We develop a novel neural network-based framework: Cross-
LEvel Information Transmission (CLEIT) network to address the
aforementioned challenges. Inspired by domain adaptation techni-
ques, CLEIT first learns to construct the low-dimensional latent
representation that encodes signals indicative of tasks at hand from
a high-level domain. Then, CLEIT uses the embedding from the
high-level domain as ground-truth embedding to regularize the
representation learning of the low-level domain in the form of a
contrastive loss. In addition, we adopt a pre-training-fine-tuning ap-
proach, where pre-training enables the usage of unlabeled heteroge-
neous omics data to improve the generalizability of CLEIT, while
fine-tuning is employed to enable more task-focused predictions
given a specific labeled dataset.

As a demonstration of CLEIT’s efficacy in a biological setting,
we applied CLEIT to predicting anti-cancer drug sensitivity from
somatic mutations. Precision anti-cancer therapy tailed to individual
patients based on their genetic profile has gained tremendous interest
in clinical (The American Cancer Society, 2020). Existing studies
such as Ben-Hamo et al. (2019) and Mucaki et al. (2019) focused on
inferring drug response based on the most salient mutation signa-
tures. Although the drug response of several successful targeted
therapies, e.g. kinase inhibitors, can be predicted from a few driver
mutations harbored in patients, the percentage of US patients who
can benefit from the targeted therapy is only about 4.9% (Marquart
et al., 2018). The choice of optimal therapy for most cancer patients
remains a significant challenge (Adam et al., 2020). It is well known
that cancer acquires numerous mutations during its evolution. Both
driver and passenger mutations collectively confer cancer pheno-
types and are associated with drug responses (Aparisi et al., 2019).
Thus it is necessary to use the entire mutation profile of cancer to
predict anti-cancer drug sensitivity in most cases. The machine

learning models that can explicitly model hierarchical biological
processes will undoubtedly facilitate the development of personal-
ized medicine. In particular, we aim to build accurate predictive
models solely using mutation data as inputs to mimic the practical
clinical setting, where only patient mutation profiles are available
for drug screening. In addition, we use a denoising Autoencoder as a
building block and a pre-training-fine-tuning strategy to integrate
noisy and sparse mutation, gene expression and protein-protein
interaction data from different resources. Our extensive experiments
show that CLEIT significantly outperforms other state-of-the-art
methods in this regard.

2 Related work

CLEIT aims to develop a framework that constructs an indicative
knowledge-abundant low-dimensional latent space from a high di-
mensional feature space of particular domains, which lacks salient
discriminative information of tasks of interest. For example, al-
though somatic mutation data undoubtedly posses biology-rich in-
formation, its sparsity and binary characteristics often make it
extremely challenging to be utilized to build effective machine
learning models for downstream predictive tasks. We resort to a
domain adaptation-inspired approach to combat such data limita-
tion issues.

Domain adaptation aims to transfer the knowledge gained on the
source domain with sufficient labeled data to the target domain
without or with limited labeled data when the source and target
domains are of different data distributions. In particular, feature-
based domain adaptation approaches (Weiss et al., 2016) have
gained popularity along with the advancement in deep learning tech-
niques due to their power in feature representation learning. It aims
to learn a shared feature representation by minimizing the discrep-
ancy across different domains while leveraging supervised loss from
labeled source domain samples to maintain trait space’s discrimina-
tive power. Deep domain confusion (DDC) (Tzeng et al., 2014) and
CORAL (Sun et al., 2015) focus on exploring proper statistical dis-
tribution discrepancy metrics. Domain adversarial neural network
(DANN) (Ganin et al., 2016) and adversarial discriminative domain
adaptation (ADDA) (Tzeng et al., 2017) intend to minimize the dis-
tribution difference across domains with adversarial training and
generative adversarial network (Goodfellow et al., 2014), respective-
ly. Moreover, domain separation network (DSN) (Bousmalis et al.,
2016) was proposed to separate private representations for each do-
main and shared representations across domains explicitly.
Although CLEIT borrowed some ideas from the domain adaptive
transfer learning, there is a significant difference between CLEIT
and those approaches. The goal of classic domain adaptation is to
use the label information from the source domain data to boost the
performance of supervised tasks in the target domain without abun-
dant labels. The feature in the target domain usually has a similar
discriminative power to that in the source domain. While in our
case, we focus on resolving the inherent discriminative power

