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Background: Apart from invasive pathological examination, there is no effective method to differentiate 
breast diffuse large B-cell lymphoma (DLBCL) from breast invasive ductal carcinoma (IDC). In this study, 
we aimed to develop and validate an effective deep learning radiomics model to discriminate between 
DLBCL and IDC.
Methods: A total of 324 breast nodules from 236 patients with baseline 18F-fluorodeoxyglucose (18F-FDG) 
positron emission tomography/computed tomography (PET/CT) were retrospectively analyzed. After 
grouping breast DLBCL and breast IDC patients, external and internal datasets were divided according 
to the data collected by different centers. Preprocessing was then used to process the original PET/CT 
images and an attention-based aggregate convolutional neural network (AACNN) model was designed. The 
AACNN model was trained using patches of CT or PET tumor images and optimized with an improved 
loss function. The final ensemble predictive model was built using distance weight voting. Finally, the model 
performance was evaluated and statistically verified.
Results: A total of 249 breast nodules from Fudan University Shanghai Cancer Center (FUSCC) and 75 
breast nodules from Shanghai Proton and Heavy Ion Center (SPHIC) were selected as internal and external 
datasets, respectively. On the internal testing, our method yielded an area under the curve (AUC), accuracy 
(ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), 
and harmonic mean of precision and sensitivity (F1) of 0.886, 83.0%, 80.9%, 85.0%, 84.8%, 81.2%, and 
0.828, respectively. Meanwhile on the external testing, the results were 0.788, 71.6%, 61.4%, 84.7%, 84.0%, 
62.6%, and 0.709, respectively.
Conclusions: Our study outlines a deep learning radiomics method which can automatically, noninvasively, 
and accurately differentiate breast DLBCL from breast IDC, which will be more in line with the needs and 
strategies of precision medicine, individualized diagnosis, and treatment. 
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Introduction

Breast cancer is the most common cancer and the leading 
cause of death in women worldwide, of which invasive 
ductal carcinoma (IDC) is the most common pathological 
type. In China, newly diagnosed breast cancer cases 
accounts for 16.72% (n=306,000) of all new cancer cases 
and the number of deaths accounts for 8.12% (n=71,700) of 
the total cancer-related deaths in women (1,2). The current 
treatment for breast cancer includes surgery, chemotherapy, 
hormonal therapy, radiotherapy, targeted therapy, and 
immunotherapy, among which surgery is the first choice 
for early-stage breast cancers (3). Lymphoma represents 
a diverse group of diseases caused by clonal proliferation 
of lymphocytes (4). Lymphomas usually involve lymphoid 
organs and tissues. However, about 40% of lymphomas 
can also be located outside the lymph nodes (5). Breast 
lymphoma is a rare disease, the incidence of which is less 
than 0.5% of all breast malignancies, and diffuse large 
B-cell lymphoma (DLBCL) is the most common type of 
breast lymphoma (6). Breast lymphoma usually presents as 
a painless palpable mass, which is indistinguishable from 
breast cancer, and the common imaging examinations 
include mammographic, ultrasound, computed tomography 
(CT), and breast magnetic resonance imaging (MRI), 
which are unable to distinguish lymphoma from breast 
cancer (7,8). The most common diagnostic methods used 
to differentiate breast lymphoma from breast cancer are 
physical examination or image-guided needle biopsy (9). 
However, needle biopsy is an invasive technique which 
can damage normal breast tissue; misdiagnosis can occur 
if necrotic tissue is pierced when puncturing a large breast 
nodule containing necrotic tissue. Furthermore, as breast 
lymphoma is a rare disease with a low incidence, many 
breast nodules are misdiagnosed as breast cancer and are 
surgically removed directly (10). Unlike for breast cancer, 
which is primarily treated with surgery, radiation and 
chemotherapy are the main treatment modalities for breast 
lymphoma (9,11). Therefore, it is clinically important and 
necessary to explore a non-invasive technique that can 

differentially diagnose breast DLBCL from breast IDC in 
advance.

18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomography/computed tomography (PET/CT) has the 
dual advantages of anatomical and functional imaging, 
which plays an increasingly important role in the diagnosis 
and treatment of lymphoma (12,13). 18F-FDG PET/CT 
imaging has been used for the initial staging, restaging, 
early treatment response, efficacy evaluation, prognosis 
prediction, and follow-up of lymphoma patients (14,15). 
Radiomics refers to the high-throughput extraction 
of a large number of image features that describe the 
characteristics of tumors, which is non-invasive and has 
been widely used for auxiliary diagnosis and classification 
for tumors (16). Ou et al. showed that radiomics features 
extracted from PET/CT and PET parameters can 
differentiate breast lymphoma from breast carcinoma 
using machine learning (17,18). However, their study was 
conducted within a single institution and the sample was 
very small, with only 44 patients recruited. Moreover, 
machine learning is a manual and labor-intensive technique 
with poor feature stability and repeatability (19,20). Despite 
these insufficiencies, no other non-invasive methods for 
distinguishing the 2 diseases have been reported so far. 
Deep learning is one of the hottest branches of machine 
learning, the biggest advantage of which is that it is deep 
enough and the network capacity is large enough. The most 
obvious benefit of a deep enough network is that it can 
accommodate richer semantic information (21,22).

