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In this study, we used single-cell sequencing, which can compre‐
hensively detect the type and number of transcripts per cell, to
efficiently stimulate peripheral blood mononuclear cells of type 1
diabetic patients with overlapping peptides of GAD, IA-2, and
insulin antigens, and performed gene expression analysis by
single-cell variable-diversity-joining sequencing and T-cell receptor
repertoire analysis. Twenty male patients with type 1 diabetes
mellitus participating in the KAMOGAWA-DM cohort were
included. Four of them were randomly selected for BD Rhapsody
system after reacting peripheral blood mononuclear cells with
overlapping peptides of GAD, IA-2, and insulin antigen. Peripheral
blood mononuclear cells were clustered into CD8+ T cells, CD4+ T
cells, granulocytes, natural killer cells, dendritic cells, monocytes,
and B cells based on Seurat analysis. In the insulin group, gene
expression of inflammatory cytokines was elevated in cytotoxic
CD8+ T cells and Th1 and Th17 cells, and gene expression related
to exhaustion was elevated in regulatory T cells. In T cell
receptors of various T cells, the T cell receptor β chain was
monoclonally increased in the TRBV28/TRBJ2-7 pairs. This study
provides insights into the pathogenesis of type 1 diabetes and
provides potential targets for the treatment of type 1 diabetes.
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T ype 1 diabetes mellitus (T1DM) is a type of autoimmune
disease in which the immune system attacks the islet

cells responsible for insulin production in the body, reducing or
stopping insulin production. From previous research, it has been
suggested that both CD4+ T cells and CD8+ T cells are necessary
for the development of T1DM, where autoreactive T cells differ‐
entiate into effector cells by engaging with islet-associated
autoantigens on local antigen-presenting cells.(1,2) CD4+ T cells
are responsive to insulin, and CD8+ T cells play a major role in
killing β cells. Various other immune cells, including B cells, NK
cells, and dendritic cells, have been reported to be involved in the
progression of T1DM. CD8+ T cells predominantly infiltrate the
islets, but require the assistance of CD4+ T cells for their activa‐
tion and proliferation. Early models of T cell differentiation
focused on the dichotomy between T helper T1 (Th1) and T2
(Th2) types, and T1DM was thought to be primarily a Th1-
mediated condition,(3) however, further studies have also reported
the involvement of T helper T17 (Th17)(4) and regulatory T cells
(Treg).(5)

CD4+ T cells and CD8+ T cells possessing unique T cell recep‐
tors (TCRs) that recognize self-islet antigens are activated as
single clones.(6,7) CD4+ T cells are responsible for regulating the
immune response and providing instructions to other immune
cells. In T1DM, CD4+ T cells contribute to disease progression

by triggering or coordinating attacks on islet cells.(8,9) Cytotoxic
CD8+ T cells play a major role in the destruction of beta cells
during the development of T1DM.(10,11) Therefore, elucidating
the diversity of TCRs in CD4+ T cells and CD8+ T cells is vital
for understanding the pathogenesis of T1DM. TCR antigen-
binding sites are determined by gene rearrangement, resulting in
a diversity of 1010 possibilities. Previously, revealing the com‐
plete repertoire of these vast antigen receptors was challenging.
However, the advancement of next-generation sequencing tech‐
nology now enables the identification of TCR gene sequences
expressed by targeted cell populations at the individual clone
level. Currently, comprehensive immune sequencing techniques
are applied to monitor in vivo immune responses, develop anti‐
body therapeutics, vaccines, and cellular medicines, holding the
potential for significant innovations across various medical
fields. Comprehensive immune sequencing is utilized in the anal‐
ysis of conditions such as T1DM, rheumatoid arthritis, systemic
lupus erythematosus, multiple sclerosis, and more.(12) We have
analyzed the pairing of α and β chains constituting TCRs in
peripheral blood mononuclear cells (PBMCs) from patients with
T1DM at the single-cell level, identifying genes whose expres‐
sion increases not only in T cells but also in TRA and TRB rear‐
rangements.(13) T1DM develops when effector T cells, induced by
viral or bacterial infections, cross-react with autoantigens and
attack their own pancreatic beta cells.(14) Although autoreactive T
cells are thought to be central to the pathogenesis of the disease,
there have been reports on numerical abnormalities or lack
thereof, and qualitative abnormalities have recently attracted
attention.(15) Therefore, exhaustion of effector T cells is thought
to be effective against T1DM, an autoimmune disease. A thera‐
peutic effect has been confirmed by CD3 monoclonal antibody-
induced effector T cell exhaustion in the treatment of T1DM.(16,17)