Fig. 1. Rationale of CLEIT. Cellular phenotypes rise from genotypes via multi-level intermediate molecular types hierarchically from DNA to RNA to protein to biological

pathway (blue arrows). The predictive and interpretable power of the DNA-level features for the phenotype is weaker than that of the high-level features such as transcriptome

and biological pathways. Instead of predicting the phenotype from the genotype directly by bypassing the intermediate molecular types (gray dashed arrow), we will include the

information of intermediate molecular type and model the hierarchical organization of a biology system (orange solid arrows)
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discrepancy between two hierarchical related domains. The feature
of the high-level domain has higher discriminative power than that
of the low-level domain. Moreover, the entity types of source and
target domains are usually the same in conventional domain adapta-
tion. In our case, they are of different types. Specifically, our goal for
information transmission is to solely push the latent representation
of the low-level domain to approximate the one of the high-level do-
main; that is, the feature representation learned from the high-level
domain is fixed and used as ground-truth feature representation of
the low-level domain. In this setting, the latent space where the
CLEIT happens is no longer a symmetrical consensus from different
domains. The high-level and low-level domain is used as an input
and an output, respectively, to boost the discrimination power of the
low-level domain. A mapping function is learned between them.

The multi-modal integration of somatic mutation and gene ex-
pression data has been utilized to improve predicting anti-cancer
drug sensitivity, e.g. in Costello et al. (2014) and Sharifi-Noghabi
et al. (2019). These methods assume that both labeled mutation data
and labeled gene expression data are available during training and
inference. In addition, they integrate omics data horizontally.
In contrast, CLEIT only needs to use the mutation data as the input
during the inference stage. During the training stage, the mutation
and gene expression data can come from different data resources
and be unlabelled. Thus, CLEIT is more practical than existing
methods. Moreover, CLEIT explicitly models the hierarchical, asym-
metrical information transmission in a biological system, as shown
in Figure 1.

3 Contributions

CLEIT aims to address an important problem of multi-scale model-
ing of genotype-phenotype associations. The major contributions of
this research are summarized as follows.

• We propose a novel neural network framework that can explicit-

ly model asymmetrical CLEITs in a complex system to boost the

discriminative power of the low-level domain. The multi-level

hierarchical structure is the fundamental characteristic of the bio-

logical and ecological system. The proposed architecture is gen-

eral and can be applied to model various machine learning tasks

where two domains have different features.
• The proposed neural network framework provides a new ap-

proach to integrating multiple omics data vertically to represent

the multi-level organization of a biological system. The integra-

tion of mutation, gene expression and protein-protein interaction

data from different resources can help to address the heterogen-

eity problem.
• We design a pre-training-fine-tuning strategy to fully utilize

both labeled and unlabeled omics data that are naturally noisy,

high-dimensional and sparse. In particular, the incorporation of

autoencoder alleviated the high-dimensionality challenge of

omics data and brought in denoising effects. Furthermore, the ef-

fective usage of unlabeled data addressed the sparsity of labeled

data.
• In terms of biomedical application, the CLEIT significantly

improves personalized anti-cancer drug sensitivity prediction

using only somatic mutation data. To the best of our knowledge,

CLEIT is the first deep learning-based framework designed to

perform drug sensitivity prediction tasks solely on whole-genome

somatic mutation profiles, which achieves comparable perform-

ance to the model trained from gene expression profiles.

The oncology panel of somatic mutations has been routinely

performed in cancer treatment. The application of CLEIT may

improve the effectiveness of cancer treatment and achieve per-

sonalized medicine.