Hence, this study was conducted to develop and validate 
an end-to-end deep learning radiomics method through 
18F-FDG PET/CT images that could accurately and 
noninvasively distinguish breast DLBCL from breast IDC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-22-1333/rc).

Methods

The outline of the workflow from radiomic analysis with 
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deep learning is illustrated in Figure 1, which mainly 
included the following steps: (I) data enrollment and 
18F-FDG PET/CT acquisition; (II) patient division and 
grouping with IDC and DLBCL; (III) tumor annotation 
and PET/CT image preprocessing; (IV) attention-
based aggregate convolutional neural network (AACNN) 
model architectures building; (V) model training and 
hyperparameter optimization; (VI) model evaluation based 
on prediction results and statistical analysis.

Study population

In our study, we analyzed 324 breast nodules from 236 
patients (160 breast IDC and 76 breast DLBCL patients) 
who underwent baseline 18F-FDG PET/CT from January 
2009 to December 2021 at Fudan University Shanghai 
Cancer Center (FUSCC) or Shanghai Proton and Heavy 

Ion Center (SPHIC). All patients aged over 18 years with 
a pathological diagnosis of breast IDC or DLBCL were 
included. The exclusion criteria were as follows: (I) other 
pathological types apart from IDC or DLBCL; (II) surgery, 
chemotherapy, radiotherapy, or other treatments had been 
administered before 18F-FDG PET/CT imaging; (III) other 
types of cancers; (IV) incomplete clinical data.

A total of 249 breast nodules (182 patients) from 
FUSCC were selected as the internal dataset and were 
used to train and build the AACNN model. At a ratio of 
4:1, these participants were randomly divided into the 
training and testing datasets based on stratified sampling 
(23-25). A further 75 nodules (54 patients) from SPHIC 
were selected as an independent external dataset to further 
evaluate the robustness and generalization ability of the 
AACNN model. Details of patient selection and grouping 
are shown in Figure 2. We reviewed the hospital medical 

Data enrollment and acquisition 
based on clinical issues

AACNN model evaluation and 
statistical analysis

AACNN model training and 
hyperparameters

AACNN model architectures

Data division and grouping Data preprocessing scheme

Before After

Total 236 patients  
(160 breast IDC and 
76 breast DLBCL)

Internal dataset

Training dataset 
(80%)

Validation dataset 
(20%)

Independent external 
test datasets

Total 182 patients 
(126 breast IDC and 

56 breast DLBCL 
from FUSCC)

Total 54 patients (34 
breast IDC and 20 
breast DLBCL from 

SPHIC)

Figure 1 Outline of the workflow from radiomic analysis with deep learning. IDC, invasive ductal carcinoma; DLBCL, diffuse large B-cell 
lymphoma; FUSCC, Fudan University Shanghai Cancer Center; SPHIC, Shanghai Proton and Heavy Ion Center; AACNN, attention-
based aggregate convolutional neural network; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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Figure 2 Flow chart of patient selection and study design. IDC, invasive ductal carcinoma; DLBCL, diffuse large B-cell lymphoma; 
18F-FDG, 18F-fluorodeoxyglucose; PET/CT, positron emission tomography/computed tomography; FUSCC, Fudan University Shanghai 
Cancer Center; SPHIC, Shanghai Proton and Heavy Ion Center.
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records of all 236 patients, and the baseline characteristics 
including gender, age, height, weight, and clinical stage of 
the patients, and the size, volume, and PET parameters 
of nodules were summarized. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committees 
of FUSCC (No. 1909207-14-1910) and SPHIC (No. 
200217EXP-01) and the requirement for individual consent 
for this retrospective analysis was waived.

18F-FDG PET/CT image acquisition

The baseline 18F-FDG PET/CT imaging were performed 
on the Biograph 16HR and mCT Flow Siemens PET/
CT scanners (Siemens, Erlangen, Germany) in FUSCC 
and a Biograph 16 Siemens PET/CT scanner (Siemens, 
Germany) in SPHIC. Before the scan, all patients were 
fasted for at least 6 hours with the blood glucose levels 
maintained below 8 mmol/L. After receiving an intravenous 
injection with 3.7 MBq/kg of 18F-FDG, the patients rested 
for approximately 1 hour, and then a whole-body scan 
from the head to the mid-thigh was performed for each 
patient. For PET/CT scans, the CT scan was performed 
firstly using a low-dose technique (120 kV and 140 mA 
for Biograph 16HR and mCT Flow scanners, 120 kV and  
150 mA for Biograph 16 scanner). PET scans were acquired 
with 2 minutes allocated for each table position. The PET 
imaging dataset was reconstructed using the ordered subsets 
expectation maximum (OSEM) iterative reconstruction 
algorithm with CT data attenuated.