In particular, a clinical trial with teplizumab, a CD3 monoclonal
antibody, successfully prevented the onset of T1DM in high-risk
groups.(18) However, its effectiveness remains limited, and identi‐
fication of its TCR sequence is needed to identify individuals at a
high risk of developing T1DM more accurately and to develop
new therapies that specifically eliminate autoreactive T cells.
Cole et al.(6) identified the 1E6 TCR, which has a binding site
called “hot spot” and structural evidence that once the core por‐
tion of the 3-amino acid peptide binds strongly, the remainder of
the peptide can react with any sequence. The structure of the
TCR allows for flexibility in antigen specificity, and although it
has an inherent affinity for foreign antigens, it can also react with
insulin peptides and pancreatic beta cell component peptides,
even though they have low affinity.
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Recent studies on SARS-CoV-2 have focused on the use of
overlapping peptides, which are designed to overlap each peptide
with 11 amino acid residues back and forth in a peptide pool con‐
sisting of 15 mer.(19,20) These peptides cover the entire antigenic
protein of interest and stimulate CD4+ T cells in a highly efficient
and antigen-specific manner. Patients with T1DM produce
autoantibodies such as the 65 kDa isoform of glutamic acid
decarboxylase (GAD65), tyrosine phosphatase-related islet
antigen 2 (IA2), and insulin antibodies. GAD65 is expressed on
pancreatic beta cells and is considered an important autoantigen
in the development and pathogenesis of T1DM.(21) Islet antigen 2
(IA-2), a member of the protein tyrosine phosphatase family, is
considered one of the major autoantigens in T1DM.(22) However,
the exact role of IA-2 antigen in the etiology of T1DM remains
unknown. Further, insulin antigen is a candidate autoantigen
for T1DM because it is the only known β-cell specific antigen
associated with T1DM. Previous reports have detected CD4+

and CD8+ T cells recognizing human hybrid insulin peptides(23)

and other post-translationally modified islet antigens,(24) but no
studies have yet analyzed their TCR sequences or other charac‐
teristics.
This research aimed to elucidate the causes of T1DM and

develop novel prevention methods by stimulating peripheral
blood mononuclear cells (PBMCs) with islet-related autoantigens
and using single-cell sequencing to examine changes in gene
expression primarily in T cells and the VDJ rearrangement of T
cell receptors. The following experiments were conducted. The
following articles are based on STREGA’s reporting checklist.

Materials and Methods

Study design and participants. The KAMOGAWA-DM
cohort study is an ongoing prospective cohort study approved by
the Ethics Committee of Kyoto Prefectural University of
Medicine since 2013 (Kyoto, Japan, RBMR-E-466).(25) Informed
consent was obtained from all patients participating in the
KAMOGAWA-DM cohort study. The study was conducted in
accordance with the Declaration of Helsinki. Between April and
May 2021, a random selection was made from T1DM patients
who visited our diabetes outpatient clinic at our institution.
PBMCs were collected on the day of the visit, and the experi‐
ments were conducted on the same day without freezing and
storing the samples. Among the 24 patients, none of them devel‐
oped any apparent infections during the study period. The diag‐
nosis of T1DM was based on the criteria of the American Dia‐
betes Association,(26) and patients with Type 1A diabetes (i.e.,
immune-mediated) were chosen following the recommendations
of the American Diabetes Association Expert Committee.(27)

Isolation of PBMCs and in vitro culture of PBMCs. First,
approximately 10 ml of peripheral blood was collected in CPT
tubes (BD Vacutainer® CPTTM Mononuclear Cell Preparation
Tube, BD BioSciences, San Jose, CA) and PBMCs were extracted
as per manufacturer’s instructions. Following this, 1.5 × 106