4 Materials and methods

4.1 Problem formulation
The problem that we are interested in is to predict the phenotype of
interest (e.g. cell viability following drug treatments) of a cell from
its mutation profile. Due to the multi-level hierarchical organization
of a biological system, RNA-level gene expression profile, can
achieve superior performance to DNA-level mutation data for pre-
dicting phenotypes independent on machine learning models applied
to them. Here, the performance difference is due to the nature of
each data domain, instead of the volume of labeled samples as in a
classical domain adaptation setting. However, although feature
spaces of DNA and RNA domains are not the same, the entities
cross the feature spaces are hierarchically related, i.e. the RNA con-
verts the information stored in the DNA. Based on this realization,
this work aims to utilize the knowledge learned from the gene ex-
pression data to boost the predictive power of the mutation profile.
In other words, we want to achieve the similar prediction perform-
ance when only using the mutation data as features to that when
using the gene expression data. Formally, we denote a data domain
D as D ¼ fX ;PðXÞg, where X stands for the feature space and sam-
ples within domain D, X ¼ fx1; . . . ;xng 2 X . P(X) is the affiliated
marginal distribution. In this work, we consider two domains DH ¼
fXh;PhðXhÞg and DL ¼ fX l;PlðXlÞg, namely the high-level domain
and low-level domain, where Xh 6¼ X l; PhðXhÞ 6¼ PlðXlÞ. In our
benchmark experiments, the gene expression is used as DH, while
the somatic mutation is specified as DL.

4.2 CLEIT framework
To use the knowledge learned from DH to boost the performance of
DL, we propose a Cross-LEvel-Information Transmission (CLEIT)
framework. The strategy of CLEIT is to encode the data from both
domains into certain latent features. The embedded latent feature
has the direct implication of the task of interests and achieves the
CLEIT through transferring knowledge via learned representations
cross domains.

Figure 2 shows the overall framework of CLEIT. The training of
CLEIT involves five steps: (i) learning an embedding of DH from un-
labeled data using standard autoencoder (AE) (Hinton and Zemel,
1994), (ii) fine-tuning the pre-trained embedding of DH from step 1
using a multi-layer perceptron (MLP) in the setting of multi-task super-
vised learning, (iii) and (iv) learning an embedding of DL from un-
labeled data using AE along with the embedding regularization
between DL samples and corresponding DH samples in the form of an
MLP-based transmitter training (v) supervised learning of the final pre-
dictive model of DL using an architecture that appends the pre-trained
multi-task MLP (as a warm start) from step 2 as well as the pre-trained
AE encoder and the transmitter of DL from steps 3 and 4. We denote

unlabeled DH samples as XHu
¼ fxðiÞHu

g
NHu

i¼1
and labeled samples as

XHl
¼ fðxðiÞHl

; yðiÞÞg
NHl

i¼1
, where NH� stands for the number of samples in

corresponding datasets. Furthermore, zH� is used to symbolize the la-
tent vectors (embeddings) learned in different phases throughout the
training. Samples from the DL are similarly denoted. For details of
methods, see ‘Supplementary Method’ in Supplementary Material.