Image preprocessing and preparation

As described above, PET/CT images were acquired by 3 
different machines in 2 different centers. On the one hand, 
the principles of CT and PET imaging are different, and on 
the other hand, the image information contained in these 2 
image modalities is different, so we adopted different image 
preprocessing methods accordingly.

A diagram displaying the specifics of PET/CT image 
preprocessing is provided in Figure 3. The slice thickness 
and in-plane resolution of CT images are different. Firstly, 
all CT images were resampled into isotropic voxels of unit 
dimension through the bilinear interpolation algorithm 
to ensure comparability, and the voxel volume was set to 
1 mm3 (26). Secondly, we normalized the heat unit (HU) 
maximum and minimum values and adjusted the window 
range to (−200 to 300). Similarly, the slice thickness and 
in-plane resolution of PET images were not consistent. 
Firstly, we converted PET scanning intensity from count 
units (CNTS) with absolute activity concentration (Bq/mL) 
to standard uptake value (SUV) values according to patient 
weight (27). Secondly, the PET image was resampled to 
1 mm3 voxel using the bilinear interpolation algorithm 
to ensure comparability and reduce the impact on model 
classification (28).

The ITK-SNAP software (http://www.itksnap.org/) was 
used to segment all breast nodules on PET images with 
anatomical information provided by CT images. The semi-
automatic segmentation was interpreted and delineated by 2 
experienced nuclear medicine radiologists who were blinded 
to the patients’ pathological information. If the radiologists 
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Figure 3 Flowchart of image preprocessing and preparation. SUV, standardized uptake value; CT, computed tomography; PET, positron 
emission tomography; HU, heat unit; AACNN, attention-based aggregate convolutional neural network.

http://www.itksnap.org/


Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6603

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6598-6614 | https://dx.doi.org/10.21037/qims-22-1333

had different opinions, a consensus was reached through 
discussion. According to the segmentation results confirmed 
by nuclear medicine radiologists, we cut each tumor region 
of interest (ROI) into 2-dimensional (2D) patches of 
128×128 (PET images) and 64×64 (CT images). Finally, a 
series of data balance and enhancement techniques (rotation, 
translation, horizontal and vertical flip, etc.) were applied 
to increase the data size and data diversity of the training 
image, so as to prepare for the data input of the AACNN 
model (29).

For quantitative analysis, the 2D and 3-dimensional (3D) 
nodule size, the volume, and PET parameters including the 
minimum, mean, and maximum SUV (SUVmin, SUVmean, 
and SUVmax, respectively) were calculated using python 
programs by delineating the ROI of the lesions. Metabolic 
tumor volume (MTV) was recorded at the threshold of 41% 
SUVmax in hypermetabolic regions, and total lesion glucose 
(TLG) was calculated following the equation below:

 meanTLG SUV MTV= ×  [1]

AACNN model architectures

Figure 4 shows the network structure of our proposed 
AACNN model for discriminating breast lymphoma from 
breast cancer. The AACNN model takes PET tumor 
region patches and CT tumor region patches as input, 
respectively. It trains different independent models to 
identify disease classes based on the above images. The 
network architecture contains and extends bottleneck 
modules for dimensionality or feature reduction, residual 
modules that facilitate gradient propagation, and includes 
element-wise addition and channel-wise concatenation 
operation. Besides, it uses hierarchical and iterative skip 
connections to merge class-feature pyramid networks for 
improved resolution (30,31).

The first block of the network consists of a simple 
3×3 convolutional layer (32), a switchable normalization  
layer (33), and the Mish activation function (34). The 
convolution calculation principle is given in Eq. [2], the 
adaptive normalization principle is given in Eq. [3], and the 
Mish activation function principle is given in Eq. [4].

Input
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7*7*32

2*2*128

7*7*144

7*7*128

1

0

Flatten

SN

Mish

Full 
connection

Pooling Pooling

Pooling

Figure 4 Schematic diagram of the network structure of the AACNN model. SN, switchable normalization; AACNN, attention-based 
aggregate convolutional neural network.
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N represents the output size, W represents the input size, 
K represents the convolution kernel size, P represents the 
size of the padding value, and S represents the step size.
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Each pixel of the image is denoted as ncijh , and the 
normalized pixel is denoted as. ∧

ncijh  n,c,i,j are the minibatch 
size, the number of channels, the width of channels, and the 
height of channels, respectively. The statistics of switchable 
normalization (mean μ, variance σ2) are weighted and 
averaged by a suitable normalization method in the set  

[ ]= , , lnΩ bn in . wk and w'
k are the weight coefficients of the 

corresponding statistics.

( ) ( )( )tanh ln 1 xf x x e= × +  [4]

x represents the input feature and f (x) represents the 
activated feature.