PBMCs from each group were seeded in a 96-well plate using
RPMI containing 5% human AB serum. Next, the negative con‐
trol (NC) group was cultured with sterile PBS, the insulin anti‐
body group was cultured with PepTivator® Insulin, the IA-2 anti‐
body group was cultured with PepTivator® IA-2, and was the
anti-GAD antibody group was cultured with PepTivator® GAD65
in separate wells at a concentration of 0.6 nmol/ml according to
manufacturer’s instructions, and the plates were incubated at
37°C in a CO2 incubator for 2 h. The reason for the 2-h setting is
to avoid contamination from nonspecific cells, which make up
the majority of cells in each culture well, because nonspecific
cell reactions take longer than antigen-specific reactions.

Single-cell sequencing and data assessment. One previous
report suggested that the BD system may be more suitable than
10x scRNASeq for inaccessible patient samples.(28) The BD

system was employed in this study because cell death due to
antigen stimulation was anticipated. PBMCs were not pre-sorted
and whole PBMCs were used for single cell sequencing analysis.
Cells were labeled with a specific sample tag using the BD
Rhapsody Human single-cell multiplexing kit and AbSeq anti‐
bodies against major human immune markers (BD Rhapsody
Immune Response Panel, comprising 399 genes, catalog number
633750). This labeling process was carried out for 30 min on ice.
Following thorough washing, cells with different sample tags
were combined in equal proportions, and a maximum of 20,000
cells were loaded onto a BD Rhapsody Cartridge.

Single-cell capture and cDNA library preparation were per‐
formed using the BD Rhapsody Express Single-Cell Analysis
System by BD Biosciences, following the manufacturer’s instruc‐
tions. Libraries were prepared for single-cell transcriptomes tar‐
geting immune profiles (TTA), whole transcriptomes (WTA),
Ab-tagged index sequences targeting 30 immune cell-associated
surface antigens, and multiple sample tags using BD Rhapsody
TTA and WTA amplification kits, as per the manufacturer’s
guidelines.
For the mRNA-targeted library, the BD RhapsodyTM immune

response panel was utilized, which included primer pairs tar‐
geting 397 genes commonly expressed in human immune cells.
Sequencing was conducted on an Illumina HiSeq 6000 platform
(Novogene, China). The resulting FASTQ sequencing files were
analyzed using the BD Rhapsody Analysis Pipeline ver. 1.10.1
to generate an expression matrix.
The FASTQ files derived from the sequencing data were

processed using the BD Rhapsody Targeted Analysis Pipeline with
V(D)J processing, a software tool provided by BD Biosciences,
on the Seven Bridges Platform (https://www.sevenbridges.com/d).
First, low-quality read pairs were filtered out based on criteria
such as read length, average base quality score, and highest
single-base frequency. Subsequently, the high-quality R1 reads
were analyzed to identify cell labels and unique molecular
identifier (UMI) sequences. The high-quality R2 reads were
aligned to reference panel sequences (specifically, the Human T
cell Expression panel, Supplemental Table 1*) and TCR gene
segments sourced from the International ImMunoGeneTics
Information System (IMGT.org) using the Bowtie2 program.
CDR3 regions were determined using IGBLAST. Reads with
identical cell labels, UMI sequences, and genes were collapsed
into single molecules. The obtained molecule counts underwent
error correction using algorithms developed by BD Biosciences,
including recursive substitution error correction and distribution-
based error correction (DBEC). The DBEC-adjusted molecule
count data, generated by the Rhapsody pipeline, were imported
into SeqGeq ver. 1.6.0. Subsequently, quality control steps were
implemented to filter out cells that were significantly smaller
and had low expression levels of genes (termed as “dead cells”).
Following the quality control phase, dimensional reduction and
unbiased clustering were performed within SeqGeq using the
Seurat plug-in. Specifically, Seurat was configured to include
all genes used, incorporating QC functions, log normalization,
and the utilization of the uniform manifold approximation and
projection (UMAP) technique for dimensionality reduction.
These plugins generated various data outputs, including UMAP
representations, lists of genes that were upregulated and down‐
regulated, and annotation information, all utilizing the PBMC
gene model. UMAPs for the first four patients were plotted.
Canonical Correlation Analysis (CCA) was performed to reduce
batch effects, and UMAP analysis was performed. UMAP was
then plotted by the four antigens. To identify cells in detected
clusters, cell populations were automatically identified using the
ScType package. The ScType platform has been developed as an
open-source, interactive web tool accessible at https://sctype.app.
This platform seamlessly interfaces with the ScType marker
database and offers rapid and entirely automated cell type anno‐
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tation, catering to various biomedical applications. Incorporating
cluster information and TCR CDR3 data for each individual cell
was achieved through the utilization of the VDJExploler plug-in
within SeqGeq. To assess the structural diversity of genes, the
Shannon index H was computed as a parameter.(29)