5 Experiments

5.1 Experiment set-up
5.1.1 Datasets

We evaluate the performance of CLEIT on a real-world problem:
predicting anti-cancer drug sensitivity given the mutation profile of
cell lines. The mutation profile (oncology panel) has been imple-
mented in the clinic but has weaker discriminative power for drug
sensitivity prediction than the gene expression profile that is not a
clinical standard yet. During the training stage, we use unlabeled
mutation and gene expression data for unsupervised pre-training,
and a small set of labeled data for supervised training. During the
testing stage, we only use mutation data from cell lines that do not
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overlap with those used in the training stage to evaluate the perform-
ance. Specifically, we collected and integrated data from several di-
verse resources: cancer cell line data from CCLE (Ghandi et al.,
2019), pan-cancer data from TCGA (Goldman et al., 2018), drug
sensitivity data from GDSC (Yang et al., 2013) and gene-gene inter-
actions from STRING (Szklarczyk et al., 2019). CCLE includes
1305 and 1697 cancer cell line samples with the gene expression
profile and the somatic mutation profile, respectively. The pan-
cancer datasets include 9808 and 9093 tumor samples with the gene
expression profile and the somatic mutation profile, respectively.
Moreover, we only keep the mutation profiles of samples with
matched gene expression profiles in our unlabeled mutation dataset.
All gene expression data are metricized by the standard transcripts
per million base for each gene, with additional log transformation.
For the somatic mutation data, we kept only non-silent genes and
assembled as a binary-valued sparse vector. Furthermore, we applied
pyNBS (Huang et al., 2018), a random walk with restart algorithm,
to transform the binary-valued mutation profile into continuous val-
ued features by performing mutation score propagation on STRING
gene-gene interaction network. The network-regularized mutation
profile will not only reduce the sparsity of features but also signifi-
cantly boost its prediction power (Huang et al., 2018). We selected
the top 1000 varied genes measured by the percentage of unique val-
ues in gene expression samples for cancer cell lines and tumor tissue
samples separately. The use of 2000 genes achieves the best predic-
tion performance, but is not significantly different from the use of
1000 genes (Supplementary Table S1). Then we combined the two
sets of top 1000 varied genes as the input features. The union has
1424 unique genes in total. In addition, we only kept the genes pre-
sent in the mutation profiles as our final raw feature sets, although
CLEIT does not require it. We did so for a fair comparison to other
domain adaptation methods since all other methods in comparison
consist of a shared encoder component that requires the same number
of input features across domains. The final feature set consists of
1407 genes. Furthermore, we matched the omics data of CCLE cell
lines against the GDSC drug sensitivity score measured by the Area
Under Drug Response Curve (AUC), which is presented as the

fraction of the total area under the drug response curve between the
highest and lowest screening concentration in GDSC (Yang et al.,
2013). The AUC, a continuous-valued drug sensitivity measurement,
is used across our experiments as the dependent variable for the
supervised fine-tuning. In total, we assembled 680 CCLE cell lines
with both mutation and gene expression, which are associated with
93 anti-cancer drugs after removing drugs that have more than 10%
missing drug sensitivity measurements within these cell line samples.
These 680 cell lines and 59 203 drug sensitivity data were used as
training data in the fine-tuning stage. Additional non-overlapping
278 cell lines that have only mutation information were used as hold-
out testing data in our study. By combining both TCGA and CCLE
datasets, 11 113 and 9743 samples that do not have measured drug
sensitivities were used as unlabeled data in the pre-training stage. The
gene expression profile is considered as DH, while the mutation is
DL. A summary of the pre-processed data are shown in Table 1.

5.1.2 Training, validation and testing procedure

To demonstrate CLEIT’s stable performance in the given anti-cancer
drug sensitivity prediction task, we repeated the model training
five times. First, we split the labeled dataset that has both gene ex-
pression and mutation profile into 5-folds. Then, in each repetition,
we used four out of five folds as the labeled training set, the remain-
ing one fold left as the validation set. The detailed training proced-
ure of CLEIT is summarized as follows. In the DH pre-training,
we trained CLEIT for N epochs. With parameter grid search, N is
selected based on the target task performance. While for the fine-
tuning of DH, we employed early stopping with validation labeled
fold (only gene expression) as mentioned earlier in this section.
For the pre-training of DL, similar to pre-training of DH, we speci-
fied the number of epochs based on the task-specific performance.
In the fine-tuning of DL, we employed early stopping with the
same validation fold (only mutation) in the fine-tuning of DH.
The final trained model is used to make predictions on a labeled
mutation-only test set. All other baseline models followed the same
training and testing procedure.