The second block of the network includes 2 branches. 
The main branch contains a bottleneck module and 
a pooling layer to reduce the feature dimension. 1×1 
convolutions were inserted to learn more non-sparse 
features. The feature information of the 2 branches is 
superimposed. Inspired by the Inception V3 network 
structure (35), the third and fourth blocks of the network 
used asymmetric convolutions with 1×n and n×1 filters to 
replace the traditional n×n symmetric convolution on the 
basis of the second part, where channel ∈ [8, 32]. The 
purpose of this structural design is to reduce the parameter 
size and computational cost. In order to better highlight 
the main features and suppress irrelevant features, we also 
added a convolutional block attention module (CBAM) 
between the third and fourth blocks (36). In the fourth 
block, channel-wise concatenation was added to further 
enhance deep features. The equation for calculating the 
CBAM is as follows:

( )
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 [5]

Where F represents intermediate features, Mc represents 
channel attention features, Ms represents spatial attention 
features, ⊗  represents element-wise multiplication, F' 
represents features computed by the channel attention 
mechanism, F'' is the output of final refinement, MLP is 
multi-layer perceptron, σ is sigmoid function, AvgPool 
stands for average pooling, MaxPool stands for maximum 
pooling, and f7×7 is a 7×7 convolution kernel.

Model training and hyperparameters

The input size of the AACNN model was set to 64×64×1. 
During model training, the convolution weights were 
initialized using the ‘He’ uniform variance scaling 
initialization method (37). The L2 regularization technique 
(weight decay coefficient =0.0001) was used to limit 
the squared magnitude of the kernel weights to avoid 
overfitting. The Dropout technique was applied to the fully 
connected layer to make the fully connected layer randomly 
select some nodes to not play a role during the learning 
process (38). The Adam optimizer was used to update the 
network gradient by minimizing the loss function to train the 
model. In order to ensure the robustness of the prediction 
model and improve the computational cost efficiency, 
an early termination condition was introduced, and the 
training was automatically stopped when the accuracy of 
the validation set had still not improved after 20 repetitions. 
Other hyperparameter settings included a dynamic learning 
rate of 0.001, a number of iterations of 1,000, and a batch 
size of 64.

In addition, to alleviate the impact of erroneous labels, based 
on the idea of label smoothing (39), we improved the binary 
cross-entropy loss function, which is formulated as follows:
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p q

 [6]

Where i represents 1 of the 2 classes, y represents the 
actual class, pi represents the actual label, ε represents 
constant 0.1, qi represents the predicted label, and ′ip  
represents an array of 1 (which has the same shape and type 
as the predicted label array).

Performance evaluation

In this study, multiple repeated random subsampling 
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validation was used to evaluate the model, which has the 
same purpose as the fixed split in k-fold cross validation, 
and can better control the number of model training and 
validation, as well as the ratio of training set to testing set, 
and obtain more accurate results (37). The performance 
of the AACNN model was investigated by 7 evaluation 
indexes, namely, accuracy (ACC), sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV), negative 
predictive value (NPV), harmonic mean of precision and 
sensitivity (F1), and the area under the receiver operating 
characteristic (ROC) curve (AUC). The equations are 
expressed as follows:

TP TNACC
TP FP TN FN

+
=

+ + +
 [7]

 

TPSEN
TP FN

=
+  

[8]

TNSPE
TN FP

=
+

 

[9]
 

TPPPV
TP FP

=
+

 [10]

TNNPV
TN FN

=
+

 
[11]

21
2

TPF
TP FP FN

×
=

× + + [12]

TP represents the number of true positives, FP represents 
the number of false positives, TN represents the number 
of true negatives, and FN represents the number of false 
negatives. SEN represents the proportion of all DLBCL 
lesions that have been correctly predicted by the AACNN 
model, which measures AACNN’s ability to recognize 
breast lymphoma. SPE represents the proportion of all IDC 
lesions that have been correctly predicted by the AACNN 
model, which measures AACNN’s ability to recognize 
breast cancer. PPV indicates the proportion of DLBCL 
lesions predicted by the AACNN model that are indeed 
DLBCL. NPV indicates the proportion of IDC lesions 
predicted by that AACNN model that are indeed IDC.

Platform and software

A computer running Windows 10 with an Intel Core I7-
8750H @ 2.2 GHz × 2.2 GHz CPU, 8 GB memory, and 
an Nvidia GeForce GTX 1060 graphics processing unit 
(Nvidia, San Jose, CA, USA) was used for the analysis. The 
software used in this paper included PyCharm (version 

2018.2, http://www.jetbrains.com), ITK-SNAP (version 
3.8.0), 3D Slicer (version 4.11; http://www.slicer.org), 
MATLAB (version R2018a; http://www.mathworks.com), 
and SPSS (version 26.0; http://www.spss.com.cn). To 
build the AACNN model and process PET/CT images, 
we utilized several publicly available software packages, 
including Keras, SimpleITK, NumPy, skimage, os, pandas, 
SciPy, Scikit-Learn, and Pydicom.

Statistical analysis

The SPSS software (IBM Corp., Armonk, NY, USA) was 
used for the statistical analysis. Statistical methods included 
independent samples t-test for the comparison between 2 
groups, Mann-Whiney U test for continuous characteristics, 
and  χ 2 te s t  or  F i shers  exact  tes t  for  ca tegor ica l 
characteristics. DeLong’s method using PyCharm was used 
to test the statistical significance between AUCs. A P value 
of below 0.05 was considered statistically significant.