H′ = −∑i = 1

S pilnpi
S: Number of genes observed in the sample
pi: Ratio of genes i to the total sample

Detection of T cells using whole transcriptome single-cell
RNA sequencing (scRNA-seq) data. Gene expression was
evaluated utilizing two publicly accessible genomic datasets that
combine information from three mRNA and surface protein
expression datasets. A 10k PBMC dataset was created using v3
chemistry, which yielded 7,865 cells that passed quality control.
The average number of reads per cell for the mRNA libraries in
this 10k PBMC dataset was 35,433. Additionally, a 5k PBMC
dataset was generated using NextGEM chemistry, resulting in
5,527 cells that passed quality control. The average number of
reads per cell for the mRNA libraries in this 5k PBMC dataset
was 30,853. (Source: https://support.10xgenomics.com/single-cell-
gene-expression/dataset).

TCR CDR3 motif identification. All TCR CDR3 amino acid
sequences from the current study were aligned using the MEME
tool from the MEME suite (https://meme-suite.org/meme/tools/
meme).(30)

Flowcytometry. Stained cells were analyzed using a
fluorescence-activated cell sorting (FACS) Canto II, and data
were analyzed using FlowJo ver. 10 software (TreeStar, Ashland,
OR). The following antibodies were used for gating of T cells:
FITC-CD45RA [561216; clone: 5H9 (RUO); 1/100; BD
PharmingenTM, San Diego, CA], PE-CCR7 [552176; clone: 3D12
(RUO); 1/100; BD PharmingenTM], PerCP-CD4 (317432; clone:
OKT4; 1/100; BioLegend, San Diego, CA), PerCP/cy5.5-CD8
(344714; clone: SK1; 1/100; BioLegend), APC-CD38 (356606;
clone: HB-7; 1/100; BioLegend), APC/Cyanine7-Fixable
Viability Dye eFluorTM 780 [Live & Dead (L/D)] (65086514;
1/1,000; eBioscience, San Diego, CA), V450-CD3 [560365;
clone: UCHT1 (RUO); 1/100; BD HorizonTM, San Diego, CA],
V500-HLA-DR (559866; clone: G46-6 (RUO); 1/100; BD
PharmingenTM).

Statistical analysis. Data were analyzed and figures were
constructed using R (ver. 4.3.1) and GraphPad Prism software
(ver. 9.3.1; San Diego, CA). Comparison of the two groups was
performed using Welch’s t test. Comparison of the four groups
was performed using one-way analysis of variance with Tukey
honestly significant difference test. Statistical significance was
set at p<0.05.

Results

Study design and analysis of single immune cell profiling in
patients with T1DM. To map the immune microenvironment of
four T1DM patients (Table 1), we integrated scRNA-seq and