Fig. 2. CLEIT Framework. The training of CLEIT involves five steps. First, the encoder of DH is learned from an autoencoder and fine-tuned by a supervised multi-task MLP in

steps 1 and 2. Then, the embedding of DL is encoded from an autoencoder in step 3, and the difference between it and that of DH is minimized via an MLP transmitter in step 4

as measured by contrastive loss. In step 5, the supervised model of DL is fine-tuned by the model that appends the pre-trained multi-task MLP of DH in step 2 and the regular-

ized encoder of DL in step 3
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5.1.3 Performance evaluation

We evaluated CLEIT’s performance by predicting drug sensitivity on
a hold-out labeled mutation-only test data. We measured the regres-
sion performance using Pearson correlation, Spearman correlation,
RMSE (root mean squared error). Note that there is a maximum of
93 drug sensitivity scores associated with each cell line sample. The
results are shown with the average performance per cell line sample
(sample-wise) and per drug (drug-wise). Besides, because of the in-
completeness of the ground truth matrix, the prediction entries with-
out a ground truth sensitivity score are filtered out in the calculation
of each evaluation metric.

5.2 Baseline models
We compared CLEIT with the following base-line models: MLP
without and with the AE pre-training for DL as well as several of the
most popular domain adaptation algorithms that are used to transfer
the knowledge learned from DH to DL. They include Deep Domain
Confusion (DDC) network (Tzeng et al., 2014), Correlation
Alignment (CORAL, Sun et al., 2015), Domain Adversarial Neural
Network (DANN, Ganin et al., 2016), Adversarial Domain
Adaptation Network (ADDA, Tzeng et al., 2017) and Domain
Separation Network (DSN, Bousmalis et al., 2016). Specifically, we
used the original architecture of baseline models but exactly same
features and training/testing data and procedure as CLEIT so that
we have a fair performance comparison between them. Specifically,
for DDC, CORAL, DANN and ADDA, we followed their original
approach and combined their respective domain adaptation objec-
tives with drug response prediction in the supervised training (same
dataset used in CLEIT fine-tuning). For DSN, we employed its
MMD variant for the stability of training and adopted the same pre-
training fine-tuning process as used in CLEIT. In the pre-training,
we leveraged unlabeled data from both domains to pre-train the
encoders with an autoencoder reconstruction task and its domain
adaptation objective. In the fine-tuning, we further adapt the en-
coder and appended the predictor with the labeled drug response
dataset. To evaluate the contribution of different components in
CLEIT, we performed ablation studies by (i) removing the unlabeled
pre-training process and incorporating the cross-level transmission
loss into the labeled training, (ii) removing the transmitter, (iii)
changing the cross-level transmission loss function to Maximum
Mean Discrepancy (MMD) loss (Gretton et al., 2012) and Earth
Mover distance approximated using Wasserstein-GAN (WGAN)
(Gulrajani et al., 2017). The latent dimension for hidden representa-
tion for all models is specified as 128, and all autoencoder frame-
works share the same [512, 256, 128, 256, 512] architecture.
Besides, all pre-trained encoders will be appended with a predictor
module of the same architecture ([128] shared layer þ [64,32]
individual drug MLP) for the fine-tuning process.

6 Results and discussion

6.1 Gene expression feature has stronger predictive

power than somatic mutation-based feature
Consistent with extensive performance evaluations from blind tests
in a DREAM challenge (Costello et al., 2014), and other studies
(Chiu et al., 2019), the gene expression feature has more substantial
predictive power than the mutation-based feature. As shown in
Supplementary Figure S1(a), the model trained with only labeled
gene expression data has a 6.45% performance gain over the model
trained with corresponding labeled somatic mutation data when

evaluated using a sample-wise average. With the additional utiliza-
tion of unlabeled pre-training, models trained with only gene expres-
sion data and only mutation data both showed slightly better
performance, while their performance gap is around 6.8%. In terms
of drug-wise average, as shown in Supplementary Figure S1(b), the
performance gap between models built on mutation-only and ex-
pression only data is even more apparent. The multi-modal learning
that combines the mutation and gene expression features fails to im-
prove the performance (Supplementary Fig. S1). These results con-
firmed that the gene expression is more predictive than the somatic
mutation for predicting the anti-cancer drug sensitivity.