Results

Study population

A total of 236 patients (235 females and 1 male; average 
age, 51.31 years; range 24 to 86 years) were included in 
our multi-center study (Table 1). Among the patients, 
the average height, weight, and body mass index (BMI) 
was 1.59±0.05 m, 58.90±8.69 kg, and 23.30±3.24 kg/m2, 
respectively. The clinical features of the patients were not 
significantly different between the groups. Of the 236 
patients, 160 (67.80%) had breast IDC and 76 (32.20%) had 
breast DLBCL (Table S1). Among the breast IDC patients, 
12 (7.50%), 66 (41.25%), 31 (19.38%), and 51 (31.88%) 
patients were with tumor-node-metastasis (TNM) stage I, 
II, III, and IV, and among the breast DLBCL patients, 24 
(31.58%), 30 (39.47%), 1 (1.32%), and 21 (27.63%) patients 
were with Ann Arbor stage I, II, III, and IV, respectively. 
The clinical stage between breast IDC and DLBCL was 
statistically significant (P<0.001).

As shown in Table 2, a total of 249 (135 IDC and 114 
DLBCL) and 75 (39 IDC and 36 DLBCL) breast nodules 
were included in the internal and external datasets, 
respectively. The clinical characteristics of the nodules had 
no differences between the internal and external datasets. 
The nodule size (containing 2D and 3D size and nodule 
volume) and PET parameters (containing SUVmean, SUVmax, 
MTV, and TLG) were significantly different between the 

http://www.jetbrains.com)
http://www.slicer.org)
http://www.mathworks.com
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Table 1 Patient characteristics in the internal and external datasets

Characteristics Total (n=236) Internal dataset (n=182) External dataset (n=54) P value

Sex 0.585

Female 235 (99.58) 181 (99.45) 54 (100.00)

Male 1 (0.42) 1 (0.55) 0 (0.00)

Age (year) 51.31±11.96 51.15±12.06 51.85±11.72 0.707

Height (m) 1.59±0.05 1.59±0.05 1.58±0.05 0.343

Weight (kg) 58.90±8.69 59.46±8.91 57.04±7.69 0.072

BMI (kg/m2) 23.30±3.24 23.46±3.29 22.74±3.01 0.154

Stage 0.241

I 36 (15.25) 24 (13.19) 12 (22.22)

II 96 (40.68) 79 (43.41) 17 (31.48)

III 32 (13.56) 23 (12.64) 9 (16.67)

IV 72 (30.51) 56 (30.77) 16 (29.63)

The data are represented as means ± standard deviation or number (percentage). BMI, body mass index. 

Table 2 Nodule characteristics in the internal and external datasets

Characteristics Internal dataset (n=249) External dataset (n=75) P value

Nodule size 

2D size (cm) 4.59±2.93 4.21±2.59 0.328

3D size (cm) 5.22±3.30 4.94±2.88 0.519

Nodule volume (cm3) 65.50±195.04 46.92±154.02 0.450

PET parameters 

SUVmin 0.59 (0.00, 1.83)† 0.60 (0.01, 1.50)† 0.783

SUVmean 5.08 (1.33, 9.78)† 5.43 (0.91, 17.72)† 0.498

SUVmax 12.75 (2.47, 59.86)† 15.49 (1.44, 50.73)† 0.062

MTV 29.21 (0.20, 815.07)† 15.99 (0.45, 446.06)† 0.256

TLG 256.84 (0.28, 8,249.31)† 192.38 (0.80, 7,905.91)† 0.618
†, values refer to mean (range), other data are represented as means ± standard deviation. 2D, 2-dimensional; 3D, 3-dimensional; PET, 
positron emission tomography; SUV, standard uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. 

IDC and DLBCL groups in the internal dataset testing 
according to the univariate analysis (P<0.001) (Table 3). 
Meanwhile, in the external dataset testing, only PET 
parameters (SUVmin, SUVmean, and SUVmax) were statistically 
significant between IDC and DLBCL (Table S2). The 
representative 2D and 3D schematic diagrams of breast 
nodules are shown in Figure 5.