single-cell paired TCR analysis from a total of four T1DM
patients. In addition, the stimulation of immune cells in the
peripheral blood by overlapping peptides of islet autoantigen was
used to simulate the early state of T1DM onset (Fig. 1A). All
cells were classified into 20 major clusters and annotated with
canonical marker gene expression by UMAP (Fig. 1B and
Supplemental Fig. 1*), and top 5 genes in each cluster were
shown in violin plots (Supplemental Fig. 2*). First, we manually
clustered the cells by referring to the genes of immune cells
in The Human Protein Atlas (https://www.proteinatlas.org/
humanproteome/immune+cell) (Fig. 1C). Cluster 0, 8, 11, 12,
and 13 by UMAP were classified into natural killer cells, cluster
1 and 6 by UMAP were classified into monocytes, cluster 2, 5,
9, and 10 by UMAP were classified into CD8+ T cells, cluster
3, 17, and 19 by UMAP were classified into granulocytes,
cluster 4, 14, and 15 by UMAP was classified into CD4+ T cells,
cluster 7 and 16 by UMAP was classified into B cells, and
cluster 18 by UMAP was classified into dendritic cells. Natural
killer cells showed predominant expression of GNLY, GZMB,
and PRF1.(31,32) Monocytes showed predominant expression of
CXCL8.(33) HLA-DPA1 and HLA-DPB1 were strongly expressed
in dendritic cells and B cells (Fig. 1D). There was no significant
difference in the proportion of immune cells present in each
group (Fig. 1E). The expression of genes related with cytotoxic,
cytokine, CD3/CD4/CD8/TCR, activation, HLA, resting, exhaust,
and effector in whole PBMC in Supplemental Fig. 3*.

scRNA-seq reveals CD8+ T cells phenotype. From the
immune cells classified in the previous chapter, CD8+ T cells
were first extracted and clustered. Seven clusters were then
generated (Fig. 2A), and the Top 10 expressed genes in each
cluster are shown in the heatmap (Fig. 2B). Among them, cluster
1 was considered as cytotoxic CD8+ T cells due to the elevated
expression of IL2, IFNG, and TNF.(34) Moreover, comparison
of gene expression in cytotoxic T cells for cytotoxicity and
cytokines between each antigen group showed that gene expres‐
sion of GZMB, TNF, and IFNG was elevated in the insulin group,
compared to NC group (Fig. 2C). When cells positive for TNF
and IFNG were plotted in UMAP, most cells were plotted in
cluster 1, with more positive cells in the insulin group. On the
other hand, GZMB was expressed evenly not only in cluster 1 but
also in other clusters. (Fig. 2D).

scRNA-seq reveals CD4+ T cells phenotype. Next, we have
investigated CD4+ T cells phenotype. Nine clusters were then
generated (Fig. 3A), and the Top 10 expressed genes in each
cluster are shown in the heatmap (Fig. 3B). Among them, Cluster
0 was considered as naïve Th cells (Th0), cluster 1 as Type 1 T
helper (Th1), cluster 4 as Type 2 T helper (Th2), cluster 3 as
Type17 T helper (Th17), cluster 2 as activated Th0, cluster 5
and 6 as cytotoxic CD4 T+ cells and cluster 7 and 8 as Treg. In
addition, gene expression in each cell cluster was compared in
each antigen group. In Th1, IL6 and IFNG were upregulated in
the GAD group, IL2 in the IA-2 group, and IL2, IL6, and IFNG
in insulin group, compared to NC group. In Th17, the expression
of IL12A was upregulated in IA-2 and Insulin groups, and that of
TNF was upregulated in Insulin group. Because HLA-related
genes were strongly expressed in activated Th0, their expression
was compared among the four groups. The expression of HLA-A,
HLA-DPB1, and HLA-DRA was upregulated in the insulin group

Table 1. Subjects profile

Type Age Sex Insulin (U/ml) IA-2 (U/ml) GAD (U/ml)

Sample 1 IA 48 Male 6.7 <0.4 12.5

Sample 2 IA 50 Male 12.1 <0.4 18.1

Sample 3 IA 49 Male 15 <0.4 15

Sample 4 IA 52 Male 7.7 <0.4 23.7
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Fig. 1. Cluster identification of PBMC in type 1 diabetic patients. (A) Scheme of experimental study design. (B) Cluster identification by UMAP. (C)
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compared to the NC group. CD9 has been reported to contribute
to cell activation among Th0.(35) In Th2, CCR3, and IL4 were
upregulated in the GAD group and IL4 and IL13 in the insulin
group, compared to NC group. In cytotoxic CD4+ T cells, the
expression of GZMA, GZMB, and GZMH in the insulin group
was higher than that in the NC group. Finally, in Treg, the
expression of genes related with exhaust was investigated. The
expression of CD244 and TGFB1 were upregulated in the GAD
group, PDCD1, TIGIT, and TGFB1 in the IA-2 group, and
CD244, CD160, and TGFB1 in the insulin group, compared to
NC group (Fig. 3C).