6.2 CLEIT can transfer the knowledge learned from gene

expression features to the model with mutation features
To demonstrate that CLEIT can transfer the knowledge learned
from the gene expression feature to the model that uses the
mutation-only data, we compared the drug-wise Pearson correlation
distribution of CLEIT with those of the MLPþAE models trained
with only gene expression or mutation data. Figure 3 shows the
histogram of Pearson correlations of 93 drugs for three models.
CLEIT using the mutation data shifts the performance distribution
close to the model trained using the gene expression data with a
False Discovery Rate (FDR) of 1.0 based on Kolmogorov-Smirnov
(KS) test. It significantly outperforms the MLPþAE model using the
mutation data (FDR¼ 3.47e-37 of KS test). It is aligned with our pri-
mary goal in this work. Note that the histograms in Figure 3 were
from the validation data. Next, we evaluate the performance of
CLEIT in a hold-out mutation-only test data.

6.3 CLEIT significantly outperforms state-of-the-art mod-

els to predict anti-cancer drug sensitivity using

mutation-only data
Given that gene expression data have stronger predictive power than
somatic mutation data, we evaluate if CLEIT can use the gene ex-
pression to boost the performance for predicting anti-cancer drug
sensitivity when only the somatic mutation data are available as the
input. The results for both drug-wise and sample-wise evaluation are
shown in Tables 2 and 3. As seen in those tables, models that consist
of unlabeled pre-training processes generally outperform the models
trained with only labeled data, indicating the importance of leverag-
ing unlabeled data. The models trained with domain adaptation
methods with unlabeled pre-training (DSN or CLEITs) or only

Table 1. Summary of pre-processed data for training and testing

Category Unlabeled (pre-training) Labeled (fine-tuning) Labeled (test)

Gene Expression (#samples) 11 113 680 NA

Somatic Mutation (#samples) 9743 680 278

Drug Sensitivity (#cell line-drug pairs) NA 59203 23475

Fig. 3. Drug-wise Pearson correlation on validation dataset
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labeled training outperform their non-domain adaptation counter-
parts. It implies that DL will benefit from the knowledge transfer
from DH. Furthermore, CLEIT models significantly outperform all
other models in consideration (t-test P-value < 0.05). The best-
performed model is the CLEIT that uses contrastive loss. Compared
with the best performed state-of-the-art model (DSN), the accuracy
of CLEIT, when measured by Pearson correlation, improves 277%
and 2.2% for the drug-wise and the sample-wise test, respectively.
Similar results can be seen in terms of Spearman correlation and
RMSE. The performance gain of CLEIT over MLP and MLPþAE is
3.4% and 2.5%, respectively, in the sample-wise setting. Yet in the
drug-wise setting, the improved gap is enlarged to 469% and 407%.
The much improved drug-wise performance achieved by CLEIT
indicated a much higher quality drug-sensitivity prediction with the
mutation-only data.

CLEIT models that incorporate MLP-transmission function
show significantly better performance than those without, suggesting
that the transmission function plays a role in CLEIT. Choice of the
loss function in the information transmission is also important. It is
clear that contrastive loss performs better than MMD and WGAN.
It is noted that MMD is used in DSN. When CLEIT uses MMD as
the loss function to measure the domain discrepancy, the major dif-
ference between CLEIT and MMD is that CLEIT treats the informa-
tion transmission between two domains asymmetrical, while DSN
considers domain adaptation symmetrical. The results in Tables 2
and 3 show that CLEIT-MMD outperforms DSN in drug-wise set-
ting and perform similarly in sample-wise settings. It indicates that
the explicit modeling of the hierarchical organization of DL and DH

is important.

6.4 CLEIT outperforms state-of-the-arts for predicting

top-ranked cell-line specific anti-cancer therapies
Furthermore, CLEIT can predict the best therapy for a new patient
using only mutation data for personalized medicine. We compared
the performance of different methods with the precision of top-k
(k¼ 1, 10) predictions ranked by the AUC scores, which is defined
as the ratio of drugs with top-k smallest predicted scores per cell line
among the drugs with top-k ground-truth scores. Mutation-only test
results can be found in Figure 4. Clearly, the CLEIT model also out-
performs other models in this scenario. Compared with the second-
best performed model DSN, CLEIT improves the performance by
approximately 40% when k¼ 1.