AACNN model prediction results

The AACNN model was trained based on CT (AACNN_
CT) and PET (AACNN_PET) patches respectively, and the 
external dataset was adopted to further test the robustness 
of the model. As shown in Table 4, AACNN_CT was tested 
on the internal testing dataset, the highest AUC was 0.886, 
the highest prediction ACC was 82.2%, the highest SEN 

https://cdn.amegroups.cn/static/public/QIMS-22-1333-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6607

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6598-6614 | https://dx.doi.org/10.21037/qims-22-1333

Table 3 Nodule characteristics between IDC and DLBCL in the internal dataset

Characteristics IDC (n=135) DLBCL (n=114) P value

Nodule size 

2D size (cm) 3.89±1.86 5.41±3.67 <0.001

3D size (cm) 4.34±1.95 6.25±4.17 <0.001

Nodule volume (cm3) 19.88±41.65 119.53±275.67 <0.001

PET parameters 

SUVmin 0.59 (0.03, 1.32)† 0.59 (0.01, 1.83)† 0.978

SUVmean 3.81 (1.42, 8.89)† 6.59 (1.33, 24.45)† <0.001

SUVmax 9.65 (2.47, 35.30)† 16.41 (2.49, 59.86)† <0.001

MTV 8.89 (0.64, 164.63)† 53.27 (0.20, 815.07)† <0.001

TLG 38.08 (1.11, 687.35)† 515.91 (0.28, 8,249.31)† <0.001
†, values refer to mean (range), other data are represented as means ± standard deviation. IDC, invasive ductal carcinoma; DLBCL, diffuse 
large B-cell lymphoma; 2D, 2-dimensional; 3D, 3-dimensional; PET, positron emission tomography; SUV, standard uptake value; MTV, 
metabolic tumor volume; TLG, total lesion glycolysis. 
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Table 4 The prediction performance of AACNN models

Model AUC (95% CI) ACC (95% CI) SEN (95% CI) SPE (95% CI) PPV (95% CI) NPV (95% CI) F1 (95% CI)

AACNN_CT

Internal testing 0.886  
(0.849–0.882)

0.822  
(0.803–0.840)

0.824  
(0.797–0.848)

0.820  
(0.793–0.845)

0.826  
(0.799–0.850)

0.818  
(0.791–0.843)

0.825  
(0.806–0.842)

External testing 0.784  
(0.769–0.798)

0.716  
(0.698–0.733)

0.663  
(0.634–0.687)

0.785  
(0.760–0.808)

0.802  
(0.778–0.823)

0.640  
(0.615–0.665)

0.726  
(0.709–0.742)

AACNN_PET

Internal testing 0.831  
(0.812–0.848)

0.765  
(0.744–0.784)

0.781  
(0.752–0.808)

0.747  
(0.716–0.776)

0.762  
(0.733–0.789)

0.768  
(0.737–0.796)

0.771  
(0.751–0.790)

External testing 0.726  
(0.704–0.746)

0.655  
(0.637–0.673)

0.575  
(0.549–0.599)

0.761  
(0.735–0.785)

0.759  
(0.733–0.783)

0.577  
(0.552–0.602)

0.654  
(0.636–0.672)

AACNN_E

Internal testing 0.886  
(0.870–0.900)

0.830  
(0.811–0.847)

0.809  
(0.782–0.834)

0.850  
(0.824–0.873)

0.848  
(0.822–0.872)

0.812  
(0.784–0.836)

0.828  
(0.810–0.846)

External testing 0.788  
(0.772–0.803)

0.716  
(0.698–0.733)

0.614  
(0.589–0.638)

0.847  
(0.825–0.867)

0.840  
(0.817–0.861)

0.626  
(0.602–0.650)

0.709  
(0.692–0.726)

AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive 
value; F1, harmonic mean of precision and sensitivity; AACNN, attention-based aggregate convolutional neural network; CT, computed 
tomography; PET, positron emission tomography; E, ensemble; CI, confidence interval. 

was 82.4%, the highest SPE was 82.0%, the highest 
PPV was 82.6%, the highest NPV was 81.8%, and the 
highest F1 value was 0.825, respectively. The highest 
predictions of AACNN_CT on the external testing 
dataset achieved AUC, ACC, SEN, SPE, PPV, NPV, and 
F1 of 0.784, 71.6%, 66.3%, 78.5%, 80.2%, 64.0%, and 
0.726, respectively. When PET patches were used as the 
input of the AACNN model, the best internal testing 
performance showed that the AUC, ACC, SEN, SPE, 
PPV, NPV, and F1 were 0.831, 76.5%, 78.1%, 74.7%, 
76.2%, 76.8%, and 0.771, respectively. Similarly, on the 
external testing dataset, the best AUC, ACC, SEN, SPE, 
PPV, NPV, and F1 were 0.726, 65.5%, 57.5%, 76.1%, 
75.9%, 57.7%, and 0.654, respectively. In general, the 
prediction performance of AACNN_CT model was 

better than AACNN_PET.
As shown in Table 4, the AACNN_ensemble (AACNN_

E) model prediction results (AUC, ACC, SEN, SPE, PPV, 
NPV, and F1) were 0.886, 83.0%, 80.9%, 85.0%, 84.8%, 
81.2%, and 0.828 (internal testing) and 0.788, 71.6%, 
61.4%, 84.7%, 84.0%, 62.6%, and 0.709 (external testing), 
respectively, which was improved in 5 performance metrics 
(AUC, ACC, SPE, PPV, and F1) compared to all models, 
and the remaining 2 metrics (SEN, NPV) was also close 
to the highest (82.4%, 81.8%). The model results of the 
AACNN_E was a back-end fusion based on distance weight 
voting between the model prediction probability values of 
AACNN_CT and AACNN_PET (40), the Eq. [13] for 
the back-end fusion based on distance weights voting is 
displayed below.