Multicolor flow cytometry analyses of CD8+ T cells and
CD4+ T cells. Multicolor flow cytometry was used to demon‐
strate whether cytokine production upon stimulation with the
insulin antigen was more advanced than with the other two anti‐
gens (Fig. 4A and Supplemental Fig. 4*). The ratio of CD8+ T
cells in CD4+ T cells were not different between the four groups
(Fig. 4B). On the other hand, the frequency of IFNG positive
cells in CD8+ T cells and CD4+ T cells of insulin group were
higher than NC, GAD, and IA-2 groups, which was also true for
TNF-positive cells (Fig. 4C and D).
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scRNA-seq reveals phenotypes of NK cells, dendritic cells,
and B cells. The same analysis was performed for NK cells,
dendritic cells, and B cells as for CD8+ T cells and CD4+ T cells.
NK cells were divided into four clusters (Fig. 5A), with cluster 1
having elevated expression of cytokines such as IL32 and HLA-
related genes (Fig. 5B). Expression of HLA-DR on NK cells has
been reported to stimulate activation and proliferation of certain
T cells.(36) Thus, the expression of cytotoxic-related genes, HLA-
related genes, and cytokine-related genes were compared among
the four groups in HLA-DR-positive NK cells (Fig. 5C). The

expression of GZMH, HLA-DQA1, IL6, and IL32 in the insulin
group was higher than that in the NC group.
Dendritic cells were classified into three clusters (Supple‐

mental Fig. 5A*); GNLY has been reported to be able to recruit
and activate antigen-presenting cells and to promote antigen-
specific immune responses.(37) The expression of GNLY was
upregulated in cluster 1 (Supplemental Fig. 5B*), while the
expression of GNLY, GZMA, GZMB, GZMH, and GZMK was
upregulated in the insulin group (Supplemental Fig. 5C*).

B cells were classified into eight groups (Supplemental Fig.
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6A*). Elevated HLA-DR expression on B cells has been reported
to allow efficient presentation of low-affinity peptides to T
cells.(38) In Cluster 0, which HLA-DR was strongly expressed,
IL6, IFNG, and TNF in the IA2 group and TNF and TGFB1 in
the insulin group Expression was elevated, compared to the NC
group (Supplemental Fig. 6B and C*).

Expanded TCR clones and selective usage of V(D)J recom‐
bination by antigen. We extracted each of the TCR genes
that mapped to the cell population of each cluster to reveal the
TCR repertoire of each cluster. The TCR repertoires of all
cells, cytotoxic CD8+ T cells, cytotoxic CD4+ T cells, Th1, Th2,
Th17, and Treg are shown in the bubble plot (Fig. 6A). In all
cells, TRAV1-2/TRAJ33 and TRAV29/DV5/TRAJ42 pairs were
frequently observed in TRA, and TRBV28/TRBJ2-7 pairs in
TRB. A similar trend was observed in Cluster 2. In cluster 5, on
the other hand, no clearly expanded clones were observed in
TRA, but TRBV27/TRBJ2-7 was increased in TRB as in the
other two clusters. The Shannon index of the TCR repertoire in
the insulin group was significantly lower than in the NC, IA-2,
and GAD groups (Fig. 6B); CDR3 length diversity in the insulin
group was higher than in the NC group.

Comprehensive motif analysis of TCR. The motif-based
sequence analysis tool MEME was used to identify consensus
amino acids in grouped CDR3 sequences. Motif analysis
common to GAD, IA-2, and insulin groups was performed in

cytotoxic CD8+ T cells, cytotoxic CD4+ T cells, Th1, Th2, Th17,
and Treg, respectively. The amino acid sequence of TRA showed
some similarities but different sequences among the immune
cells. Among them, cytotoxic CD8+ T cells and Th17 had similar
sequences. On the other hand, the sequence of TRB was similar
in all groups (Fig. 6C).

Discussion

In this study, we quantitatively and qualitatively evaluated
changes in immune status using PBMCs of patients with T1DM
and typical islet-associated autoantigen such as insulin, IA-2, and
GAD65. Interestingly, there was no obvious difference in the
ratio of each immune cell, such as CD8+ T cells, CD4+ T cells,
NK cells, B cells, and dendritic cells, stimulated by these anti‐
gens between the groups, but there were clear differences in the
gene expression of each immune cell.