7 Conclusion

This article proposed a novel machine learning framework CLEIT
for the predictive modeling of genotype-phenotype associations by
explicitly modeling the asymmetric CLEIT in the biological system.
Using the anti-cancer drug sensitivity prediction with only mutation
data as a benchmark, CLEIT clearly outperforms existing methods
and demonstrates its potential in personalized medicine. Although
we only study the knowledge transfer between DNA level and RNA
level in this article, the same strategy can be applied to other levels
in the biological system, for example, imputing proteomics data
using transcriptomics data. Nevertheless, the performance of CLEIT
could be further improved by incorporating domain knowledge. For
example, an autoencoder module that can model gene-gene interac-
tions and biological pathways will be greatly helpful. Under the
framework of CLEIT, it is not difficult to integrate other omics data
such as epigenomics and proteomics. They may further improve the

Table 2. Evaluation results on test data (drug-wise)

Method Pearson Spearman RMSE

MLP (mutation-only) 0.0591 6 0.0069 0.0532 6 0.0066 0.0233 6 0.0018

MLPþAE (mutation-only) 0.0681 6 0.0085 0.0629 6 0.0108 0.0151 6 0.0001

DDC 0.0633 6 0.0087 0.0621 6 0.0087 0.0150 6 0.0006

CORAL 0.0580 6 0.0105 0.0542 6 0.0080 0.0164 6 0.0005

DANN 0.0571 6 0.0061 0.0516 6 0.0038 0.0173 6 0.0010

ADDA 0.0681 6 0.0111 0.0685 6 0.0142 0.0197 6 0.0010

DSN 0.1003 6 0.0186 0.0915 6 0.0252 0.0147 6 0.0007

CLEIT (w/o pre-training) 0.1005 6 0.0236 0.0924 6 0.0216 0.0147 6 0.0005

CLEIT (w/o transmitter) 0.2587 6 0.0126 0.2254 6 0.0348 0.0124 6 0.0006

CLEIT (MMD) 0.1758 6 0.0086 0.1421 6 0.0200 0.0148 6 0.0009

CLEIT (WGAN) 0.0795 6 0.0083 0.0821 6 0.0106 0.0150 6 0.0009

CLEIT 0.2770 6 0.0086 0.2482 6 0.0243 0.0121 6 0.0006

Note: The best results are shown in bold.

Table 3. Evaluation results on test data (sample-wise)

Method Pearson Spearman RMSE

MLP (mutation-only) 0.7390 6 0.0017 0.6957 6 0.0022 0.0235 6 0.0017

MLPþAE (mutation-only) 0.7450 6 0.0003 0.6984 6 0.0004 0.0150 6 0.0001

DDC 0.7449 6 0.0017 0.7010 6 0.0010 0.0151 6 0.0004

CORAL 0.7439 6 0.0013 0.7002 6 0.0010 0.0165 6 0.0004

DANN 0.7428 6 0.0017 0.6995 6 0.0019 0.0174 6 0.0008

ADDA 0.7315 6 0.0053 0.6891 6 0.0010 0.0199 6 0.0008

DSN 0.7470 6 0.0002 0.7024 6 0.0004 0.0148 6 0.0004

CLEIT (w/o pre-training) 0.7467 6 0.0003 0.7023 6 0.0004 0.0149 6 0.0004

CLEIT (w/o transmitter) 0.7569 6 0.0081 0.7172 6 0.0070 0.0125 6 0.0005

CLEIT (MMD) 0.7443 6 0.0018 0.7003 6 0.0009 0.0147 6 0.0009

CLEIT (WGAN) 0.7465 6 0.0005 0.7022 6 0.0008 0.0152 6 0.0009

CLEIT 0.7640 6 0.0094 0.7233 6 0.0063 0.0122 6 0.0005

Note: The best results are shown in bold.
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performance of CLEIT. Another challenge in personalized medicine

is to transfer knowledge from cell line data to patient tissue data (He
and Xie, 2021). It will be interesting to develop new neural network

architectures in the framework of CLEIT to address this problem.
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