( )
( )

( )

_ _ _ _

fusion _ _ _ _

_ _

max , , 0.5 and 0.5

min , , 0.5 and 0.5

max 0.5 , 0.5 , otherwise

 ≥ ≥

= < <


− −

AACNN CT AACNN PET AACNN CT AACNN PET

AACNN CT AACNN PET AACNN CT AACNN PET

AACNN CT AACNN PET

P P if P P

P P P if P P

P P

 
[13]
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Pfusion represents fusion prediction results, PAACNN_CT 
represents prediction probability values of AACNN_CT, 
and PAACNN_PET represents prediction probability values of 
AACNN_PET.

Further, the AUCs between AACNN_CT and AACNN_
PET, AACNN_CT and AACNN_E, AACNN_PET, and 
AACNN_E were statistically significant (P<0.05, DeLong’s 
test). The ROC curves of all models are shown in Figure 6.

The proposed AACNN models can extract deep features 
with different locations, sizes, contours, and texture 
abstractions in convolutional layers. To more clearly 
demonstrate the ability of different layers of the model to 
extract features for lesions, the class activation maps from 
shallow to deep is represented in Figure 7.

Finally, as shown in Table 5, the prediction probability 
values of the 3 models AACNN_CT, AACNN_PET, and 
AACNN_E were analyzed by univariate analysis and found 
to be statistically significant (P<0.001). The effectiveness 
of the AACNN models proposed in this paper was further 
validated statistically.

Discussion

Breast nodules are overwhelmingly seen in women, of 
which breast IDC is the most common malignancy. 
Although breast DLBCL is a rare disease, its incidence rate 
is increasing with the changes of people’s living environment 
and other factors. The ineffectiveness of conventional 
imaging in distinguishing these 2 diseases leads to unnecessary 
surgery in patients with breast lymphoma (8). Artificial 
intelligence technology represented by deep learning is 
a widely used intelligent analysis technology in medical 
data or image analysis, which can be used in various image 
analysis tasks involved in clinical diagnosis, treatment, and 
prognosis prediction. Deep learning radiomics does not 
require precise segmentation of tumor regions and pre-
definition of high-throughput feature sets based on prior 
knowledge. Key features relevant to clinical questions can 
be automatically extracted and optimized through different 
deep learning network architectures. Automatic feature 
extraction does not involve human interaction, and the 
extracted features are the most implicit and advanced. In 
our study, we proposed an end-to-end AACNN model 
which can effectively differentiate breast DLBCL from 
breast IDC, and the radiomic features learned from the 
model had significant differences between the 2 diseases. 
Meanwhile, we used the multi-center data for preliminary 
verification. As most breast DLBCL patients show multiple 

lesions, most breast IDC patients show single lesion, and 
the AACNN model we established was to make accurate 
differentiation of the lesions, 76 breast DLBCL patients 
(150 lesions) and 160 breast IDC patients (174 lesions) 
were recruited finally, and the number of lesion samples was 
balanced at almost 1:1. To the best of our knowledge, this is 
the first deep learning model to identify these 2 diseases.

In previous studies, researchers usually only considered 
the 2D diameter of the lesion. Contrastingly, in our study, 
we added the 3D diameter and volume of the lesion, and 
the results showed that the spatial data of the lesions had 
statistical significance in differentiating the 2 diseases 
in the internal dataset testing, which can provide more 
comprehensive spatial distribution information for the 
lesion and may provide more effective information for 
the selection of treatment and prognosis evaluation of  
patients (41). Representative 2D and 3D images of the 
lesion are shown in Figure 5. PET parameters (including 
SUV, MTV, TLG, etc.) derived from PET/CT are closely 
related to tumor metabolism. Ou et al.’s study revealed that 
the SUV metrics from PET/CT images had potential utility 
in differentiating breast lymphoma from carcinoma. In our 
study, the PET parameters (including SUVmean, SUVmax, 
MTV, and TLG) after the above image preprocessing were 
significant to differentiate the 2 diseases on the internal 
dataset testing, which was consistent with a previous 
finding (17). However, only 3 PET parameters (SUVmin, 
SUVmean, and SUVmax) showed significance in the external 
dataset testing; the other parameters showed no statistical 
differences. Firstly, the reason may be due to the small 
sample size with limited diversity included in the external 
testing. Secondly, the clinical parameters may not be specific 
indicators of breast disease, which may lead to difficulty in 
discriminating between breast IDC and DLBCL. Similarly, 
the sensitivity of the external dataset for our model was low, 
with 0.663 for AACNN_CT, 0.575 for AACNN_PET, and 
0.614 for AACNN_E, which further verified our conjecture 
(Table 4). Thirdly, because of the instability and non-
specificity of these clinical factors, the potential of radiomic 
analysis in this field is urgently needed.