Studies with NOD mice have shown that the onset of T1DM is
dependent on both CD4+ and CD8+ T cells as well as dendritic
cells and NK cells.(39,40) CD3-specific antibodies that induce T
cell tolerance reversed the onset of T1D in NOD mice, high‐
lighting the important role of T cells in sustained β-cell destruc‐
tion.(41) T cell-mediated β-cell death can occur in several ways.
CD8+ T cells can kill pancreatic β-cells through MHC class I-
mediated cytotoxicity, and cytokines such as IFN-γ secreted by
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CD8+ T cells, CD4+ T cells, dendritic cells, and NK cells, which
in turn induce β-cell expression of the death receptor FAS and
activation of FAS by activated T cells expressing FAS ligands
may induce β-cell apoptosis. Chemokine production by β-cells
leads to further recruitment of mononuclear cells to the affected
area, thereby enhancing inflammation.(42) In addition, IFN-γ acti‐
vates macrophages and induces increased production of inflam‐
matory cytokines such as IL1β and TNF. β cells express high
levels of IL-1 receptors and appear to be more sensitive to IL-1β-
induced apoptosis than other endocrine cells in the islets; this
crosstalk between T cells and macrophages undoubtedly exacer‐

bates immune-mediated stress on beta cells and contributes to
their destruction. Furthermore, the balance between Th1 and Th2
responses has also been implicated in the development of T1DM:
analysis of T cells in PBMC from patients with T1DM supported
an IFN-γ-dominant response to islet autoantigen and revealed
that the balance between IFN-γ and IL-10 was different between
patients and healthy controls.(43) Furthermore, the association of
Th17 cells with Th1 is also essential in the pathogenetic basis of
T1DM. As mentioned earlier, Th1 and IFN-γ are factors in the
pathogenesis of T1DM, and it has been reported that double
knockout mice for IL-17 and IFN-γ receptors have a significantly
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delayed onset of diabetes compared to IL-17 single knockout
mice.(44) This suggests that Th17 cells may cooperate with Th1
and IFN-γ to mediate inflammation in diabetes. On the other
hand, Li et al.(45) have shown a novel mechanism for Th17-
mediated diabetes that is independent of IFN-γ but dependent on
TNF. While T cells play a pathological role in the development
of T1DM, there is also evidence to support a role for T cells in
preventing β-cell destruction. CD28-deficient NOD mice lacking
Treg develop T1DM at an accelerated rate,(46) and patients with
mutations in Treg might develop T1DM(47) and this underscores
the importance of Tregs in regulating the development of this
autoimmune disease. Numerous reports support the importance
of T cells in the pathogenesis of T1DM, while other data suggest
the involvement of other cell types, such as B cells, which may
serve as antigen-presenting cells that maintain islet antigen-
specific T cell activity. In NOD mice, depletion of B cells by
gene targeting or antibody therapy has been shown to suppress

T1DM development.(48,49) The results suggest that B cells may
play a role as antigen-presenting cells that maintain islet antigen-
specific T cell activity.(48,50)

As mentioned above, many immune cells have been implicated
in the development of T1DM. In this study, we found character‐
istic changes in gene expression in each immune cell after expo‐
sure to islet-associated autoantigens compared to the NC group.
In the insulin group, IFNG expression was increased in cytotoxic
CD8+ T cells and Th1, and TNF expression was increased in
Th17. Moreover, the expression of inhibitory receptors such as
CD244 and CD160 was increased in Tregs in the insulin
group.(51) We examined gene expression in clusters of NK cells
that characteristically express high levels of HLA-DR genes;
HLA-DR molecules are involved in antigen presentation and this
molecule is highly expressed on APCs; HLA-DR expression in
NK cells has been shown to increase IFNγ production,(52,53) high
proliferative activity,(54) and degranulation rate(55) as well as the
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ability of HLA-DR+ NK cells to process and present specific
antigens on their surface, thus stimulating the activation and pro‐
liferation of specific T cells, has been reported.(36) Then, the
expression of IL32 was elevated in HLA-DR+ NK cells. there are
various reports on the relationship between T1DM and IL-32.
mRNA levels of IL-32 in beta cells of type 1 diabetic patients
were higher than in control subjects,(56) and IL-32, streptozotocin-
induced 1 has been reported to hasten T1DM.(57) The expression
of markers indicative of activation such as GNLY, GZMH, and
GZMK in dendritic cells and TNF and TGFB1 in B cells were
elevated in the insulin group. These results indicate that insulin
antigens shift PBMCs to inflammatory, especially in T1DM
patients. On the other hand, Th2 had elevated gene expression of
IL4 and IL13 and Treg had elevated that of TGFB1 in the insulin
group. IL-4 and IL-13 are major effector cytokines produced by
Th2 during type 2 immune responses,(58) and Ukah et al.(59) found
that the IL4/IL-13 double-knockout NOD mice delayed the onset
of diabetes by increasing the frequency of mTGFβ + Foxp3int
Tregs and the persistence of CD206+ macrophages in the pan‐

creas. Tregs have been reported to inhibit effector T cell activity
via TGFβ. Since Th2 and Treg have been reported to be protec‐
tive against the development of T1DM, this result seemingly
contradicts the phenomenon of an inflammatory shift in various
immune cells. Although the cause of this phenomenon is not
clear, it is expected to be a negative feedback response to the
inflammatory shift of various immune cells.

In addition, we have investigated TCR clones and V(D)J
recombination. The diversity of TCR clones is known to be
reduced in inflammatory conditions, such as in patients with
inflammatory bowel disease.(60) In this study, the diversity of
TCR was significantly lower in the insulin group than in the
other three groups. Interestingly, motif analysis of CDR3 of TCR
revealed that TRB is monoclonally increased in the TRBV28/
TRBJ2-7 combination. On the other hand, TRAs were relatively
scattered among all immune cells, but cytotoxic CD8+ T cells and
Th17 showed an increase in the TRAV12-2/TRAJ18 combina‐
tion, and moreover, their motifs were very similar.
Limitations of this study include the small number of patients

B
its

0
1

1 2 3 4 5 6 7 8 9

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9 1011

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9 1011

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9 1011

2
3
4

B
its

0
1

1 2 3 4 5 6 7

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9 1011

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8 9 10111213

2
3
4

B
its
0
1
2
3
4

B
its

0
1

1 2 3 4 5 6

2
3
4

B
its

0
1

1 2 3 4 5 6 7 8 9 1011

2
3
4

Cytotxic
CD8+

C

0

5

10

15

S
ha

nn
on

 in
de

x 
of

TC
R
 r

ep
et

oi
re

B

0

1

2

3

4

5

S
ha

nn
on

 in
de

x 
of

C
D

R
3 

le
ng

th

TRA
12-2/18

TRB
28/2-7

13-2/38

Cytotxic
CD4+

28/2-7

Th1

2/21 28/2-7

Th2

2/38 28/2-7

Th17

12-2/18 28/2-7

12-2/31 28/2-7

Treg

*

*

NC
GAD IA

-2

In
su

lin

NC
GAD IA

-2

In
su

lin

Fig. 6. Continued

82 doi: 10.3164/jcbn.24-86
©2025 JCBN



in whom single-cell sequencing was performed (four patients)
and the fact that all patients were more than 10 years from the
onset of disease. All patients were already using insulin injec‐
tions for a long period of time when the PBMCs used in the
experiment were collected. This has the potential to bias the
various responses to insulin antigen stimulation in this study and,
as noted, may allow for a different response when PBMCs are
used from untreated patients. Furthermore, the disease type was
only type IA, and the human leukocyte antigen (HLA) typing
was unknown. These issues are currently being investigated and
will be addressed in the future.

In summary, insulin antigen significantly activated immune
cells and upregulated inflammatory cytokine expression in
PBMCs from type 1 diabetic patients, even when compared to
GAD and IA-2 antigens, and promoted a more robust inflamma‐
tory shift. Furthermore, this is the first report of TCR sequencing
using islet autoantigens. This study provides clues to further elu‐
cidate the pathogenesis of T1DM and may serve as a potential
therapeutic target for T1DM.
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