In order to effectively and noninvasively distinguish 
breast DLBCL and breast IDC patients, we designed a 
new AACNN model structure (Figure 4). The structure 
combines the Mish activation function, the improved loss 
function based on label smoothing, and the convolutional 
attention mechanism module. We also proposed a back-end 
voting strategy basing on distance weight voting, and built 
an ensemble model named AACNN_E. The experimental 
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Figure 6 ROC curves of the best AACNN applied to the internal/external testing. ROC curve for internal (A) and external (B) testing 
on AACNN_CT model. ROC curve for internal (C) and external (D) testing on AACNN_PET model. ROC curve for internal (E) and 
external (F) testing on AACNN_E model. ROC, receiver operating characteristic; AUC, area under the ROC curve; AACNN, attention-
based aggregate convolutional neural network; CT, computed tomography; PET, positron emission tomography; E, ensemble.
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Figure 7 Class activation maps visualization of AACNN layer by layer. AACNN, attention-based aggregate convolutional neural network.

Table 5 The predicted probability values of AACNN models

Model
Internal testing External testing

IDC DLBCL P value IDC DLBCL P value

AACNN_CT 0.36±0.16 0.73±0.22 <0.001 0.39±0.17 0.63±0.24 <0.001

AACNN_PET 0.40±0.12 0.56±0.12 <0.001 0.39±0.10 0.49±0.11 <0.001

AACNN_E 0.34±0.16 0.72±0.23 <0.001 0.36±0.17 0.61±0.25 <0.001

The data are represented as means ± standard deviation. IDC, invasive ductal carcinoma; DLBCL, diffuse large B-cell lymphoma; AACNN, 
attention-based aggregate convolutional neural network; CT, computed tomography; PET, positron emission tomography; E, ensemble.

results (AUC =0.886; ACC =83.0%) indicated that the 
ensemble model could improve the discrimination ability of 
breast DLBCL from breast IDC to a certain extent.

In addition, compared to existing studies, data from 
3 PET/CT machines of different types in 2 centers with 
longer time spans were included in our study, which 
increased the diversity and reliability of the samples 
(Table S3). Independent AACNN models based on PET 
and CT were trained and tested by internal cohorts, and 
independent external cohorts were used to validate the 

generalization and robustness of the model (Table 4 and 
Figure 6) (42). Meanwhile, we do not need to manually 
extract information such as lesion size, dimension, texture, 
and so on. Our model can automatically learn these 
features and make predictions directly. Further, we have 
demonstrated that the prediction result of the AACNN 
models can be directly used as a significant factor for 
discriminating breast IDC from DLBCL. The AUC of our 
model was improved by nearly 5% compared to existing 
models.

https://cdn.amegroups.cn/static/public/QIMS-22-1333-Supplementary.pdf
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L a s t  b u t  n o t  l e a s t ,  t h e  c l a s s  a c t i v a t i o n  m a p 
visualization (from shallow to deep) (Figure 7) realized the 
interpretability of AACNN prediction results, revealed a 
corner of the mystery of the “black box” problem in deep 
learning, and further reflected the effectiveness in extracting 
disease radiomics features of the AACNN model proposed 
in this paper. Class activation map visualization refers to 
the generation of a heat map of class activations on the 
input image, indicating the importance of each position to 
the category. It helps to understand which part of a picture 
causes the AACNN to make the final decision. We have 
presented the class activation map of the largest tumor area 
patch of a patient with breast lymphoma. The brighter 
(redder) pixel regions in the maps indicate the greater 
contribution of the classification. On the contrary, the bluer 
and darker pixel regions account for a smaller proportion 
of the contribution to the classification. It is worth noting 
that the obtained class activation maps are consistent with 
the lesion regions that clinicians pay attention to, indicating 
that the AACNN classification model trained in this paper 
can well locate image features with clinical diagnostic value.

Our study still had some limitations. Our study was 
based on a relatively small sample of breast DLBCL, and 
participants with incomplete clinical data were omitted, 
which may affect the accuracy and reliability of the research 
results. Although the data enhancement method was used to 
alleviate the problem of insufficient sample diversity, there 
are still uncertainties and inauthenticity compared with the 
real data. Combined with the actual clinical application and 
promotion, PET/CT fusion images may have better effects 
as the input of the model. This study did not combine 
deep learning with traditional radiomics methods, and 
the method of fusing deep features and traditional omics 
features may further improve the performance of the 
current AACNN model.

Conclusions

This study developed a deep learning radiomics strategy 
based on AACNN model and ensemble prediction 
which may automatically achieve remarkable prediction 
performance at the classification task of distinguishing 
breast DLBCL from breast IDC. The proposed model 
relied on data from 2 centers and was validated through an 
external dataset, demonstrating that deep features learned 
through convolutional layers could distinguish between 
the 2 diseases. The experimental results showed that our 
proposed method could learn more lesion information, 

significantly improving the ability to differentiate between 
breast IDC and breast DLBCL. Our proposed model 
is expected to become a non-invasive auxiliary tool for 
precision diagnosis in the future.
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